1
|
Yang P, Yang X, Wang F, Li R, Zhang M, Qian J, Hao R, Shen Z, Wang J, Zhang L, Qiu Z, Cao Y. The environmental concentration of diethylstilbestrol and its structural analogues promote the conjugation transfer of ARGs through the pheromone effect. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138713. [PMID: 40424806 DOI: 10.1016/j.jhazmat.2025.138713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/22/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
Antibiotic resistance (AMR) in the environment has emerged as a significant threat, severely impacting public health, ecological balance, and economic stability. Concurrently, environmental chemical pollution has been verified to trigger the spread of antibiotic resistance genes (ARGs). However, studies on the impacts of environmental pollutants on pheromone-regulated plasmid-mediated conjugative transfer of ARGs remain extremely limited. In the present study, we investigated the effects and underlying mechanisms of diethylstilbestrol (DES) on the conjugative transfer of pCF10 in Enterococcus faecalis. The results showed that DES at environmental concentrations led to an increase in conjugation transfer frequency by approximately 2.4 times higher than that of control at 2 h. Through a comprehensive suite of techniques, including mass spectrometry detection, quantitative polymerase chain reaction (qPCR), gene knockout, and morphological analysis, this study revealed that DES promoted the expression of pheromone regulated genes and activated the pheromone signaling pathway. Alternatively, it entered bacterial cells and bound to pheromone molecule regulatory switch PrgX. This binding subsequently stimulated the production of iCF10, as well as the expression of downstream signaling molecules, ultimately facilitating the conjugative transfer of pCF10. This study deepens our understanding of the environmental biological effect of DES and the spread of ARGs.
Collapse
Affiliation(s)
- Panpan Yang
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Xiaobo Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Feng Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Rumeng Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Man Zhang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; Institute of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Jingxue Qian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xian 710699, China
| | - Ruolin Hao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhiqiang Shen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Jingfeng Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Lijuan Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China
| | - Zhigang Qiu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Yanhua Cao
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China.
| |
Collapse
|
2
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2025; 89:e0008123. [PMID: 39714182 PMCID: PMC11948497 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M. Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Slinger BL, Banerjee S, Chandler JR, Blackwell HE. Interspecies Crosstalk via LuxI/LuxR-Type Quorum Sensing Pathways Contributes to Decreased Nematode Survival in Coinfections of Pseudomonas aeruginosa and Burkholderia multivorans. ACS Chem Biol 2024; 19:2557-2568. [PMID: 39636707 PMCID: PMC11927443 DOI: 10.1021/acschembio.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Quorum sensing (QS) is a prominent chemical communication mechanism used by common bacteria to regulate group behaviors at high cell density, including many processes important in pathogenesis. There is growing evidence that certain bacteria can use QS to sense not only themselves but also other species and that this crosstalk could alter collective behaviors. In the current study, we report the results of culture-based and in vivo coinfection experiments that probe interspecies interactions between the opportunistic pathogens Pseudomonas aeruginosa and Burkholderia multivorans involving their LuxI/LuxR-type QS circuits. Using a Caenorhabditis elegans infection model, we show that infections with both species result in poorer host outcomes compared with monoinfections. We use genetic mutants and a transwell infection assay to establish that crosstalk via LuxR-type receptors and signals is important for this coinfection pathogenicity. Using laboratory cocultures with cell-based reporter systems, we show that the RhlR and CepR receptors in P. aeruginosa and B. multivorans, respectively, can each recognize a QS signal produced by the other species. Lastly, we apply chemical biology to complement our genetic approach and demonstrate the potential to regulate interspecies interactions between the wild-type strains of P. aeruginosa and B. multivorans through the application of synthetic compounds that modulate RhlR and CepR activities. Overall, this study reveals that interspecies interaction via QS networks is possible between P. aeruginosa and B. multivorans and that it can contribute to coinfection severity with these two species.
