1
|
Cheng G, Sun T, Gao H, Wu Y, Li J, Xiong W, Li X, Wang H, Tian Y, Wei D, Yuan J, Wei D. Superlow-Noise Quasi-2D Vertical Tunneling Tactile Sensor for Fine Liquid Dynamic Recognition. ACS NANO 2025; 19:18270-18281. [PMID: 40332011 DOI: 10.1021/acsnano.4c18377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
To achieve high-precision intelligent tactile recognition and hyperfine operation tasks, tactile sensors need to possess the ability to discriminate minute pressures within the range of human perception. However, due to the lack of methodologies for noise suppression, existing tactile sensing mechanisms are inferior in pressure resolution. In this work, we emulate the structure of biological fingertip Merkel cells to develop a quasi-2D vertical tunneling tactile sensor based on conformal graphene nanowalls-hexagonal boron nitride-graphene (CGNWs-hBN-Gr) van der Waals (vdWs) heterojunctions. Tunneling channel modulation of this heterojunction simulates the ion gating mechanism of piezo (PZ) proteins and greatly reduces the noise power spectral density (PSD) to 2.22 × 10-24 A2/Hz at 10 Hz, which is 3 orders of magnitude lower than that of the sensor without an hBN layer. The noise equivalent pressure (NEPr) was as low as 7.96 × 10-3 Pa. Multiscale conformal micro- and nanostructured CGNWs further promote an ultrahigh sensitivity of 1.99 × 106 kPa-1, and the sensor demonstrates a high signal-to-noise ratio (SNR) of 68.76 dB and a resolution of 1/10,000. The minimum identifiable loading of 2 Pa at a pressure of 20 kPa is less than the sensing threshold value of human skin. An ultraresolution sensor could be used to evaluate different liquid properties by detecting complex hydrodynamic changes during artificial touching of liquids via a fingertip. Combined with the TacAtNet model, this sensor distinguishes between different liquids with a resolution accuracy of 98.1% across five distinct alcohol concentrations.
Collapse
Affiliation(s)
- Guanyin Cheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Tianhui Sun
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hailin Gao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Jingyang Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wen Xiong
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huabin Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Jiahu Yuan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dapeng Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
2
|
Lyu X, Yu K, Zhang H, Zhou P, Shen Z, Zou Z. Tough fiber-reinforced composite ionogels with crack resistance surpassing metals. Nat Commun 2025; 16:4005. [PMID: 40301368 PMCID: PMC12041386 DOI: 10.1038/s41467-025-59396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Ion-conductive materials have received much attention because of their good mechanical and electrical properties. However, their practical applications are still hampered by limited toughness and crack resistance, stemming from the restricted size of energy dissipation zones, which impacts their reliability and durability. Herein, tough fiber-reinforced composite ionogels (FRCIs) with crack resistance are fabricated by incorporating high-performance fibers into elastic ionogels to efficiently dissipate energy. The FRCIs exhibit good tearing toughness, high strength, high elastic modulus, and low bending modulus. The toughness and crack resistance of the FRCI far exceed that of previously reported gel materials, even outperforming metals and alloys. Furthermore, the electrical resistance of FRCI shows high sensitivity to deformation. Moreover, it remains undamaged after undergoing 10,000 bending cycles when fixing the artificial bone, and possesses self-sensing impact resistance, demonstrating great potential in intelligent robots and smart protective equipment.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, China.
| | - Kun Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Haoqi Zhang
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Zhihao Shen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, China.
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Tong H, Pan Z, Fu X, Zhou Y, Zhang X, Zhang K, Kang S, Luo J, Lu W, Douadji L. An Oriented Interpenetrating Network Structure Multi-Stimuli Responsive Hydrogel. Macromol Rapid Commun 2025; 46:e2400841. [PMID: 39748603 DOI: 10.1002/marc.202400841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Indexed: 01/04/2025]
Abstract
As a recent focal point of research, soft electronics encompass various factors that synergistically enhance their mechanical properties and ensure stable electrical performance. However, challenges such as immiscible conductive fillers, poor phase interfaces, and unstable conductive networks hinder the overall efficacy of these materials. To address these issues, a hydrogel featuring an oriented interpenetrating network structure (OIPN) is developed. The pyrrole monomer is in situ polymerized within the confined space of PVA macromolecular chains at low temperatures, resulting in a double network structure. Subsequently, the conductive hydrogel with an OIPN configuration is synthesized through directional freezing combined with salting out techniques. After doping phytic acid (IP6), non-covalent bonds dynamically reinforce the dual network architecture and the pathways for conductivity transfer. Due to its distinctive OIPN structure, the hydrogel containing 50% PPy and 2.3% IP6 exhibits remarkable conductivity (75 µs mm-1), excellent stretchability (400%), optimal multi-stimuli sensing responses (mechanical and gaseous stimuli), and outstanding device stability (over 2600 cycles at 40% strain). This multifunctional hydrogel presents a promising strategy for advancing applications in soft electronic materials.
