1
|
Ijaz M, Hasan I, Aslam B, Yan Y, Zeng W, Gu J, Jin J, Zhang Y, Wang S, Xing L, Guo B. Diagnostics of brain tumor in the early stage: current status and future perspectives. Biomater Sci 2025; 13:2580-2605. [PMID: 40200902 DOI: 10.1039/d4bm01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Early diagnosis of brain tumors is challenging due to their complexity and delicate structure. Conventional imaging techniques like MRI, CT, and PET are unable to provide detailed visualization of early-stage brain tumors. Early-stage detection of brain tumors is vital for enhancing patient outcomes and survival rates. So far, several scientists have dedicated their efforts to innovating advanced diagnostic probes to efficiently cross the BBB and selectively target brain tumors for optimal imaging. The integration of these techniques presents a viable pathway for non-invasive, accurate, and early-stage tumor identification. Herein, we provide a timely update on the various imaging probes and potential challenges for the diagnosis of early-stage brain tumors. Furthermore, this review highlights the significance of integrating advanced imaging probes for improving the early detection of brain tumors, ultimately enhancing treatment outcomes. Hopefully, this review will stimulate the interest of researchers to accelerate the development of new imaging probes and even their clinical translation for improving the early diagnosis of brain tumors.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bilal Aslam
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yuqian Yan
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Wenjun Zeng
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jian Jin
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Shaohua Wang
- Diagnostic Center of Infectious Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Lu Xing
- Department of Sleep Medicine, Shenzhen Kangning Hospital, No. 1080 Cuizhu Road, Guangdong 518020, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| |
Collapse
|
2
|
Xie W, Hao Q, Ye Z, Sha R, Wen B, Wang H, Zhang H, Jia G, Le XC, Jiang G, Peng H. Spherical Nucleic Acids-Directed Cryosynthesis of Manganese Nanoagents for Tumor Imaging and Therapy. Angew Chem Int Ed Engl 2025:e202503004. [PMID: 40178305 DOI: 10.1002/anie.202503004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
DNAzyme-based theranostic nanotechnologies that can respond to specific tumor pathophysiological parameters hold great promise for tumor diagnostics and effective treatments. However, their clinical translation is hindered by insufficient intracellular availability of essential metal cofactors required for DNAzyme activation. To overcome this limitation, we developed a temperature-controlled synthesis strategy for fabricating multifunctional DNA-templated manganese carbonate nanoparticles (DtMnP). The process involves three critical phases: (i) spherical nucleic acid hybrids, DNAzyme-functionalized AuNPs, serve as scaffolds for spatially controlled Mn2+ deposition through phosphate coordination, initiating heterogeneous nucleation of MnCO3; (ii) rapid liquid nitrogen freezing induces nanoparticle growth along DNA templates; and (iii) lyophilization-mediated structural stabilization enables convenient long-term storage. The DtMnP exhibits pH-responsive dissolution, releasing 90% of Mn2+ within 60 min under tumor microenvironment conditions (pH 5.5). The released Mn2+ ion enables dual functionality: (i) superior magnetic resonance imaging (MRI) contrast of MCF-7 xenograft models with enhanced biosafety, and (ii) synergistic therapeutic efficacy through DNAzyme-mediated EGR-1 gene silencing (60% mRNA downregulation) combined with Mn2+-catalyzed Fenton reactions generating cytotoxic hydroxyl radicals (45% apoptosis in MCF-7 cells). The cryo-encapsulated DtMnP exemplifies a flexible and efficient approach for integrating various functional components into a single nanoparticle for tumor theranostic applications.
Collapse
Affiliation(s)
- Wenjing Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiangjun Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi Ye
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongquan Zhang
- Division of Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G2G3, Canada
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Bentely, WA, 6102, Australia
| | - X Chris Le
- Division of Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G2G3, Canada
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Kalva SK, Liu X, Deán-Ben XL, Tang L, Razansky D. LED-based optoacoustic tomography of mice. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:040501. [PMID: 40226384 PMCID: PMC11991858 DOI: 10.1117/1.jbo.30.4.040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Significance Optoacoustic tomography systems commonly employ bulky and expensive solid-state laser sources readily capable of generating dozens of millijoules of optical energy per pulse. Light-emitting diodes (LEDs) may offer a significantly more affordable and compact solution with excellent pulse-to-pulse stability. Yet, the optical design must optimize the energy density delivered to the target, given the relatively low per-pulse energy output of LEDs. Aim We exploit a full-view LED-based optoacoustic tomography (FLOAT) configuration for in vivo imaging of mice. Approach The system features panoramic light illumination delivering 0.48 mJ of total per-pulse energy with an array of 160 LEDs stacked into a cylindrically focused circular ultrasound array transducer. Results We characterize the imaging performance of the FLOAT system in tissue-mimicking phantoms, subsequently demonstrating its ability for in vivo cross-sectional mouse imaging. Conclusions It is anticipated that the compact, low-cost FLOAT imaging system will open up new venues in resource-limited settings for studying large-scale biodynamics such as pharmacokinetics and biodistribution of molecular agents and drugs on a whole-body level.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- University of Zurich, Institute of Pharmacology and Toxicology, Institute for Biomedical Engineering, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- Indian Institute of Technology Bombay, Department of Biosciences and Bioengineering, Mumbai, Maharashtra, India
| | - Xiang Liu
- University of Zurich, Institute of Pharmacology and Toxicology, Institute for Biomedical Engineering, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- University of Zurich, Institute of Pharmacology and Toxicology, Institute for Biomedical Engineering, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Lin Tang
- University of Zurich, Institute of Pharmacology and Toxicology, Institute for Biomedical Engineering, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Daniel Razansky
- University of Zurich, Institute of Pharmacology and Toxicology, Institute for Biomedical Engineering, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| |
Collapse
|
4
|
Li J, Wang Z, Wei Y, Li W, He M, Kang J, Xu J, Liu D. Advances in Tracing Techniques: Mapping the Trajectory of Mesenchymal Stem-Cell-Derived Extracellular Vesicles. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:137-168. [PMID: 40151822 PMCID: PMC11938168 DOI: 10.1021/cbmi.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 03/29/2025]
Abstract
Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) are nanoscale lipid bilayer vesicles secreted by mesenchymal stem cells. They inherit the parent cell's attributes, facilitating tissue repair and regeneration, promoting angiogenesis, and modulating the immune response, while offering advantages like reduced immunogenicity, straightforward administration, and enhanced stability for long-term storage. These characteristics elevate MSC-EVs as highly promising in cell-free therapy with notable clinical potential. It is critical to delve into their pharmacokinetics and thoroughly elucidate their intracellular and in vivo trajectories. A detailed summary and evaluation of existing tracing strategies are needed to establish standardized protocols. Here, we have summarized and anticipated the research progress of MSC-EVs in various biomedical imaging techniques, including fluorescence imaging, bioluminescence imaging, nuclear imaging (PET, SPECT), tomographic imaging (CT, MRI), and photoacoustic imaging. The challenges and prospects of MSC-EV tracing strategies, with particular emphasis on clinical translation, have been analyzed, with promising solutions proposed.
