1
|
Wang Z, Du C, Yan R, Li S, Zheng G, Ding D. Sustainable polyhydroxybutyrate (PHB) production from biowastes by Halomonas sp. WZQ-1 under non-sterile conditions. Int J Biol Macromol 2025; 311:143643. [PMID: 40306522 DOI: 10.1016/j.ijbiomac.2025.143643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Polyhydroxyalkanoates (PHA) are promising candidates for replacing petroleum-derived plastics; however, their high production costs limit their commercialisation. In this study, we successfully isolated an efficient PHA-producing strain from a salt lake, which was subsequently identified as Halomonas sp. WZQ-1. Notably, Halomonas sp. WZQ-1 could serve as a promising cell-factory platform for polyhydroxybutyrate (PHB) production, achieving a comparatively high PHB productivity (7.64 ± 0.4 g L-1) under moderate salt stress (60 g L-1 NaCl). We further realised semi-continuous PHB production in a bench-scale fermenter at a steady state by irregularly replenishing the organic substrate. The maximum PHB concentration reached 12.13 g L-1. Finally, we realised the non-sterile conversion of typical biowastes (e.g. pomelo and cantaloupe residues) to PHB using Halomonas sp. WZQ-1. Encouragingly, 4.36 g L-1 PHB was directly obtained from the hydrolysate of pomelo residues with a characteristic melting temperature of 174.0 °C. Life cycle assessment was employed to systematically evaluate the environmental sustainability and potential challenges of biowaste-driven PHB biorefineries. Overall, our findings could serve as a pivotal step toward the commercialisation of PHB and provide a valuable reference for PHB biorefineries.
Collapse
Affiliation(s)
- Ziqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyu Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyu Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuying Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Gu X, Sun J, Wang T, Li J, Wang H, Wang J, Wang Y. Comprehensive review of microbial production of medium-chain fatty acids from waste activated sludge and enhancement strategy. BIORESOURCE TECHNOLOGY 2024; 402:130782. [PMID: 38701982 DOI: 10.1016/j.biortech.2024.130782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microbial production of versatile applicability medium-chain fatty acids (MCFAs) (C6-C10) from waste activated sludge (WAS) provides a pioneering approach for wastewater treatment plants (WWTPs) to achieve carbon recovery. Mounting studies emerged endeavored to promote the MCFAs production from WAS while struggling with limited MCFAs production and selectivity. Herein, this review covers comprehensive introduction of the transformation process from WAS to MCFAs and elaborates the mechanisms for unsatisfactory MCFAs production. The enhancement strategies for biotransformation of WAS to MCFAs was presented. Especially, the robust performance of iron-based materials is highlighted. Furthermore, knowledge gaps are identified to outline future research directions. Recycling MCFAs from WAS presents a promising option for future WAS treatment, with iron-based materials emerging as a key regulatory strategy in advancing the application of WAS-to-MCFAs biotechnology. This review will advance the understanding of MCFAs recovery from WAS and promote sustainable resource management in WWTPs.
Collapse
Affiliation(s)
- Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jialin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Dong G, Zhao Y, Ding W, Xu S, Zhang Q, Zhao H, Shi S. Metabolic engineering of Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids. Metab Eng 2024; 82:100-109. [PMID: 38325640 DOI: 10.1016/j.ymben.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Odd-numbered fatty acids (FAs) have been widely used in nutrition, agriculture, and chemical industries. Recently, some studies showed that they could be produced from bacteria or yeast, but the products are almost exclusively odd-numbered long-chain FAs. Here we report the design and construction of two biosynthetic pathways in Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids (OMFAs) via ricinoleic acid and 10-hydroxystearic acid, respectively. The production of OMFAs was enabled by introducing a hydroxy fatty acid cleavage pathway, including an alcohol dehydrogenase from Micrococcus luteus, a Baeyer-Villiger monooxygenase from Pseudomonas putida, and a lipase from Pseudomonas fluorescens. These OMFA biosynthetic pathways were optimized by eliminating the rate-limiting step, generating heptanoic acid, 11-hydroxyundec-9-enoic acid, nonanoic acid, and 9-hydroxynonanoic acid at 7.83 mg/L, 9.68 mg/L, 9.43 mg/L and 13.48 mg/L, respectively. This work demonstrates the biological production of OMFAs in a sustainable manner in S. cerevisiae.