Collapse
Affiliation(s)
- Hui Tong
- Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China
| | - Ziwei Pan
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, P. R. China
| | - Xie Fu
- Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- College of Mechanical Engineering, Chongqing University, Chongqing, 400714, P. R. China
| | - Yulong Zhou
- Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China
| | - Xia Zhang
- Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Kun Zhang
- Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Shuai Kang
- Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Jinling Luo
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, P. R. China
| | - Wenqiang Lu
- Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Lyes Douadji
- Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| |
Collapse
|
4
|
Wei X, Wu Z, Gao H, Cao S, Meng X, Lan Y, Su H, Qin Z, Liu H, Du W, Wu Y, Liu M, Zhao Z. Mechano-gated iontronic piezomemristor for temporal-tactile neuromorphic plasticity. Nat Commun 2025; 16:1060. [PMID: 39865134 PMCID: PMC11770186 DOI: 10.1038/s41467-025-56393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity. This system utilizes a bicontinuous phase-transition heterogel as a stiffness-governed iontronic mechanogate to achieve bidirectional piezoresistive signals, resulting in wide-span dynamic tactile sensing. By micro-integrating the mechanogate with an oscillatory iontronic memristor, it exhibits stiffness-induced bipolarized excitatory and inhibitory neuromorphics, thereby enabling the activation of temporal-tactile memory and learning functions (e.g., Bienenstock-Cooper-Munro and Hebbian learning rules). Owing to dynamic covalent bond network and iontronic features, reconfigurable tactile plasticity can be achieved. Importantly, bridging to bioneuronal interfaces, these systems possess the capacity to construct a biohybrid perception-actuation circuit. We anticipate that such temporal plastic piezomemristor devices for abiotic-biotic interfaces can serve as promising hardware systems for interfacing dynamic tactile behaviors into diverse neuromodulations.
Collapse
Affiliation(s)
- Xiao Wei
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, Jiangsu, PR China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, Jiangsu, PR China
| | - Shiqi Cao
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Yuqun Lan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Huixue Su
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Zhenglian Qin
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Hang Liu
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Wenxin Du
- School of Mechanical Engineering and Automation, Beihang University, 100191, Beijing, PR China
| | - Yuchen Wu
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, Jiangsu, PR China.
| | - Mingjie Liu
- School of Mechanical Engineering and Automation, Beihang University, 100191, Beijing, PR China.
| | - Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.
| |
Collapse
|
5
|
Li X, Gao Y, Nie J, Sun F. Construction of gradient ionogels by self-floatable hyperbranched organosilicon crosslinkers for multi-sensing and wirelessly monitoring physiological signals. J Colloid Interface Sci 2025; 678:703-712. [PMID: 39216397 DOI: 10.1016/j.jcis.2024.08.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Monitoring complex human movements requires the simultaneous detection of strain and pressure, which poses a challenge due to the difficulty in integrating high stretchability and compressive ability into a single material. Herein, a series of hyperbranched polysiloxane crosslinkers (HPSis) with self-floating abilities are designed and synthesized. Taking advantage of the self-floating capabilities of HPSis, ionogels with gradient composition distribution and conductivities are constructed by in situ one-step photopolymerization, and possess satisfactory stretchability, high compressibility and excellent resilience. The gradient-ionogel-based strain sensor exhibits extraordinary pressure sensitivity (19.33 kPa-1), high strain sensitivity (GF reaches 2.5) and temperature sensing ability, enabling the monitoring of the angles and direction of joint movements, transmitting Morse code and wirelessly detecting bioelectrical signals. This study may inspire the design of development of multi-function flexible electronics.
Collapse
Affiliation(s)
- Xuechun Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanjing Gao
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
6
|
Zhang X, Zhou Y, Han M, Zheng Y, Liu J, Bao Y, Shan G, Yu C, Pan P. Non-monotonic Information and Shape Evolution of Polymers Enabled by Spatially Programmed Crystallization and Melting. CHEM & BIO ENGINEERING 2024; 1:790-797. [PMID: 39974185 PMCID: PMC11792907 DOI: 10.1021/cbe.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 02/21/2025]
Abstract
Stimuli-responsive polymer materials are a kind of intelligent material which can sense and respond to external stimuli. However, most current stimuli-responsive polymers only exhibit a monotonic response to a single constant stimulus but cannot achieve dynamic evolution. Herein, we report a method to achieve a non-monotonic response under a single stimulus by regionalizing the crystallization and melting kinetics in semicrystalline polymers. Based on the influence of cross-linking on the crystallization and melting kinetics of polymers, we employ light to spatially regulate the cross-linking degree in polymers. The prepared material can realize the self-evolved encryption of pattern information and the non-monotonic shape evolution without complex multiple stimuli. By combination of pattern and shape evolution, the coupled encryption of shape and pattern can be achieved. This approach empowers polymers with the ability to evolve under constant stimulus, offering insights into the functional design of polymer materials.