Collapse
Affiliation(s)
- Jingqi Li
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoyu Wang
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongchun Wei
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenshuai Li
- State
Key Laboratory for Crop Stress Resistance and High-Efficiency Production,
Shaanxi Key Laboratory of Agricultural and Environmental Microbiology,
College of Life Sciences, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Mingzhu He
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Kang
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia Xu
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Zhang X, Tang D, Xiao H, Li B, Shang K, Zhao D. Activating the cGAS-STING Pathway by Manganese-Based Nanoparticles Combined with Platinum-Based Nanoparticles for Enhanced Ovarian Cancer Immunotherapy. ACS NANO 2025; 19:4346-4365. [PMID: 39846241 DOI: 10.1021/acsnano.4c12237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Recent research has demonstrated that activating the cGAS-STING pathway can enhance interferon production and the activation of T cells. A manganese complex, called TPA-Mn, was developed in this context. The reactive oxygen species (ROS)-sensitive nanoparticles (NPMn) loaded with TPA-Mn are developed. NPMn activates the cGAS-STING pathway via cGAS activation (i.e., 1.6-fold enhancement of P-STING), which in turn increases the secretion of pro-inflammatory cytokines (e.g., TNF-α, IL-6, and IL-2). This promotes dendritic cell maturation, enhances the infiltration of cytotoxic T lymphocytes, and reduces the percentage of immunosuppressive regulatory T cells. In addition, it is crucial to emphasize that cisplatin-induced DNA damage can potentially trigger activation of the cGAS-STING pathway. NPMn, in combination with low-dose NPPt, a carrier of a Cis(IV) prodrug capable of causing DNA damage, augments the cGAS-STING pathway activation and significantly activates the tumor immune microenvironment (TIME). Furthermore, combined with anti-PD-1 antibody, NPPt+NPMn shows synergistic efficacy in both ovarian cancer peritoneal metastases and recurrence models. It not only effectively eliminates tumors but also induces a strong immune memory response, providing a promising strategy for the clinical management of ovarian cancer. This work offers a design of manganese-based nanoparticles for immunotherapy.
Collapse
Affiliation(s)
- Xiangling Zhang
- Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Li
- Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing 100044, P. R. China
| | - Dan Zhao
- Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| |
Collapse
|
6
|
Li X, Liu Q, Wu M, Wang H, Yang J, Mu X, Zhang XD. Artificially Engineered Nanoprobes for Ultrasensitive Magnetic Resonance Imaging. Adv Healthc Mater 2025; 14:e2403099. [PMID: 39562174 DOI: 10.1002/adhm.202403099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive and radiation-free technique used for soft tissue. However, there are some limitations of the MRI modality, such as low sensitivity and poor image resolution. Artificially engineered magnetic nanoprobes have been extensively explored as a versatile platform for ultrasensitive MRI contrast agents due to their unique physiochemical characteristics and tunable magnetic properties. In this review, the emphasis is on recent progress in MRI nanoprobes with different structures and elements, including gadolinium-, iron-, manganese-based and metal-free nanoprobes. The key influencing factors and advanced engineering strategies for modulating the relaxation ratio of MRI nanoprobes are systematically condensed. Furthermore, the widespread and noninvasive visualization applications of MRI nanoprobes for real time monitoring of major organs and accurate disease diagnosing, such as cerebrovascular, ischemia, Alzheimer's disease, liver fibrosis, whole-body tumors, inflammation, as well as multi-mode imaging applications are summarized. Finally, the challenges and prospects for the future development of MRI nanoprobes are discussed, and promising strategies are specifically emphasized for improving biocompatibility, precisely engineering of optimal size, AI-driven prediction and design, and multifunctional self-assembly to enhance diagnostics. This review will provide new inspiration for artificial engineering and nanotechnology-based molecular probes for medical diagnosis and therapy with ultrasensitive MRI.
Collapse
Affiliation(s)
- Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Menglin Wu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
7
|
Tan Y, Wang J, Wan Q, Yang J, Huang J, Zhou Z, Dong H, Zhang X. A switchable magnetic resonance imaging nanoplatform for in situ microRNA imaging. Chem Sci 2024; 16:199-204. [PMID: 39600495 PMCID: PMC11587794 DOI: 10.1039/d4sc04675g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Aberrant microRNA (miRNA) expression is associated with various types of carcinogenesis, making miRNA a promising candidate for diagnostic and therapeutic biomarkers. However, in situ miRNA diagnostics remains a significant challenge owing to the various biological barriers. Herein, we report a novel miRNA imaging probe consisting of PEG-polylysine-PNIPAM polymer matrix-modified small Fe3O4 (PAA-Fe3O4-DNA@PPP) nanoparticles with an improved circulatory half-life, efficient tissue permeability, and enhanced tumor accumulation, for in situ miRNA magnetic resonance imaging (MRI). In this strategy, we employed large size PAA-Fe3O4-DNA@PPP to improve circulatory time and utilized PEG-polylysine-PNIPAM as a GSH-responsive moiety to dissociate PAA-Fe3O4-DNA@PPP and release small size PAA-Fe3O4-DNA for enhanced tumor permeability. Specifically, the target miRNA acts as a cross-linker for PAA-Fe3O4-DNA, forming larger assemblies that not only amplify the MRI signal for detection but also enhance retention for prolonged observation. Both the in vitro and in vivo results validate that the imaging probe exhibits an enhanced MRI signal with 3.69-fold amplification for tumor interior miRNA detection, allowing the dynamic changes in miRNA to be monitored by the probe. Given its long circulation, efficient penetration, and enhanced tumor accumulation, the PAA-Fe3O4-DNA@PPP probe holds great promise for in situ miRNA imaging and spatial genomics analysis in situ.