Collapse
Affiliation(s)
- Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Natural Products, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Ying Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Cautereels C, Smets J, Bircham P, De Ruysscher D, Zimmermann A, De Rijk P, Steensels J, Gorkovskiy A, Masschelein J, Verstrepen KJ. Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast. Nat Commun 2024; 15:1112. [PMID: 38326309 PMCID: PMC10850122 DOI: 10.1038/s41467-024-44997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Microbes are increasingly employed as cell factories to produce biomolecules. This often involves the expression of complex heterologous biosynthesis pathways in host strains. Achieving maximal product yields and avoiding build-up of (toxic) intermediates requires balanced expression of every pathway gene. However, despite progress in metabolic modeling, the optimization of gene expression still heavily relies on trial-and-error. Here, we report an approach for in vivo, multiplexed Gene Expression Modification by LoxPsym-Cre Recombination (GEMbLeR). GEMbLeR exploits orthogonal LoxPsym sites to independently shuffle promoter and terminator modules at distinct genomic loci. This approach facilitates creation of large strain libraries, in which expression of every pathway gene ranges over 120-fold and each strain harbors a unique expression profile. When applied to the biosynthetic pathway of astaxanthin, an industrially relevant antioxidant, a single round of GEMbLeR improved pathway flux and doubled production titers. Together, this shows that GEMbLeR allows rapid and efficient gene expression optimization in heterologous biosynthetic pathways, offering possibilities for enhancing the performance of microbial cell factories.
Collapse
Affiliation(s)
- Charlotte Cautereels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Jolien Smets
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Peter Bircham
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Dries De Ruysscher
- Molecular Biotechnology of Plants and Micro-organisms, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, box 2438, Leuven, 3001, Belgium
- Laboratory for Biomolecular Discovery & Engineering, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
| | - Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Peter De Rijk
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Jan Steensels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Anton Gorkovskiy
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Joleen Masschelein
- Molecular Biotechnology of Plants and Micro-organisms, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, box 2438, Leuven, 3001, Belgium
- Laboratory for Biomolecular Discovery & Engineering, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium.
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium.
| |
Collapse
|
5
|
Renegar N, Rhoades S, Nair A, Sinskey AJ, Ward JP, Appleton DR. Valorizing waste streams to enhance sustainability and economics in microbial oil production. J Ind Microbiol Biotechnol 2024; 51:kuae041. [PMID: 39501492 PMCID: PMC11630272 DOI: 10.1093/jimb/kuae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024]
Abstract
Driven by the demand for more sustainable products, research and capital investment has been committed to developing microbially produced oils. While researchers have shown oleaginous yeasts and other microbes can produce low-carbon footprint oils by leveraging waste streams as energy sources, previous analyses have not fully explored the quantity of available waste streams and in turn economy-of-scale enabled on capital and operating expenses. This paper makes parallels to 2G ethanol facilities, enabling a data-driven understanding of large-scale production economics. Production costs are broken down for a variety of scenarios. The analysis finds that reaching price parity with large-scale commodity oils (e.g., palm oil, high-oleic cooking oils, biofuels feedstock oils, lauric acid) is not possible today and unlikely even under aggressive future assumptions about strain productivity. Instead, commercial production must be targeted at end markets where sustainability-conscious consumers are willing to pay the price premiums identified in this paper. ONE SENTENCE SUMMARY This paper makes parallels to 2G ethanol facilities, enabling a data-driven understanding of large-scale production economics for microbial lipids.