Collapse
Affiliation(s)
- Xing Zhang
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yichen Zhou
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengzhe Han
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Zheng
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Junfeng Liu
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Yongzhong Bao
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Guorong Shan
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chengtao Yu
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
7
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
8
|
Chen Y, Chen Y, Gao R, Yu X, Lu C. Reversible Molecule Interactions Enable Ultrastretchable and Recyclable Ionogels for Wearable Piezoionic Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50027-50035. [PMID: 39270305 DOI: 10.1021/acsami.4c11268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ionogel-based piezoionic sensors feel motions and strains like human skin relying on reversible ion migrations under external mechanical stimulus and are of great importance to artificial intelligence. However, conventional ion-conductive polymers behave with degraded electrical and mechanical properties after thousands of strain cycles, and the discarded materials and devices become electronic wastes as well. Here, we develop ultrastretchable ionogels with superior electrical properties via the mediation of metal-organic frameworks, whose properties are attributed to reversible molecule interactions inside the material system. Ionogels present excellent mechanical properties with breaking elongation as high as 850%, exceeding most previously reported similar materials, and the high conductivity enables further application in sensor devices. In addition, our ionogels display superior recyclability because of the reversible physical and chemical interactions inside material molecules, which are eco-friendly to the environment. As a result, the ionogel-based piezoionic sensors deliver high sensitivity, flexibility, cyclic stability, and signal reliability, which are of great significance to wearable applications in human-motion detections such as throat vibration, facial expression, joint mobility, and finger movement. Our study paves the way for ultrastretchable and eco-friendly ionogel design for flexible electrochemical devices.
Collapse
Affiliation(s)
- Yunxuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanyu Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rizhong Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinpeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
9
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
10
|
Jia L, Xiao J, Tan Y, Zhang K, Liu Y, Wang X. Supramolecular Ionogels for Use in Locating Damage to Underwater Infrastructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309231. [PMID: 38059870 DOI: 10.1002/smll.202309231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Indexed: 12/08/2023]
Abstract
The capacity to self-detect and locate damage to underwater infrastructure in emergencies is vital, as materials and technologies that securely facilitate energy and information transmission are crucial in several fields. Herein, the development of a multifunctional supramolecular ionogel (SIG) and SIG-based devices for use in detecting and locating damage to underwater infrastructure is reported. The SIG is fabricated via the single-step photoinitiated copolymerization of hydroxy and fluorinated monomers in a fluorinated ionic liquid. Hydrogen-bond/ion-dipole-interaction synergy ensures that the SIG is highly ionically conductive and extremely mechanically strong, with underwater self-healing and adhesion properties. It can be used as an underwater ionic cable to provide reporting signals via changes in strain; furthermore, SIG-based devices can be fixed to underwater infrastructure to locate damage via resistance monitoring. The SIG can also be attached to the human body for use in underwater communication, thereby safeguarding maintenance personnel while repairing underwater infrastructure. This study provides a novel pathway for developing supramolecular materials and devices.
Collapse
Affiliation(s)
- Liangying Jia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jing Xiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
11
|
Zhou Y, Yu C, Zhang X, Zheng Y, Wang B, Bao Y, Shan G, Wang H, Pan P. Ultrasensitive Ionic Conductors with Tunable Resistance Switching Temperature Enabled by Phase Transformation of Polymer Cocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309568. [PMID: 38227221 DOI: 10.1002/adma.202309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Phase-transformable ionic conductors (PTICs) show significant prospects for functional applications due to their reversible resistance switching property. However, the representative design principle of PTICs is utilizing the melt-crystallization transition of ionic liquids, and the resistance switching temperatures of such PTICs cannot be tuned as desired. Herein, a new strategy is proposed to design PTICs with on-demand resistance switching temperatures by using the melt-crystallization transition of polymer cocrystal phase, whose melting temperature shows a linear relationship with the polymer compositions. Owing to the melt of polymer cocrystal domains and the tunable migration of ions in the resistance switching region, the obtained PTICs display ultrahigh temperature sensitivity with a superior temperature coefficient of resistance of -8.50% °C-1 around human body temperature, as compared to various ionic conductors previously reported. Therefore, the PTICs can detect tiny temperature variation, allowing for the intelligent applications for overheating warning and heat dissipation. It is believed that this work may inspire future researches on the development of advanced soft electrical devices.