Collapse
Affiliation(s)
- Yan Tan
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen 518060 China
| | - Junren Wang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen 518060 China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Jinlong Yang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen 518060 China
| | - Jinkun Huang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen 518060 China
| | - Zijia Zhou
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen 518060 China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen 518060 China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen 518060 China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen 518060 China
| |
Collapse
|
8
|
Kalva SK, Özbek A, Reiss M, Deán-Ben XL, Razansky D. Spiral volumetric optoacoustic and ultrasound (SVOPUS) tomography of mice. PHOTOACOUSTICS 2024; 40:100659. [PMID: 39553382 PMCID: PMC11568778 DOI: 10.1016/j.pacs.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Optoacoustic (OA) tomography is a powerful noninvasive preclinical imaging tool enabling high resolution whole-body visualization of biodistribution and dynamics of molecular agents. The technique yet lacks endogenous soft-tissue contrast, which often hampers anatomical navigation. Herein, we devise spiral volumetric optoacoustic and ultrasound (SVOPUS) tomography for concurrent OA and pulse-echo ultrasound (US) imaging of whole mice. To this end, a spherical array transducer featuring a central curvilinear segment is employed. Full rotation of the array renders transverse US and OA views, while additional translation facilitates volumetric whole-body imaging with high spatial resolution down to 150 µm and 110 µm in the OA and US modes, respectively. OA imaging revealed blood-filled, vascular organs like heart, liver, spleen, kidneys, and surrounding vasculature, whilst complementary details of bones, lungs, and skin boundaries were provided by the US. The dual-modal capability of SVOPUS for label-free imaging of tissue morphology and function is poised to facilitate pharmacokinetic studies, disease monitoring, and image-guided therapies.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ali Özbek
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
9
|
Kajani AA, Pouresmaeili A, Mehrgardi MA, Javanmard SH. Heteroatom-doped magneto-fluorescent carbon dots, a potent agent for multimodal imaging. Sci Rep 2024; 14:29111. [PMID: 39582076 PMCID: PMC11586438 DOI: 10.1038/s41598-024-80531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
A simple, one-pot and green method is reported for hydrothermal synthesis of highly fluorescent and magnetic carbon dots (CDs) by using D-glucose, as the carbon source. CDs were fully characterized by the UV-Vis and fluorescence spectroscopy, DLS, FTIR, TEM, EDS, XRD, and VSM. The nitrogen doping of different diamines significantly improved the fluorescence quantum yield (QY) of CDs with the maximum effect obtained by using m-phenylenediamine (mPDA). Temperature and reaction time also affected the QY of CDs with the best results obtained at 150 °C for 3 h. The heteroatom doping by innovative use of different metal sulfates including FeSO4, MnSO4, CuSO4, MgSO4, and ZnSO4, further improved the optical properties of CDs. Interestingly, the magnetic and multicolor CDs with high colloidal stability and QYs of 17.7, 16.5, and 53.9% at 460, 490, and 515 nm, respectively, were synthesized by using 0.1 M of glucose, mPDA and MnSO4. The resulted Mn-, S-, N-doped CDs represented rapid uptake and high-quality fluorescence imaging of the human fibroblast and umbilical vein endothelial cells in vitro, without significant toxicity. The CDs also displayed high r1 relaxivity of 32.3 mM- 1 s- 1 and were used for high-contrast MR and fluorescence imaging of mouse tumor models, in vivo.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Ali Pouresmaeili
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Shaghayegh Haghjooy Javanmard
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Zhang ZS, Gao ZX, He JJ, Ma C, Tao HT, Zhu FY, Cheng YN, Xie CQ, Li JQ, Liu ZZ, Hou LL, Sun H, Xie SQ, Fang D. Andrographolide sensitizes glioma to temozolomide by inhibiting DKK1 expression. Br J Cancer 2024; 131:1387-1398. [PMID: 39266624 PMCID: PMC11473956 DOI: 10.1038/s41416-024-02842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the first-line chemotherapeutic drug for gliomas treatment. However, the clinical efficacy of TMZ in glioma patients was very limited. Therefore, it is urgently needed to discover a novel approach to increase the sensitivity of glioma cells to TMZ. METHODS Western blot, immunohistochemical staining, and qRT-PCR assays were used to explore the mechanisms underlying TMZ promoting DKK1 expression and andrographolide (AND) inhibiting DKK1 expression. HPLC was used to detect the ability of andrographolide (AND) to penetrate the blood-brain barrier. MTT assay, bioluminescence images, magnetic resonance imaging (MRI) and H&E staining were employed to measure the proliferative activity of glioma cells and the growth of intracranial tumors. RESULTS TMZ can promote DKK1 expression in glioma cells and brain tumors of an orthotopic model of glioma. DKK1 could promote glioma cell proliferation and tumor growth in an orthotopic model of glioma. Mechanistically, TMZ increased EGFR expression and subsequently induced the activation of its downstream MEK-ERK and PI3K-Akt pathways, thereby promoting DKK1 expression in glioma cells. Andrographolide inhibited TMZ-induced DKK1 expression through inactivating MEK-ERK and PI3K-Akt pathways. Andrographolide can cross the blood-brain barrier, the combination of TMZ and andrographolide not only improved the anti-tumor effects of TMZ but also showed a survival benefit in an orthotopic model of glioma. CONCLUSION Andrographolide can enhance anti-tumor activity of TMZ against glioma by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Zhan-Sheng Zhang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zi-Xuan Gao
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Can Ma
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Ji-Qin Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhuang-Zhuang Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hua Sun
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
| | - Song-Qiang Xie
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| | - Dong Fang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| |
Collapse
|
11
|
Lei L, Dong Z, Yang F, Zhang X. Metal-Organic Nanomaterials for Tumor Metabolic Blockade and Image to Increase Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57995-58005. [PMID: 39417452 DOI: 10.1021/acsami.4c11918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The abnormal energy metabolism level of a tumor reduces the efficiency of chemotherapy. Metal-organic nanomaterials (MONs) with high drug loading efficiency, easy processes of synthesis, and controlled drug release have shown great potential in metabolic blocking and enhancement of tumor therapy. These metal-organic nanomedicines have been reported to modulate glycolysis or oxidative phosphorylation to provide monotherapy or combined therapies in tumorous treatments. In addition, the encapsulation or coordination of fluorescent dyes into MONs endowed them with the imaging ability of tumor metabolism. Herein, this Perspective summarizes the progress of MONs as therapeutic agents or imaging probes for application during tumor metabolic blocking or imaging, providing solid inspiration for biomedical applications of effective biomaterials. In addition, the current drawbacks of MONs for further biological applications in the future were discussed, giving stimulation of innovation and development in biomedical applications of MONs.
Collapse
Affiliation(s)
- Lingling Lei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025 P. R. China
| | - Zhe Dong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P. R. China
| | - Fengrui Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
12
|
Cao X, Li S, Wang S, Guo R, Dong Q, Chen L, Chen Z. Graphene-Metal Nanocrystal Hybrid Materials for Bioapplications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51816-51825. [PMID: 39315731 DOI: 10.1021/acsami.4c11442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The development of functional nanomaterials is crucial for advancing personalized and precision medicine. Graphene-metal nanocrystal hybrid materials not only possess the intrinsic advantages of graphene-based materials but also exhibit additional optical, magnetic, and catalytic properties of various metal nanocrystals, showing great synergies in bioapplications, including biosensing, bioimaging, and disease treatments. In this Perspective, we discuss the advantages and design principles of graphene-metal nanocrystal hybrid materials and provide an overview of their applications in biological fields. Finally, we highlight the challenges and future directions for their practical implementation.
Collapse
Affiliation(s)
- Xiaoxu Cao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rongshen Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian Dong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Long Chen
- Faculty of Science and Technology University of Macau Taipa, Macau 999078, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Environmental Science &Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Xu SL, Wang SR, Ma D, Li RY, Xiang J, Zhao RD, Wu FF. Improved ZnWO 4@NiCo 2O 4 core-shell nanosheet arrays with regulatory interfaces and electronic redistribution. Dalton Trans 2024; 53:15648-15659. [PMID: 39246273 DOI: 10.1039/d4dt02010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
ZnWO4@NiCo2O4 core-shell nanosheet array composites are synthesized on nickel foam via a two-step hydrothermal method. The optimal conditions, including a Ni(NO3)2·6H2O to Co(NO3)2·6H2O molar ratio of 2 : 1, 12 hours reaction time, and 120 °C temperature, yield a specific capacitance of 875 C g-1 at 1 A g-1. The electrode also maintains 81.1% capacitance after 10 000 cycles. The material's performance is attributed to its core-shell structure, which enhances ion diffusion and electron transport. This study presents a viable approach for high-performance supercapacitor electrodes.