Collapse
Affiliation(s)
- Betty L. Slinger
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Samalee Banerjee
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045 USA
| | - Josephine R. Chandler
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045 USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| |
Collapse
|
4
|
Haeberle AL, Greenwood-Quaintance KE, Zar S, Johnson S, Patel R, Willett JLE. Genotypic and phenotypic characterization of Enterococcus faecalis isolates from periprosthetic joint infections. Microbiol Spectr 2024; 12:e0056524. [PMID: 38912797 PMCID: PMC11302728 DOI: 10.1128/spectrum.00565-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Over 2.5 million prosthetic joint implantation surgeries occur annually in the United States. Periprosthetic joint infections (PJIs), though occurring in only 1-2% of patients receiving replacement joints, are challenging to diagnose and treat and are associated with significant morbidity. The Gram-positive bacterium Enterococcus faecalis, which can be highly antibiotic-resistant and is a robust biofilm producer on indwelling medical devices, accounts for 2-11% of PJIs. E. faecalis PJIs are understudied compared to those caused by other pathogens, such as Staphylococcus aureus. This motivates the need to generate a comprehensive understanding of E. faecalis PJIs to guide future treatments for these infections. To address this, we describe a panel of E. faecalis strains isolated from the surface of prosthetic joints in a cohort of individuals treated at the Mayo Clinic in Rochester, MN. Here, we present the first complete genome assemblage of E. faecalis PJI isolates. Comparative genomics shows differences in genome size, virulence factors, antimicrobial resistance genes, plasmids, and prophages, underscoring the genetic diversity of these strains. These isolates have strain-specific differences in in vitro biofilm biomass, biofilm burden, and biofilm morphology. We measured robust changes in biofilm architecture and aggregation for all isolates when grown in simulated synovial fluid (SSF). Finally, we evaluated the antibiotic efficacy of these isolates and found strain-specific changes across all strains when grown in SSF. Results of this study highlight the existence of genetic and phenotypic heterogeneity among E. faecalis PJI isolates which will provide valuable insight and resources for future E. faecalis PJI research. IMPORTANCE Periprosthetic joint infections (PJIs) affect ~1-2% of those who undergo joint replacement surgery. Enterococcus faecalis is a Gram-positive opportunistic pathogen that causes ~10% of PJIs in the United States each year, but our understanding of how and why E. faecalis causes PJIs is limited. E. faecalis infections are typically biofilm-associated and can be difficult to clear with antibiotic therapy. Here, we provide complete genomes for four E. faecalis PJI isolates from the Mayo Clinic. These isolates have strain-specific differences in biofilm formation, aggregation, and antibiotic susceptibility in simulated synovial fluid. These results provide important insight into the genomic and phenotypic features of E. faecalis isolates from PJI.
Collapse
Affiliation(s)
- Amanda L. Haeberle
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kerryl E. Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Zar
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stephen Johnson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Sun WS, Lassinantti L, Järvå M, Schmitt A, ter Beek J, Berntsson RPA. Structural foundation for the role of enterococcal PrgB in conjugation, biofilm formation, and virulence. eLife 2023; 12:RP84427. [PMID: 37860966 PMCID: PMC10588982 DOI: 10.7554/elife.84427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Type 4 Secretion Systems are a main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. In Gram-positives, these secretion systems often rely on surface adhesins to enhance cellular aggregation and mating-pair formation. One of the best studied adhesins is PrgB from the conjugative plasmid pCF10 of Enterococcus faecalis, which has been shown to play major roles in conjugation, biofilm formation, and importantly also in bacterial virulence. Since prgB orthologs exist on a large number of conjugative plasmids in various different species, this makes PrgB a model protein for this widespread virulence factor. After characterizing the polymer adhesin domain of PrgB previously, we here report the structure for almost the entire remainder of PrgB, which reveals that PrgB contains four immunoglobulin (Ig)-like domains. Based on this new insight, we re-evaluate previously studied variants and present new in vivo data where specific domains or conserved residues have been removed. For the first time, we can show a decoupling of cellular aggregation from biofilm formation and conjugation in prgB mutant phenotypes. Based on the presented data, we propose a new functional model to explain how PrgB mediates its different functions. We hypothesize that the Ig-like domains act as a rigid stalk that presents the polymer adhesin domain at the right distance from the cell wall.
Collapse
Affiliation(s)
- Wei-Sheng Sun
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Lena Lassinantti
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Michael Järvå
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Andreas Schmitt
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Josy ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| |
Collapse
|
6
|
Ma Y, Ramoneda J, Johnson DR. Timing of antibiotic administration determines the spread of plasmid-encoded antibiotic resistance during microbial range expansion. Nat Commun 2023; 14:3530. [PMID: 37316482 DOI: 10.1038/s41467-023-39354-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Plasmids are the main vector by which antibiotic resistance is transferred between bacterial cells within surface-associated communities. In this study, we ask whether there is an optimal time to administer antibiotics to minimize plasmid spread in new bacterial genotypes during community expansion across surfaces. We address this question using consortia of Pseudomonas stutzeri strains, where one is an antibiotic resistance-encoding plasmid donor and the other a potential recipient. We allowed the strains to co-expand across a surface and administered antibiotics at different times. We find that plasmid transfer and transconjugant proliferation have unimodal relationships with the timing of antibiotic administration, where they reach maxima at intermediate times. These unimodal relationships result from the interplay between the probabilities of plasmid transfer and loss. Our study provides mechanistic insights into the transfer and proliferation of antibiotic resistance-encoding plasmids within microbial communities and identifies the timing of antibiotic administration as an important determinant.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092, Zürich, Switzerland.
| | - Josep Ramoneda
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, 80309, USA
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|