Collapse
Affiliation(s)
- Nicholas Renegar
- Massachusetts Institute of Technology, Sinskey Lab, Department of Biology, Cambridge, MA 02139, USA
| | | | - Anusha Nair
- Sime Darby Plantation Berhad, 47301 Petaling Jaya, Selangor, Malaysia
| | - Anthony J Sinskey
- Massachusetts Institute of Technology, Sinskey Lab, Department of Biology, Cambridge, MA 02139, USA
| | - John P Ward
- Berry’s Brook Consulting, Rye, NH 03870, USA
| | | |
Collapse
|
6
|
Su H, Lin J. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:109. [PMID: 37400889 DOI: 10.1186/s13068-023-02340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
Because the thermodynamic property is closer to gasoline, advanced biofuels (C ≥ 6) are appealing for replacing non-renewable fossil fuels using biosynthesis method that has presented a promising approach. Synthesizing advanced biofuels (C ≥ 6), in general, requires the expansion of carbon chains from three carbon atoms to more than six carbon atoms. Despite some specific biosynthesis pathways that have been developed in recent years, adequate summary is still lacking on how to obtain an effective metabolic pathway. Review of biosynthesis pathways for expanding carbon chains will be conducive to selecting, optimizing and discovering novel synthetic route to obtain new advanced biofuels. Herein, we first highlighted challenges on expanding carbon chains, followed by presentation of two biosynthesis strategies and review of three different types of biosynthesis pathways of carbon chain expansion for synthesizing advanced biofuels. Finally, we provided an outlook for the introduction of gene-editing technology in the development of new biosynthesis pathways of carbon chain expansion.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural and Resources, Xian, 710075, Shanxi, China
| | - JiaFu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
7
|
Yang T, Yang Y, Yang M, Ren J, Xue C, Feng Y, Xue S. Conformational Changes of Acyl Carrier Protein Switch the Chain Length Preference of Acyl-ACP Thioesterase ChFatB2. Int J Mol Sci 2023; 24:ijms24076864. [PMID: 37047837 PMCID: PMC10095102 DOI: 10.3390/ijms24076864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Microbial fatty acids are synthesized by Type II fatty acid synthase and could be tailored by acyl-ACP thioesterase. With the prospects of medium-chain fatty-acid-derivative biofuels, the selectivity of thioesterase has been studied to control the fatty acid product chain length. Here, we report an alternative approach by manipulating the acyl carrier protein portion of acyl-ACP to switch the chain length propensity of the thioesterase. It was demonstrated that ChFatB2 from Cuphea hookeriana preferred C10-ACP to C8-ACP with ACP from E. coli, while converting preference to C8-ACP with ACP from Cuphea lanceolate. Circular dichroism (CD) results indicated that the C8-EcACP encountered a 34.4% α-helix increment compared to C10-EcACP, which resulted in an approximate binding affinity decrease in ChFatB2 compared to C10-EcACP. Similarly, the C10-ClACP2 suffered a 45% decrease in helix content compared to C8–ClACP2, and the conformational changes resulted in an 18% binding affinity decline with ChFatB2 compared with C10-ClACP2. In brief, the study demonstrates that the ACP portion of acyl-ACP contributes to the selectivity of acyl-ACP thioesterase, and the conformational changes of EcACP and ClACP2 switch the chain length preference of ChFatB2 between C8 and C10. The result provides fundamentals for the directed synthesis of medium-chain fatty acids based on regulating the conformational changes of ACPs.
Collapse
Affiliation(s)
- Tianxiang Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Yunlong Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Ming Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Jiangang Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Yanbin Feng
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Song Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
8
|
Kalinger RS, Rowland O. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants. BMC PLANT BIOLOGY 2023; 23:1. [PMID: 36588156 PMCID: PMC9806908 DOI: 10.1186/s12870-022-04003-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/13/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND ACYL-LIPID THIOESTERASES (ALTs) are a subclass of plastid-localized, fatty acyl-acyl carrier protein (ACP) thioesterase enzymes from plants. They belong to the single hot dog-fold protein family. ALT enzymes generate medium-chain (C6-C14) and C16 fatty acids, methylketone precursors (β-keto fatty acids), and 3-hydroxy fatty acids when expressed heterologously in E. coli. The diverse substrate chain-length and oxidation state preferences of ALTs set them apart from other plant acyl-ACP thioesterases, and ALTs show promise as metabolic engineering tools to produce high-value medium-chain fatty acids and methylketones in bacterial or plant systems. Here, we used a targeted motif-swapping approach to explore connections between ALT protein sequence and substrate specificity. Guided by comparative motif searches and computational modelling, we exchanged regions of amino acid sequence between ALT-type thioesterases from Arabidopsis thaliana, Medicago truncatula, and Zea mays to create chimeric ALT proteins. RESULTS Comparing the activity profiles of chimeric ALTs in E. coli to their wild-type counterparts led to the identification of interacting regions within the thioesterase domain that shape substrate specificity and enzyme activity. Notably, the presence of a 31-CQH[G/C]RH-36 motif on the central α-helix was shown to shift chain-length specificity towards 12-14 carbon chains, and to be a core determinant of substrate specificity in ALT-type thioesterases with preference for 12-14 carbon 3-hydroxyacyl- and β-ketoacyl-ACP substrates. For an ALT containing this motif to be functional, an additional 108-KXXA-111 motif and compatible sequence spanning aa77-93 of the surrounding β-sheet must also be present, demonstrating that interactions between residues in these regions of the catalytic domain are critical to thioesterase activity. The behaviour of chimeric enzymes in E. coli also indicated that aa77-93 play a significant role in dictating whether an ALT will prefer ≤10-carbon or ≥ 12-carbon acyl chain-lengths, and aa91-96 influence selectivity for substrates of fully or partially reduced oxidation states. Additionally, aa64-67 on the hot dog-fold β-sheet were shown to be important for enabling an ALT to act on 3-hydroxy fatty acyl-ACP substrates. CONCLUSIONS By revealing connections between thioesterase sequence and substrate specificity, this study is an advancement towards engineering recombinant ALTs with product profiles suited for specific applications.