Collapse
Affiliation(s)
- Song-Lin Xu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, 121001, PR China.
| | - Shi-Rong Wang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, 121001, PR China.
| | - Dongmei Ma
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, 121001, PR China.
| | - Rui-Yu Li
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, 121001, PR China.
| | - Jun Xiang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, 121001, PR China.
| | - Rong-Da Zhao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, 121001, PR China.
| | - Fu-Fa Wu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, 121001, PR China.
| |
Collapse
|
14
|
Wang H, Liu X, Yan X, Du Y, Pu F, Ren J, Qu X. A nanocarbon-enabled hybridization strategy to construct pharmacologically cooperative therapeutics for augmented anticancer efficacy. Chem Sci 2024:d4sc05280c. [PMID: 39290590 PMCID: PMC11403576 DOI: 10.1039/d4sc05280c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
The drug design principles are of great value in developing nanomedicines with favorable functionalities. Herein we propose a nanocarbon-enabled hybridization strategy to construct a pharmacologically cooperative nanodrug for improved cancer therapy in the light of pharmacophore hybridization in medicinal chemistry and the synthetic principles of nanocarbons. An antioxidant defense pharmacological inhibitor and a co-nucleation precursor are structurally hybridized into nanodrugs (SCACDs) via forming carbon quantum dots. These SCACDs elicit dual enhanced bioactivities, including superior sonocatalytic activity that arose from the appropriate band structure of the pharmacophoric carbon cores, and more than an order of magnitude higher antioxidant defense inhibitory activity than the pharmacological inhibitor via conveying the bioactive pharmacophores from the molecular level to nanoscale. In vivo, SCACDs possess a long body retention and desirable biodistribution to eliminate melanoma cells at a very low injection dose. The present study provides a viable yet effective strategy for the development of pharmacologically cooperative nanodrugs to achieve remarkably improved therapeutic efficacy.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University Changchun Jilin 130021 P. R. China
| | - Xiangyu Yan
- State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083 P. R. China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083 P. R. China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
15
|
Wang X, Chen J, Li Z, Li Y, Zhang Y, Gong Q, Luo K. A branched polymer-based agent for efficient and precise targeting of fibrosis diseases by magnetic resonance imaging. J Control Release 2024; 373:905-916. [PMID: 39089506 DOI: 10.1016/j.jconrel.2024.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Herein, we synthesized and characterized gadolinium-based hyperbranched polymers, POADGd and PODGd, through RAFT polymerization as magnetic resonance imaging (MRI) contrast agents for detecting fibrosis. POADGd and PODGd contain biocompatible short-chain OEGMA to prolong blood circulation, and they can be decomposed in response to ROS after MRI examination to prevent potential accumulation. The relaxivities of POADGd and PODGd are 9.81 mM-1 s-1 and 9.58 mM-1 s-1 respectively, which are significantly higher than that of DTPA-Gd, a clinically used agent (3.74 mM-1 s-1). In comparison with PODGd, POADGd can specifically target allysine in fibrosis tissues through its oxyamine groups. Therefore, it displays a sharp spatial resolution and a high signal-to-noise ratio in the liver and lung fibrosis tissue at a field strength of 3.0 T or 7.0 T, and the morphology of these fibrosis tissues is accurately delineated. Our MRI diagnosis results based on POADGd are highly aligned with those from pathological examinations, while MRI diagnosis could avoid invasive biopsy. In addition, POADGd shows excellent biosafety and low toxicity. Therefore, POADGd could be applied to non-invasively and accurately diagnose liver and lung fibrosis diseases.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Radiology, Chongqing General Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Jie Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
16
|
Liu K, Liu X, Wen L, Zhai W, Ye R, Zhang B, Xie W, Zhang X, Zhang W, Li H, Xu J, Huang L, Wang H, Li D, Sun H. Blocking Metallothionein-2 Expression by Copper-Doped Carbon Dots Induces Cellular Antioxidant System Collapse for Antitumor Therapy. NANO LETTERS 2024; 24:10699-10709. [PMID: 39141437 DOI: 10.1021/acs.nanolett.4c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The insufficient antioxidant reserves in tumor cells play a critical role in reactive oxygen species (ROS)-mediated therapeutics. Metallothionein-2 (MT-2), an intracellular cysteine-rich protein renowned for its potent antioxidant properties, is intricately involved in tumor development and correlates with a poor prognosis. Consequently, MT-2 emerges as a promising target for tumor therapy. Herein, we present the development of copper-doped carbon dots (Cu-CDs) to target MT-2 to compromise the delicate antioxidant reserves in tumor cells. These Cu-CDs with high tumor accumulation and prolonged body retention can effectively suppress tumor growth by inducing oxidative stress. Transcriptome sequencing unveils a significant decrease in MT-2 expression within the in vivo tumor samples. Further mechanical investigations demonstrate that the antitumor effect of Cu-CDs is intricately linked to apolipoprotein E (ApoE)-mediated downregulation of MT-2 expression and the collapse of the antioxidant system. The robust antitumor efficacy of Cu-CDs provides invaluable insights into developing MT-2-targeted nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Linlin Wen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Wenhao Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Rongrong Ye
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Boya Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Wangni Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Xue Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Wenbing Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, People's Republic of China
| | - Jiaqi Xu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| |
Collapse
|
17
|
Liu S, Tian L, Mu M, Liu Z, Dong M, Gong Y, Liu H, Wang X, Meng Q, Zhang H, Sun X. Platinum Nanoparticles-Enhanced Ferritin-Mn 2+ Interaction for Magnetic Resonance Contrast Enhancement and Efficient Tumor Photothermal Therapy. Adv Healthc Mater 2024; 13:e2303939. [PMID: 38447111 DOI: 10.1002/adhm.202303939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Indexed: 03/08/2024]
Abstract
Nanoplatforms with high Mn2+ coordination can display efficient T1 magnetic resonance imaging (MRI) contrast enhancement. Herein, an earth gravity-like method for enhanced interaction between Ferritin (Fn) and Mn2+ by the growth of platinum nanoparticles (PNs) in Fn's cage structure via a biomineralization method is first proposed. Fn has good biocompatibility and can provide a suitable growth site for PNs. PNs with negative charge have certain attraction to Mn2+ with positive charge, improving Fn's loading capacity of Mn2+ by attraction force; and thus, achieving efficient MRI contrast enhancement. In addition, PNs can be applied for efficient photothermal therapy (PTT) under near infrared ray (NIR) irradiation. Systemic delivery of this nanoplatform shows obvious MRI contrast enhancement and tumor progression inhibition after NIR irradiation, as well as no obvious side effects. Therefore, this nanoplatform has the potential to contribute to nanotheranostic for clinical transformation.