Collapse
Affiliation(s)
- Yichen Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Xing Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ying Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Bao Wang
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| |
Collapse
|
12
|
Zhao Z, Cao Z, Wu Z, Du W, Meng X, Chen H, Wu Y, Jiang L, Liu M. Bicontinuous vitrimer heterogels with wide-span switchable stiffness-gated iontronic coordination. SCIENCE ADVANCES 2024; 10:eadl2737. [PMID: 38457508 PMCID: PMC10923496 DOI: 10.1126/sciadv.adl2737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Currently, it remains challenging to balance intrinsic stiffness with programmability in most vitrimers. Simultaneously, coordinating materials with gel-like iontronic properties for intrinsic ion transmission while maintaining vitrimer programmable features remains underexplored. Here, we introduce a phase-engineering strategy to fabricate bicontinuous vitrimer heterogel (VHG) materials. Such VHGs exhibited high mechanical strength, with an elastic modulus of up to 116 MPa, a high strain performance exceeding 1000%, and a switchable stiffness ratio surpassing 5 × 103. Moreover, highly programmable reprocessing and shape memory morphing were realized owing to the ion liquid-enhanced VHG network reconfiguration. Derived from the ion transmission pathway in the ILgel, which responded to the wide-span switchable mechanics, the VHG iontronics had a unique bidirectional stiffness-gated piezoresistivity, coordinating both positive and negative piezoresistive properties. Our findings indicate that the VHG system can act as a foundational material in various promising applications, including smart sensors, soft machines, and bioelectronics.
Collapse
Affiliation(s)
- Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziquan Cao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenxin Du
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yuchen Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial, Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| |
Collapse
|
13
|
Sun L, Huang H, Zhang L, Neisiany RE, Ma X, Tan H, You Z. Spider-Silk-Inspired Tough, Self-Healing, and Melt-Spinnable Ionogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305697. [PMID: 37997206 PMCID: PMC10797445 DOI: 10.1002/advs.202305697] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Indexed: 11/25/2023]
Abstract
As stretchable conductive materials, ionogels have gained increasing attention. However, it still remains crucial to integrate multiple functions including mechanically robust, room temperature self-healing capacity, facile processing, and recyclability into an ionogel-based device with high potential for applications such as soft robots, electronic skins, and wearable electronics. Herein, inspired by the structure of spider silk, a multilevel hydrogen bonding strategy to effectively produce multi-functional ionogels is proposed with a combination of the desirable properties. The ionogels are synthesized based on N-isopropylacrylamide (NIPAM), N, N-dimethylacrylamide (DMA), and ionic liquids (ILs) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). The synergistic hydrogen bonding interactions between PNIPAM chains, PDMA chains, and ILs endow the ionogels with improved mechanical strength along with fast self-healing ability at ambient conditions. Furthermore, the synthesized ionogels show great capability for the continuous fabrication of the ionogel-based fibers using the melt-spinning process. The ionogel fibers exhibit spider-silk-like features with hysteresis behavior, indicating their excellent energy dissipation performance. Moreover, an interwoven network of ionogel fibers with strain and thermal sensing performance can accurately sense the location of objects. In addition, the ionogels show great recyclability and processability into different shapes using 3D printing. This work provides a new strategy to design superior ionogels for diverse applications.
Collapse
Affiliation(s)
- Lijie Sun
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518038China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Hongfei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518038China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
- Biotechnology CentreSilesian University of TechnologyKrzywoustego 8Gliwice44‐100Poland
| | - Xiaopeng Ma
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518038China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518038China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| |
Collapse
|
14
|
Patel V, Das E, Bhargava A, Deshmukh S, Modi A, Srivastava R. Ionogels for flexible conductive substrates and their application in biosensing. Int J Biol Macromol 2024; 254:127736. [PMID: 38183203 DOI: 10.1016/j.ijbiomac.2023.127736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/07/2024]
Abstract
Ionogels are highly conductive gels made from ionic liquids dispersed in a matrix made of organic or inorganic materials. Ionogels are known for high ionic conductivity, flexibility, high thermal and electrochemical stability. These characteristics make them suitable for sensing and biosensing applications. This review discusses about the two main constituents, ionic liquids and matrix, used to make ionogels and effect of these materials on the characteristics of ionogels. Here, the material properties like mechanical, electrochemical and stability are discussed for both polymer matrix and ionic liquid. We have briefly described about the fabrication methods like 3D printing, sol-gel, blade coating, spin coating, aerosol jet printing etc., used to make films or coating of these ionogels. The advantages and disadvantages of each method are also briefly summarized. Finally, the last section provides a few examples of application of flexible ionogels in areas like wearables, human-machine interface, electronic skin and detection of biological molecules.