Collapse
Affiliation(s)
- Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
9
|
Valencia LE, Incha MR, Schmidt M, Pearson AN, Thompson MG, Roberts JB, Mehling M, Yin K, Sun N, Oka A, Shih PM, Blank LM, Gladden J, Keasling JD. Engineering Pseudomonas putida KT2440 for chain length tailored free fatty acid and oleochemical production. Commun Biol 2022; 5:1363. [PMID: 36509863 PMCID: PMC9744835 DOI: 10.1038/s42003-022-04336-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Despite advances in understanding the metabolism of Pseudomonas putida KT2440, a promising bacterial host for producing valuable chemicals from plant-derived feedstocks, a strain capable of producing free fatty acid-derived chemicals has not been developed. Guided by functional genomics, we engineered P. putida to produce medium- and long-chain free fatty acids (FFAs) to titers of up to 670 mg/L. Additionally, by taking advantage of the varying substrate preferences of paralogous native fatty acyl-CoA ligases, we employed a strategy to control FFA chain length that resulted in a P. putida strain specialized in producing medium-chain FFAs. Finally, we demonstrate the production of oleochemicals in these strains by synthesizing medium-chain fatty acid methyl esters, compounds useful as biodiesel blending agents, in various media including sorghum hydrolysate at titers greater than 300 mg/L. This work paves the road to produce high-value oleochemicals and biofuels from cheap feedstocks, such as plant biomass, using this host.
Collapse
Affiliation(s)
- Luis E. Valencia
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Matthew R. Incha
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Matthias Schmidt
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.1957.a0000 0001 0728 696XInstitute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Allison N. Pearson
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Mitchell G. Thompson
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Jacob B. Roberts
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Marina Mehling
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Kevin Yin
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ning Sun
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,Advanced Biofuels and Bioproducts Process Demonstration Unit, Emeryville, CA 94608 USA
| | - Asun Oka
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,Advanced Biofuels and Bioproducts Process Demonstration Unit, Emeryville, CA 94608 USA
| | - Patrick M. Shih
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Lars M. Blank
- grid.1957.a0000 0001 0728 696XInstitute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - John Gladden
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Jay D. Keasling
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720 USA ,grid.5170.30000 0001 2181 8870Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark ,Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| |
Collapse
|
10
|
Degradation of Exogenous Fatty Acids in Escherichia coli. Biomolecules 2022; 12:biom12081019. [PMID: 35892328 PMCID: PMC9329746 DOI: 10.3390/biom12081019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Many bacteria possess all the machineries required to grow on fatty acids (FA) as a unique source of carbon and energy. FA degradation proceeds through the β-oxidation cycle that produces acetyl-CoA and reduced NADH and FADH cofactors. In addition to all the enzymes required for β-oxidation, FA degradation also depends on sophisticated systems for its genetic regulation and for FA transport. The fact that these machineries are conserved in bacteria suggests a crucial role in environmental conditions, especially for enterobacteria. Bacteria also possess specific enzymes required for the degradation of FAs from their environment, again showing the importance of this metabolism for bacterial adaptation. In this review, we mainly describe FA degradation in the Escherichia coli model, and along the way, we highlight and discuss important aspects of this metabolism that are still unclear. We do not detail exhaustively the diversity of the machineries found in other bacteria, but we mention them if they bring additional information or enlightenment on specific aspects.
Collapse
|