Collapse
Affiliation(s)
- Shuangqing Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Liya Tian
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Mengyao Mu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Ziyan Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Mengzhen Dong
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yufang Gong
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hui Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Haidong Zhang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiao Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| |
Collapse
|
18
|
Huo L, Zeng J, Wang Z, Sun X, Guo Y, Cao Z, Zhu S, Tan M, Li M, Chen X, Zhao Z. Magnetic Field-Optimized Paramagnetic Nanoprobe for T2/ T1 Switchable Histopathological-Level MRI. ACS NANO 2024; 18:12453-12467. [PMID: 38686995 DOI: 10.1021/acsnano.4c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Traditional magnetic resonance imaging (MRI) contrast agents (CAs) are a type of "always on" system that accelerates proton relaxation regardless of their enrichment region. This "always on" feature leads to a decrease in signal differences between lesions and normal tissues, hampering their applications in accurate and early diagnosis. Herein, we report a strategy to fabricate glutathione (GSH)-responsive one-dimensional (1-D) manganese oxide nanoparticles (MONPs) with improved T2 relaxivities and achieve effective T2/T1 switchable MRI imaging of tumors. Compared to traditional contrast agents with high saturation magnetization to enhance T2 relaxivities, 1-D MONPs with weak Ms effectively increase the inhomogeneity of the local magnetic field and exhibit obvious T2 contrast. The inhomogeneity of the local magnetic field of 1-D MONPs is highly dependent on their number of primary particles and surface roughness according to Landau-Lifshitz-Gilbert simulations and thus eventually determines their T2 relaxivities. Furthermore, the GSH responsiveness ensures 1-D MONPs with sensitive switching from the T2 to T1 mode in vitro and subcutaneous tumors to clearly delineate the boundary of glioma and metastasis margins, achieving precise histopathological-level MRI. This study provides a strategy to improve T2 relaxivity of magnetic nanoparticles and construct switchable MRI CAs, offering high tumor-to-normal tissue contrast signal for early and accurate diagnosis.
Collapse
Affiliation(s)
- Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhenyu Wang
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Sun
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhile Cao
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shiqi Zhu
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingya Tan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Muyao Li
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
Cheng Y, Kou Y, Wang J, Wang Y, Rong W, Han H, Zhang G. 5-Hydroxytryptamine 4 Receptor Agonist Attenuates Diabetic Enteric Neuropathy through Inhibition of the Receptor-Interacting Protein Kinase 3 Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:785-795. [PMID: 38311118 DOI: 10.1016/j.ajpath.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Necroptosis, considered as a form of programmed cell death, contributes to neural loss. The 5-hydroxytryptamine 4 receptor (5-HT4R) is involved in neurogenesis in the enteric nervous system. However, whether the activation of 5-HT4R can alleviate diabetic enteric neuropathy by inhibiting receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is unclear. This study aimed to explore the beneficial effects of 5-HT4R agonist on enteric neuropathy in a mouse model of diabetes and the mechanisms underlying these effects. Diabetes developed neural loss in the colon of mice. 5-HT4Rs localized in submucosal and myenteric plexuses were confirmed. Administration of 5-HT4R agonist attenuated diabetes-induced colonic hypomotility and neural loss of the colon in mice. Remarkably, RIPK3, phosphorylated RIPK3, and its downstream target mixed lineage kinase domain-like protein (MLKL), two key proteins regulating necroptosis, were significantly up-regulated in the colon of diabetic mice. Treatment with 5-HT4R agonist appeared to inhibit diabetes-induced elevation of RIPK3, phosphorylated RIPK3, and MLKL in the colon of mice. Diabetes-induced up-regulation of MLKL in both the mucosa and the muscularis of the colon was prevented by Ripk3 deletion. Moreover, diabetes-evoked neural loss and delayed colonic transit were significantly inhibited by Ripk3 removal. These findings suggest that activation of 5-HT4Rs could potentially provide a protective effect against diabetic enteric neuropathy by suppressing RIPK3-mediated necroptosis.
Collapse
Affiliation(s)
- Yingying Cheng
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueting Kou
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Wang
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifang Rong
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiu Han
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China.
| | - Guohua Zhang
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Zairov RR, Kornev TA, Akhmadeev BS, Dovzhenko AP, Vasilyev VA, Kholin KV, Nizameeva GR, Ismaev IE, Mukhametzyanov TA, Liubina АP, Voloshina AD, Mustafina AR. Expanding Mn 2+ loading capacity of BSA via mild non-thermal denaturing and cross-linking as a tool to maximize the relaxivity of water protons. Int J Biol Macromol 2024; 266:131338. [PMID: 38569987 DOI: 10.1016/j.ijbiomac.2024.131338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 μM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.
Collapse
Affiliation(s)
- Rustem R Zairov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation.
| | - Timur A Kornev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Bulat S Akhmadeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Alexey P Dovzhenko
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Vadim A Vasilyev
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Kirill V Kholin
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russian Federation
| | - Guliya R Nizameeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russian Federation
| | - Ildus E Ismaev
- A.N. Tupolev Kazan Research Technological University, Kazan 420015, Russia
| | - Timur A Mukhametzyanov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Аnna P Liubina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Alexandra D Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asiya R Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
21
|
Sun K, Yan C, Dai X, Shi Y, Li F, Chen L, Sun J, Chen Y, Shi J. Catalytic Nanodots-Driven Pyroptosis Suppression in Nucleus Pulposus for Antioxidant Intervention of Intervertebral Disc Degeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313248. [PMID: 38299823 DOI: 10.1002/adma.202313248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Low back pain resulting from intervertebral disc degeneration (IVDD) is a prevalent global concern; however, its underlying mechanism remains elusive. Single-cell sequencing analyses revealed the critical involvement of pyroptosis in IVDD. Considering the involvement of reactive oxygen species (ROS) as the primary instigator of pyroptosis and the lack of an efficient intervention approach, this study developed carbonized Mn-containing nanodots (MCDs) as ROS-scavenging catalytic biomaterials to suppress pyroptosis of nucleus pulposus (NP) cells to efficiently alleviate IVDD. Catalytic MCDs have superior efficacy in scavenging intracellular ROS and rescuing homeostasis in the NP microenvironment compared with N-acetylcysteine, a classical antioxidant. The data validates that pyroptosis plays a vital role in mediating the protective effects of catalytic MCDs against oxidative stress. Systematic in vivo assessments substantiate the effectiveness of MCDs in rescuing a puncture-induced IVDD rat model, further demonstrating their ability to suppress pyroptosis. This study highlights the potential of antioxidant catalytic nanomedicine as a pyroptosis inhibitor and mechanistically unveils an efficient strategy for the treatment of IVDD.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
- Department of Orthopedics, Naval Medical Center of PLA, Shanghai, 200052, P. R. China
| | - Chen Yan
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yangyang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Fudong Li
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, 325088, P. R. China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| |
Collapse
|
22
|
Su L, Zhu K, Ge X, Wu Y, Zhang J, Wang G, Liu D, Chen L, Li Q, Chen J, Song J. X-ray Activated Nanoprodrug for Visualization of Cortical Microvascular Alterations and NIR-II Image-Guided Chemo-Radiotherapy of Glioblastoma. NANO LETTERS 2024; 24:3727-3736. [PMID: 38498766 DOI: 10.1021/acs.nanolett.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.