Collapse
Affiliation(s)
- Vinay Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Eatu Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Ameesha Bhargava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Sharvari Deshmukh
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Loni Kalbhor, Pune 412201, India
| | - Anam Modi
- G.N. Khalsa College, Matunga, Mumbai 400019, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India.
| |
Collapse
|
15
|
Xia H, Wang L, Zhang H, Wang Z, Zhu L, Cai H, Ma Y, Yang Z, Zhang D. MXene/PPy@PDMS sponge-based flexible pressure sensor for human posture recognition with the assistance of a convolutional neural network in deep learning. MICROSYSTEMS & NANOENGINEERING 2023; 9:155. [PMID: 38116450 PMCID: PMC10728160 DOI: 10.1038/s41378-023-00605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 12/21/2023]
Abstract
The combination of flexible sensors and deep learning has attracted much attention as an efficient method for the recognition of human postures. In this paper, an in situ polymerized MXene/polypyrrole (PPy) composite is dip-coated on a polydimethylsiloxane (PDMS) sponge to fabricate an MXene/PPy@PDMS (MPP) piezoresistive sensor. The sponge sensor achieves ultrahigh sensitivity (6.8925 kPa-1) at 0-15 kPa, a short response/recovery time (100/110 ms), excellent stability (5000 cycles) and wash resistance. The synergistic effect of PPy and MXene improves the performance of the composite materials and facilitates the transfer of electrons, making the MPP sponge at least five times more sensitive than sponges based on each of the individual single materials. The large-area conductive network allows the MPP sensor to maintain excellent electrical performance over a large-scale pressure range. The MPP sensor can detect a variety of human body activity signals, such as radial artery pulse and different joint movements. The detection and analysis of human motion data, which is assisted by convolutional neural network (CNN) deep learning algorithms, enable the recognition and judgment of 16 types of human postures. The MXene/PPy flexible pressure sensor based on a PDMS sponge has broad application prospects in human motion detection, intelligent sensing and wearable devices.
Collapse
Affiliation(s)
- Hui Xia
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Lin Wang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd, Qingdao, 266071 China
| | - Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Zihu Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Liang Zhu
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd, Qingdao, 266071 China
| | - Haolin Cai
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Yanhua Ma
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Zhe Yang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd, Qingdao, 266071 China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| |
Collapse
|
16
|
Cao X, Ye C, Cao L, Shan Y, Ren J, Ling S. Biomimetic Spun Silk Ionotronic Fibers for Intelligent Discrimination of Motions and Tactile Stimuli. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300447. [PMID: 37002548 DOI: 10.1002/adma.202300447] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Innovation in the ionotronics field has significantly accelerated the development of ultraflexible devices and machines. However, it is still challenging to develop efficient ionotronic-based fibers with necessary stretchability, resilience, and conductivity due to inherent conflict in producing spinning dopes with both high polymer and ion concentrations and low viscosities. Inspired by the liquid crystalline spinning of animal silk, this study circumvents the inherent tradeoff in other spinning methods by dry spinning a nematic silk microfibril dope solution. The liquid crystalline texture allows the spinning dope to flow through the spinneret and form free-standing fibers under minimal external forces. The resultant silk-sourced ionotronic fibers (SSIFs) are highly stretchable, tough, resilient, and fatigue-resistant. These mechanical advantages ensure a rapid and recoverable electromechanical response of SSIFs to kinematic deformations. Further, the incorporation of SSIFs into core-shell triboelectric nanogenerator fibers provides outstanding stable and sensitive triboelectric response to precisely and sensitively perceive small pressures. Moreover, by implementing a combination of machine learning and Internet of Things techniques, the SSIFs can sort objects made of different materials. With these structural, processing, performance, and functional merits, the SSIFs prepared herein are expected to be applied in human-machine interfaces.