Collapse
Affiliation(s)
- Lichao Su
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Xiaoguang Ge
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Jieping Zhang
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Guoyu Wang
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Daojia Liu
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Ling Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Qingqing Li
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Junqiang Chen
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
23
|
Zhang Q, Yin R, Guan G, Liu H, Song G. Renal clearable magnetic nanoparticles for magnetic resonance imaging and guided therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1929. [PMID: 37752407 DOI: 10.1002/wnan.1929] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive, radiation-free imaging technique widely used for disease detection and therapeutic evaluation due to its infinite penetration depth. Magnetic nanoparticles (MNPs) have unique magnetic and physicochemical properties, making them ideal as contrast agents for MRI. However, the in vivo toxicity of MNPs, resulting from metal ion leakage and long-term accumulation in the reticuloendothelial system (RES), limits their clinical application. To overcome these challenges, there is considerable interest in the development of renal-clearable MNPs that can be completely cleared through the kidney, reducing retention time and potential toxic risks. In this review, we provide an overview of recent advancements in the development of renal-clearable MNPs for disease imaging and treatment. We discuss the factors influencing renal clearance, summarize the types of renal-clearable MNPs, their synthesis methods, and biomedical applications. This review aims to offer comprehensive information for the design and clinical translation of renal-clearable MNPs. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Qinpeng Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Rui Yin
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, China
| | - Guoqiang Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Huiyi Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Guosheng Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
24
|
Li C, Zhao J, Gao X, Hao C, Hu S, Qu A, Sun M, Kuang H, Xu C, Xu L. Chiral Iron Oxide Supraparticles Enable Enantiomer-Dependent Tumor-Targeted Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2308198. [PMID: 37721365 DOI: 10.1002/adma.202308198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Indexed: 09/19/2023]
Abstract
The chemical, physical and biological effects of chiral nanomaterials have inspired general interest and demonstrated important advantages in fundamental science. Here, chiral iron oxide supraparticles (Fe3 O4 SPs) modified by chiral penicillamine (Pen) molecules with g-factor of ≈2 × 10-3 at 415 nm are fabricated, and these SPs act as high-quality magnetic resonance imaging (MRI) contrast agents. Therein, the transverse relaxation efficiency and T2 -MRI results demonstrated chiral Fe3 O4 SPs have a r2 relaxivity of 157.39 ± 2.34 mM-1 ·S-1 for D-Fe3 O4 SPs and 136.21 ± 1.26 mM-1 ·S-1 for L-Fe3 O4 SPs due to enhanced electronic transition dipole moment for D-Fe3 O4 SPs compared with L-Fe3 O4 SPs. The in vivo MRI results show that D-Fe3 O4 SPs exhibit two-fold lower contrast ratio than L-Fe3 O4 SPs, which enhances targeted enrichment in tumor tissue, such as prostate cancer, melanoma and brain glioma tumors. Notably, it is found that D-Fe3 O4 SPs have 7.7-fold higher affinity for the tumor cell surface receptor cluster-of-differentiation 47 (CD47) than L-Fe3 O4 SPs. These findings uncover that chiral Fe3 O4 SPs act as a highly effective MRI contrast agent for targeting and imaging broad tumors, thus accelerating the practical application of chiral nanomaterials and deepening the understanding of chirality in biological and non-biological environments.
Collapse
Affiliation(s)
- Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory, Wenzhou, Zhejiang, 325001, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
25
|
Fan Q, Xiong W, Zhou H, Yang J, Feng J, Li Z, Wu L, Hu F, Duan X, Li B, Fan J, Xu Y, Chen X, Shen Z. An AND Logic Gate for Magnetic-Resonance-Imaging-Guided Ferroptosis Therapy of Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305932. [PMID: 37717205 DOI: 10.1002/adma.202305932] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Indexed: 09/18/2023]
Abstract
To improve the magnetic resonance imaging (MRI) efficiency and ferroptosis therapy efficacy of exceedingly small magnetic iron oxide nanoparticles (IO, <5 nm) for tumors via enhancing the sensitivity of tumor microenvironment (TME) responsiveness, inspired by molecular logic gates, a self-assembled IO with an AND logic gate function is designed and constructed. Typically, cystamine (CA) is conjugated onto the end of poly(2-methylthio-ethanol methacrylate) (PMEMA) to generate PMEMA-CA. The PMEMA-CA is grafted onto the surface of brequinar (BQR)-loaded IO to form IO-BQR@PMEMA. The self-assembled IO-BQR@PMEMA (SA-IO-BQR@PMEMA) is obtained due to the hydrophobicity of PMEMA. The carbon-sulfur single bond of PMEMA-CA can be oxidized by reactive oxygen species (ROS) in the TME to a thio-oxygen double bond, resulting in the conversion from being hydrophobic to hydrophilic. The disulfide bond of PMEMA-CA can be broken by the glutathione (GSH) in the TME, leading to the shedding of PMEMA from the IO surface. Under the dual actions of ROS and GSH in TME (i.e., AND logic gate), SA-IO-BQR@PMEMA can be disassembled to release IO, Fe2+/3+ , and BQR. In vitro and in vivo results demonstrate the AND logic gate function and mechanism, the high T1 MRI performance and exceptional ferroptosis therapy efficacy for tumors, and the excellent biosafety of SA-IO-BQR@PMEMA.
Collapse
Affiliation(s)
- Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Huimin Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Lihe Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Fang Hu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Bo Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Junbing Fan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119228, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
26
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
27
|
Ouyang S, Chen C, Lin P, Wu W, Chen G, Li P, Sun M, Chen H, Zheng Z, You Y, Lv S, Zhao P, Lin B, Tao J. Hydrogen-Bonded Organic Frameworks Chelated Manganese for Precise Magnetic Resonance Imaging Diagnosis of Cancers. NANO LETTERS 2023; 23:8628-8636. [PMID: 37694968 DOI: 10.1021/acs.nanolett.3c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Magnetic resonance imaging (MRI) is an important tool in the diagnosis of many cancers. However, clinical gadolinium (Gd)-based MRI contrast agents have limitations, such as large doses and potential side effects. To address these issues, we developed a hydrogen-bonded organic framework-based MRI contrast agent (PFC-73-Mn). Due to the hydrogen-bonded interaction of water molecules and the restricted rotation of manganese ions, PFC-73-Mn exhibits high longitudinal relaxation r1 (5.03 mM-1 s-1) under a 3.0 T clinical MRI scanner. A smaller intravenous dose (8 μmol of Mn/kg) of PFC-73-Mn can provide strong contrast and accurate diagnosis in multiple kinds of cancers, including breast tumor and ultrasmall orthotopic glioma. PFC-73-Mn represents a prospective new approach in tumor imaging, especially in early-stage cancer.
Collapse
Affiliation(s)
- Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Wanjia Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Guanjun Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Pengfei Li
- Cancer Center, MD TCM-integrated Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Mingyan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Sike Lv
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
28
|
Kalva SK, Deán-Ben XL, Reiss M, Razansky D. Spiral volumetric optoacoustic tomography for imaging whole-body biodynamics in small animals. Nat Protoc 2023; 18:2124-2142. [PMID: 37208409 DOI: 10.1038/s41596-023-00834-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Fast tracking of biological dynamics across multiple murine organs using the currently commercially available whole-body preclinical imaging systems is hindered by their limited contrast, sensitivity and spatial or temporal resolution. Spiral volumetric optoacoustic tomography (SVOT) provides optical contrast, with an unprecedented level of spatial and temporal resolution, by rapidly scanning a mouse using spherical arrays, thus overcoming the current limitations in whole-body imaging. The method enables the visualization of deep-seated structures in living mammalian tissues in the near-infrared spectral window, while further providing unrivalled image quality and rich spectroscopic optical contrast. Here, we describe the detailed procedures for SVOT imaging of mice and provide specific details on how to implement a SVOT system, including component selection, system arrangement and alignment, as well as the image processing methods. The step-by-step guide for the rapid panoramic (360°) head-to-tail whole-body imaging of a mouse includes the rapid visualization of contrast agent perfusion and biodistribution. The isotropic spatial resolution possible with SVOT can reach 90 µm in 3D, while alternative steps enable whole-body scans in less than 2 s, unattainable with other preclinical imaging modalities. The method further allows the real-time (100 frames per second) imaging of biodynamics at the whole-organ level. The multiscale imaging capacity provided by SVOT can be used for visualizing rapid biodynamics, monitoring responses to treatments and stimuli, tracking perfusion, and quantifying total body accumulation and clearance dynamics of molecular agents and drugs. Depending on the imaging procedure, the protocol requires 1-2 h to complete by users trained in animal handling and biomedical imaging.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Wang Q, Yu Y, Chang Y, Xu X, Wu M, Ediriweera GR, Peng H, Zhen X, Jiang X, Searles DJ, Fu C, Whittaker AK. Fluoropolymer-MOF Hybrids with Switchable Hydrophilicity for 19F MRI-Monitored Cancer Therapy. ACS NANO 2023; 17:8483-8498. [PMID: 37097065 DOI: 10.1021/acsnano.3c00694] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization. The conjugation of the fluoropolymers to ZIF-8 nanoparticles not only allows sensitive in vivo visualization of the nanoparticles by 19F MRI but also significantly prolongs their circulation time in the bloodstream, resulting in improved delivery efficiency to tumor tissue. The ZIF-8-fluoropolymer nanoparticles can respond to the acidic tumor microenvironment, leading to progressive degradation of the nanoparticles and release of zinc ions as well as encapsulated anticancer drugs. The zinc ions released from the ZIF-8 can further coordinate to the fluoropolymers to switch the hydrophilicity and reverse the surface charge of the nanoparticles. This transition in hydrophilicity and surface charge of the polymeric coating can reduce the "stealth-like" nature of the agent and enhance specific uptake by cancer cells. Hence, these hybrid nanoparticles represent intelligent theranostics with highly sensitive imaging capability, significantly prolonged blood circulation time, greatly improved accumulation within the tumor tissue, and enhanced anticancer therapeutic efficiency.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ye Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Min Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xu Zhen
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
30
|
Korenev VS, Burilova EA, Volchek VV, Benassi E, Amirov RR, Sokolov MN, Abramov PA. NMR-Relaxometric Investigation of Mn(II)-Doped Polyoxometalates in Aqueous Solutions. Int J Mol Sci 2023; 24:ijms24087308. [PMID: 37108471 PMCID: PMC10139238 DOI: 10.3390/ijms24087308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Solution behavior of K;5[(Mn(H2O))PW11O39]·7H2O (1), Na3.66(NH4)4.74H3.1[(MnII(H2O))2.75(WO(H2O))0.25(α-B-SbW9O33)2]·27H2O (2), and Na4.6H3.4[(MnII(H2O)3)2(WO2)2(β-B-TeW9O33)2]·19H2O (3) was studied with NMR-relaxometry and HPLC-ICP-AES (High Performance Liquid Chromatography coupled with Inductively Coupled Plasma Atomic Emission Spectroscopy). According to the data, the [(Mn(H2O))PW11O39]5- Keggin-type anion is the most stable in water among the tested complexes, even in the presence of ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA). Aqueous solutions of 2 and 3 anions are less stable and contain other species resulting from dissociation of Mn2+. Quantum chemical calculations show the change in Mn2+ electronic state between [Mn(H2O)6]2+ and [(Mn(H2O))PW11O39]5-.
Collapse
Affiliation(s)
- Vladimir S Korenev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Evgenia A Burilova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia
| | - Victoria V Volchek
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Enrico Benassi
- Faculty of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Rustem R Amirov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| |
Collapse
|
31
|
Kalva SK, Deán-Ben XL, Reiss M, Razansky D. Head-to-tail imaging of mice with spiral volumetric optoacoustic tomography. PHOTOACOUSTICS 2023; 30:100480. [PMID: 37025111 PMCID: PMC10070820 DOI: 10.1016/j.pacs.2023.100480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Optoacoustic tomography has been established as a powerful modality for preclinical imaging. However, efficient whole-body imaging coverage has not been achieved owing to the arduous requirement for continuous acoustic coupling around the animal. In this work, we introduce panoramic (3600) head-to-tail 3D imaging of mice with spiral volumetric optoacoustic tomography (SVOT). The system combines multi-beam illumination and a dedicated head holder enabling uninterrupted acoustic coupling for whole-body scans. Image fidelity is optimized with self-gated respiratory motion rejection and dual speed-of-sound reconstruction algorithms to attain spatial resolution down to 90 µm. The developed system is thus highly suitable for visualizing rapid biodynamics across scales, such as hemodynamic changes in individual organs, responses to treatments and stimuli, perfusion, total body accumulation, or clearance of molecular agents and drugs with unmatched contrast, spatial and temporal resolution.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
32
|
Liang Q, Yu F, Cai H, Wu X, Ma M, Li Z, Tedesco AC, Zhu J, Xu Q, Bi H. Photo-activated autophagy-associated tumour cell death by lysosome impairment based on manganese-doped graphene quantum dots. J Mater Chem B 2023; 11:2466-2477. [PMID: 36843492 DOI: 10.1039/d2tb02761e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Autophagy is indispensable in normal cellular processes, yet detrimental to cancer treatment because it severely lowers the therapeutic efficiency. One of the keys to solve this problem may lie in lysosomes, which requires the rational design of nanomedicine that is capable of localizing and maintaining its efficacy in lysosomes. In this work, a facile and versatile nanoplatform based on manganese-doped graphene quantum dots (Mn-FGQDs) is developed for effective and precise photodynamic impairment of lysosomes. Specifically, the incorporation of Mn not only strengthens the generation capability of reactive oxygen species (ROS), but also facilitates its accumulation in lysosomes. Moreover, Mn-FGQDs are structurally robust and retain their high photodynamic efficiency in the lysosomal environment. On this basis, the light-triggered generation of ROS would primarily influence the function of lysosomes, leading to lysosome impairment and thereby effectively blocking the protective autophagy recycling. More impressively, a continuous increase in the oxidative stress level in lysosomes causes severe autophagy dysfunction, as revealed from an abnormal increase in autophagosomes and autolysosomes. This eventually results in autophagy-associated cancer cell death accompanied by the characteristics of apoptosis and ferroptosis. Overall, the present work paves a new way for cancer therapy via precise lysosome impairment induced autophagy dysfunction.