Collapse
Affiliation(s)
- Xinyi Cao
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Chao Ye
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- School of Textile and Clothing, Yancheng Institute of Technology, Jiangsu, 224051, China
| | - Leitao Cao
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yicheng Shan
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
17
|
Li X, Sun F. An Ultrastretchable Gradient Ionogel Induced by a Self-Floating Strategy for Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37717-37727. [PMID: 37523492 DOI: 10.1021/acsami.3c06894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The fabrication of gradient ionogels for flexible strain sensors remains challenging because of the complex preparation procedures, and it is still difficult to prepare highly stretchable ionogels (strain > 10000%). In this study, a strategy is proposed to successfully fabricate gradient ionogels and apply them to flexible strain sensors by utilizing the self-floating character of the polysiloxane cross-linker. A gradient ionogel with ultrahigh stretchability (>14000%) is prepared via a one-step in situ photopolymerization process of the precursor with long-chain poly(dimethylsiloxane) bis(2-methyl acrylate) (PDMSMA). PDMSMA, which has a self-floating ability and excellent flexibility, induces a gradient composition distribution in the ionogel, thereby endowing the ionogel with superior stretchability and gradient changes in conductivity and adhesivity from the top to the bottom layer. Because of multiple molecular interactions, the bottom surface of the ionogel possesses good resilience and self-adhesion, whereas the top surface, which has a high PDMSMA content, shows a nonsticky performance. As a result, a singular gradient ionogel having both a sticky bottom surface and a nonsticky top surface is achieved. Furthermore, the flexible strain sensor that is created based on these gradient ionogels exhibits high sensitivity (its gauge factor reaching 5.08), a wide detection range (1-1500%), fast response times, and good linearity. Notably, the detection signal remains repeatable over 1000 uninterrupted strain cycles. The fabricated strain sensor was further utilized to monitor joint movements and physiological signals. This work provides a facile strategy for fabricating gradient ionogels and shows their application potential in the field of flexible electronics.
Collapse
Affiliation(s)
- Xuechun Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Anqing Research Institute, Beijing University of Chemical Technology, Anqing 246000, People's Republic of China
| |
Collapse
|
18
|
Liu Z, Jiang Q, Bisoyi HK, Zhu G, Nie ZZ, Jiang K, Yang H, Li Q. Multifunctional Ionic Conductive Anisotropic Elastomers with Self-Wrinkling Microstructures by In Situ Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267423 DOI: 10.1021/acsami.3c04187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multifunctional flexible sensors are the development trend of wearable electronic devices in the future. As the core of flexible sensors, the key is to construct a stable multifunctional integrated conductive elastomer. Here, ionic conductive elastomers (ICEs) with self-wrinkling microstructures are designed and prepared by in situ phase separation induced by a one-step polymerization reaction. The ICEs are composed of ionic liquids as ionic conductors doped into liquid crystal elastomers. The doped ionic liquids cluster into small droplets and in situ induce the formation of wrinkle structures on the upper surface of the films. The prepared ICEs exhibit mechanochromism, conductivity, large tensile strain, low hysteresis, high cycle stability, and sensitivity during the tension-release process, which achieve dual-mode outputs of optical and electrical signals for information transmission and sensors.
Collapse
Affiliation(s)
- Zhiyang Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qi Jiang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| | - Guanqun Zhu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhen-Zhou Nie
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kun Jiang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
19
|
Liu T, Liu L, Gou GY, Fang Z, Sun J, Chen J, Cheng J, Han M, Ma T, Liu C, Xue N. Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21721-21745. [PMID: 37098855 DOI: 10.1021/acsami.3c02690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flexible wearable devices have been widely used in biomedical applications, the Internet of Things, and other fields, attracting the attention of many researchers. The physiological and biochemical information on the human body reflects various health states, providing essential data for human health examination and personalized medical treatment. Meanwhile, physiological and biochemical information reveals the moving state and position of the human body, and it is the data basis for realizing human-computer interactions. Flexible wearable physiological and biochemical sensors provide real-time, human-friendly monitoring because of their light weight, wearability, and high flexibility. This paper reviews the latest advancements, strategies, and technologies of flexibly wearable physiological and biochemical sensors (pressure, strain, humidity, saliva, sweat, and tears). Next, we systematically summarize the integration principles of flexible physiological and biochemical sensors with the current research progress. Finally, important directions and challenges of physiological, biochemical, and multimodal sensors are proposed to realize their potential applications for human movement, health monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lidan Liu
- Zhucheng Jiayue Central Hospital, Shandong 262200, China
| | - Guang-Yang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Jianhai Sun
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jianqun Cheng
- School of Integrated Circuit, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - Tianjun Ma
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Qiao H, Sun S, Wu P. Non-equilibrium-Growing Aesthetic Ionic Skin for Fingertip-Like Strain-Undisturbed Tactile Sensation and Texture Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300593. [PMID: 36861380 DOI: 10.1002/adma.202300593] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Indexed: 05/26/2023]
Abstract
Humans use periodically ridged fingertips to precisely perceive the characteristics of objects via ion-based fast- and slow-adaptive mechanotransduction. However, designing artificial ionic skins with fingertip-like tactile capabilities remains challenging because of the contradiction between structural compliance and pressure sensing accuracy (e.g., anti-interference from stretch and texture recognition). Inspired by the formation and modulus-contrast hierarchical structure of fingertips, an aesthetic ionic skin grown from a non-equilibrium Liesegang patterning process is introduced. This ionic skin with periodic stiff ridges embedded in a soft hydrogel matrix enables strain-undisturbed triboelectric dynamic pressure sensing as well as vibrotactile texture recognition. By coupling with another piezoresistive ionogel, an artificial tactile sensory system is further fabricated as a soft robotic skin to mimic the simultaneous fast- and slow-adaptive multimodal sensations of fingers in grasping actions. This approach may inspire the future design of high-performance ionic tactile sensors for intelligent applications in soft robotics and prosthetics.
Collapse
Affiliation(s)
- Haiyan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
21
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, et alLuo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Show More Authors] [Citation(s) in RCA: 337] [Impact Index Per Article: 168.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
22
|
Fan X, Liu S, Jia Z, Koh JJ, Yeo JCC, Wang CG, Surat'man NE, Loh XJ, Le Bideau J, He C, Li Z, Loh TP. Ionogels: recent advances in design, material properties and emerging biomedical applications. Chem Soc Rev 2023; 52:2497-2527. [PMID: 36928878 DOI: 10.1039/d2cs00652a] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.
Collapse
Affiliation(s)
- Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Siqi Liu
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - J Justin Koh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Nayli Erdeanna Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jean Le Bideau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Chaobin He
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
23
|
Li W, Fan Q, Chai C, Chu Y, Hao J. Ti3C2-MXene Ionogel with Long-Term Stability and High Sensitivity for Wearable Piezoresistive Sensors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
24
|
Takashima K, Ota K, Cho H. Variable-Sensitivity Force Sensor Based on Structural Modification. SENSORS (BASEL, SWITZERLAND) 2023; 23:2077. [PMID: 36850673 PMCID: PMC9963203 DOI: 10.3390/s23042077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Force sensors are used in a wide variety of fields. They require different measurement ranges and sensitivities depending on the operating environment because there is generally a trade-off between measurement range and sensitivity. In this study, we developed a variable-sensitivity, variable-measurement-range force sensor that utilizes structural modification, namely changes in the distance between the force application point and the detection area, and changes in the cross-sectional area. The use of shape-memory materials allows the sensor structure to be easily changed and fixed by controlling the temperature. First, we describe the theory of the proposed sensor. Then, we present prototypes and the experimental methods used to verify the performance of the sensor. We fabricated the prototypes by attaching two strain gauges to two sides of a shape-memory alloy and shape-memory polymer plates. Experiments on the prototypes show that the relationship between the applied force and the detected strain can be changed by bending the plate. This allows the sensitivity and measurement range of the sensor to be changed.
Collapse
Affiliation(s)
- Kazuto Takashima
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan
| | - Kengo Ota
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan
| | - Hiroki Cho
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
25
|
Huang Z, Wu J, Zhao Y, Zhang D, Tong L, Gao F, Liu C, Chen F. Starch-based shape memory sponge for rapid hemostasis in penetrating wounds. J Mater Chem B 2023; 11:852-864. [PMID: 36594734 DOI: 10.1039/d2tb02364d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Death caused by excessive blood loss has always been a global concern. Timely control of bleeding in incompressible penetrated wounds remains a great challenge. Here, we developed a shape memory sponge (SQG) based on modified starch and gelatin (Gel) to control the hemorrhage of penetrating wounds. The porous structure of SQG greatly enhanced the absorption of blood, and the adhesion of erythrocytes and platelets. The water absorption rate of SQG reached 1178.72 ± 12.18% in 10 s. SQG quickly recovered its shape in water (∼3 s) and exhibited high mechanical strength (∼38 kPa), acting as a physically packed barrier to facilitate hemostasis. Furthermore, the positively charged sponges were conducive to activating platelets and promoting the release of coagulation factors. SQG sponges possessed the lowest blood coagulation index (BCI) of 21.32 ± 0.19%, and presented good biocompatibility and obvious inhibitory effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Moreover, SQG sponges controlled complete bleeding in 69 ± 20 s and a bleeding loss of 334 ± 138 mg was observed, nearly 50% lower than that of gelatin sponge in rabbit liver penetrating wounds. Overall, SQG possesses a combination of potent shape recovery, rapid hemostasis, and excellent antibacterial and degradation ability, enabling promising applications for hemostasis in non-compressible penetrating wounds.