Collapse
Affiliation(s)
- Qingjng Liang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Feng Yu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hao Cai
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
| | - Xiaoyan Wu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
| | - Menghui Ma
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.,Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
33
|
Li T, Tan S, Li M, Luo J, Zhang Y, Jiang Z, Deng Y, Han L, Ke H, Shen J, Tang Y, Liu F, Chen H, Yang T. Holographically Activatable Nanoprobe via Glutathione/Albumin-Mediated Exponential Signal Amplification for High-Contrast Tumor Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209603. [PMID: 36524741 DOI: 10.1002/adma.202209603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH)-activatable probes hold great promise for in vivo cancer imaging, but are restricted by their dependence on non-selective intracellular GSH enrichment and uncontrollable background noise. Here, a holographically activatable nanoprobe caging manganese tetraoxide is shown for tumor-selective contrast enhancement in magnetic resonance imaging (MRI) through cooperative GSH/albumin-mediated cascade signal amplification in tumors and rapid elimination in normal tissues. Once targeting tumors, the endocytosed nanoprobe effectively senses the lysosomal microenvironment to undergo instantaneous decomposition into Mn2+ with threshold GSH concentration of ≈ 0.12 mm for brightening MRI signals, thus achieving high contrast tumor imaging and flexible monitoring of GSH-relevant cisplatin resistance during chemotherapy. Upon efficient up-regulation of extracellular GSH in tumor via exogenous injection, the relaxivity-silent interstitial nanoprobe remarkably evolves into Mn2+ that are further captured/retained and re-activated into ultrahigh-relaxivity-capable complex by stromal albumin in the tumor, and simultaneously allows the renal clearance of off-targeted nanoprobe in the form of Mn2+ via lymphatic vessels for suppressing background noise to distinguish tiny liver metastasis. These findings demonstrate the concept of holographic tumor activation via both tumor GSH/albumin-mediated cascade signal amplification and simultaneous background suppression for precise tumor malignancy detection, surveillance, and surgical guidance.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuangxiu Tan
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mengjuan Li
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jie Luo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yueyue Zhang
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhen Jiang
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Junkang Shen
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
- State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
34
|
Mohapatra L, Cheon D, Yoo SH. Carbon-Based Nanomaterials for Catalytic Wastewater Treatment: A Review. Molecules 2023; 28:molecules28041805. [PMID: 36838793 PMCID: PMC9959675 DOI: 10.3390/molecules28041805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Carbon-based nanomaterials (CBM) have shown great potential for various environmental applications because of their physical and chemical properties. The unique hybridization properties of CBMs allow for the tailored manipulation of their structures and morphologies. However, owing to poor solar light absorption, and the rapid recombination of photogenerated electron-hole pairs, pristine carbon materials typically have unsatisfactory photocatalytic performances and practical applications. The main challenge in this field is the design of economical, environmentally friendly, and effective photocatalysts. Combining carbonaceous materials with carbonaceous semiconductors of different structures results in unique properties in carbon-based catalysts, which offers a promising approach to achieving efficient application. Here, we review the contribution of CBMs with different dimensions, to the catalytic removal of organic pollutants from wastewater by catalyzing the Fenton reaction and photocatalytic processes. This review, therefore, aims to provide an appropriate direction for empowering improvements in ongoing research work, which will boost future applications and contribute to overcoming the existing limitations in this field.
Collapse
Affiliation(s)
- Lagnamayee Mohapatra
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Dabin Cheon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Correspondence:
| |
Collapse
|
35
|
Heng C, Liu W, Zheng X, Ma X, Hui J, Fan D. Dopamine and DNA functionalized manganese whitlockite nanocrystals for magnetic resonance imaging and chemo-photothermal therapy of tumors. Colloids Surf B Biointerfaces 2023; 222:113120. [PMID: 36599188 DOI: 10.1016/j.colsurfb.2022.113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Multifunctional inorganic nanomaterials have opened new avenues for cancer diagnosis and therapy. However, the difficulty to functionalize them has prevented their wider application, owing to the lack of active groups on their surfaces. Here we report a novel method to functionalize manganese whitlockite (Mn-WH) with polydopamine (PDA) and hairpin DNA (hpDNA) to improve the water stability and anti-cancer effects of Mn-WH nanoparticles (Mn-WH NPs). Compared to WH NPs, the Mn-WH@PDA-hpDNA NPs exhibit better water dispersibility, high drug loading capacity, excellent photothermal performance, stable MRI imaging ability, and outstanding chemo-photothermal synergistic therapeutic potential against tumors. After intratumoral injection in nude mice, the Mn-WH@PDA-hpDNA-DOX NPs promote complete tumor ablation upon exposure to 808 laser-irradiation. The nanoparticles showed no major side effects or toxicity. Thus, these results indicate that the Mn-WH@PDA-hpDNA-DOX NPs have excellent potential as anti-cancer agents, along with excellent magnetic resonance imaging (MRI) capabilities and the reported functionalization approach provides a novel and effective strategy for the surface functionalization of inorganic nanomaterials.
Collapse
Affiliation(s)
- Chunning Heng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wan Liu
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Xiaoyan Zheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
36
|
Chen C, Huang C, Liu J, Tao J, Chen Y, Deng K, Xu Y, Lin B, Zhao P. Hofmeister Effect-Based T1-T2 Dual-Mode MRI and Enhanced Synergistic Therapy of Tumor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49568-49581. [PMID: 36317744 DOI: 10.1021/acsami.2c15295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The imaging resolution of magnetic resonance imaging (MRI) is influenced by many factors. The development of more effective MRI contrast agents (CAs) is significant for early tumor detection and radical treatment, albeit challenging. In this work, the Hofmeister effect of Fe2O3 nanoparticles within the tumor microenvironment was confirmed for the first time. Based on this discovery, we designed a nanocomposite (FePN) by loading Fe2O3 nanoparticles on black phosphorus nanosheets. After reacting with glutathione, the FePN will undergo two stages in the tumor microenvironment, resulting in the robust enhancement of r1 and r2 based on the Hofmeister effect in the commonly used magnetic field (3.0 T). The glutathione-activated MRI signal of FePN was higher than most of the activatable MRI CAs, enabling a more robust visualization of tumors. Furthermore, benefiting from the long circulation time of FePN in the blood and retention time in tumors, the synergistic therapy of FePN exhibited an outstanding inhibition toward tumors. The FePN with good biosafety and biocompatibility will not only pave a new way for designing a common magnetic field-tailored T1-T2 dual-mode MRI CA but also offer a novel pattern for the accurate clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Cong Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, China
| | - Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation and School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Kan Deng
- Philips Healthcare, 510000 Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation and School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| |
Collapse
|