Collapse
Affiliation(s)
- Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Juan Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yujiao Zhao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Laiqiang Tong
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Fan Gao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
26
|
Li Y, Wei Y, Yang Y, Zheng L, Luo L, Gao J, Jiang H, Song J, Xu M, Wang X, Huang W. The Soft-Strain Effect Enabled High-Performance Flexible Pressure Sensor and Its Application in Monitoring Pulse Waves. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0002. [PMID: 39290969 PMCID: PMC11407520 DOI: 10.34133/research.0002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2024]
Abstract
Flexible and wearable pressure sensors attached to human skin are effective and convenient in accurate and real-time tracking of various physiological signals for disease diagnosis and health assessment. Conventional flexible pressure sensors are constructed using compressible dielectric or conductive layers, which are electrically sensitive to external mechanical stimulation. However, saturated deformation under large compression significantly restrains the detection range and sensitivity of such sensors. Here, we report a novel type of flexible pressure sensor to overcome the compression saturation of the sensing layer by soft-strain effect, enabling an ultra-high sensitivity of ~636 kPa-1 and a wide detection range from 0.1 kPa to 56 kPa. In addition, the cyclic loading-unloading test reveals the excellent stability of the sensor, which maintains its signal detection after 10,000 cycles of 10 kPa compression. The sensor is capable of monitoring arterial pulse waves from both deep tissue and distal parts, such as digital arteries and dorsal pedal arteries, which can be used for blood pressure estimation by pulse transit time at the same artery branch.
Collapse
Affiliation(s)
- Yue Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuan Wei
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yabao Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiuwei Gao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hanjun Jiang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Juncai Song
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
27
|
Liu J, Zhang B, Zhang P, Zhao K, Lu Z, Wei H, Zheng Z, Yang R, Yu Y. Protein Crystallization-Mediated Self-Strengthening of High-Performance Printable Conducting Organohydrogels. ACS NANO 2022; 16:17998-18008. [PMID: 36136126 DOI: 10.1021/acsnano.2c07823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive polymers have many advanced applications, but there is still an important target in developing a general and straightforward strategy for printable, mechanically stable, and durable organohydrogels with typical conducting polymers of, for example, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene). Here we report a protein crystallization-mediated self-strengthening strategy to fabricate printable conducting organohydrogels with the combination of rational photochemistry design. Such organohydrogels are one-step prepared via rapidly and orthogonally controllable photopolymerizations of pyrroles and gelatin protein in tens of seconds. As-prepared conducting organohydrogels are patterned and printed to complicated structures via shadow-mask lithography and 3D extrusion technology. The mild photocatalytic system gives the transition metal carbide/nitride (MXene) component high stability during the oxidative preparation process and storage. Controlling water evaporation promotes gelatin crystallization in the as-prepared organohydrogels that significantly self-strengthens their mechanical property and stability in a broad temperature range and durability against continuous friction treatment without introducing guest functional materials. Also, these organohydrogels have commercially electromagnetic shielding, thermal conducting properties, and temperature- and light-responsibility. To further demonstrate the merits of this simple strategy and as-prepared organohydrogels, prism arrays, as proofs-of-concept, are printed and applied to make wearable triboelectric nanogenerators. This self-strengthening process and 3D-printability can greatly improve their voltage, charge, and current output performances compared to the undried and flat samples.
Collapse
Affiliation(s)
- Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Keqi Zhao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710000, China
| | - Zhe Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zijian Zheng
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, HongKong SAR, 999077, China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710000, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
28
|
Yuan ZY, Cao ZX, Wu R, Li H, Xu QJ, Wu HT, Zheng J, Wu JR. Ultra-robust Metallosupramolecular Hydrogels with Unprecedented Self-recoverability using Asymmetrically Distributed Carboxyl-Fe3+ Coordination Interactions. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Xiong Y, Han J, Wang Y, Wang ZL, Sun Q. Emerging Iontronic Sensing: Materials, Mechanisms, and Applications. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9867378. [PMID: 36072274 PMCID: PMC9414182 DOI: 10.34133/2022/9867378] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Iontronic sensors represent a novel class of soft electronics which not only replicate the biomimetic structures and perception functions of human skin but also simulate the mechanical sensing mechanism. Relying on the similar mechanism with skin perception, the iontronic sensors can achieve ion migration/redistribution in response to external stimuli, promising iontronic sensing to establish more intelligent sensing interface for human-robotic interaction. Here, a comprehensive review on advanced technologies and diversified applications for the exploitation of iontronic sensors toward ionic skins and artificial intelligence is provided. By virtue of the excellent stretchability, high transparency, ultrahigh sensitivity, and mechanical conformality, numerous attempts have been made to explore various novel ionic materials to fabricate iontronic sensors with skin-like perceptive properties, such as self-healing and multimodal sensing. Moreover, to achieve multifunctional artificial skins and intelligent devices, various mechanisms based on iontronics have been investigated to satisfy multiple functions and human interactive experiences. Benefiting from the unique material property, diverse sensing mechanisms, and elaborate device structure, iontronic sensors have demonstrated a variety of applications toward ionic skins and artificial intelligence.
Collapse
Affiliation(s)
- Yao Xiong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|