1
|
Zou H, Huang X, Xiao W, He H, Liu S, Zeng H. Recent advancements in bacterial anti-phage strategies and the underlying mechanisms altering susceptibility to antibiotics. Microbiol Res 2025; 295:128107. [PMID: 40023108 DOI: 10.1016/j.micres.2025.128107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
The rapid spread of multidrug-resistant bacteria and the challenges in developing new antibiotics have brought renewed international attention to phage therapy. However, in bacteria-phage co-evolution, the rapid development of bacterial resistance to phage has limited its clinical application. This review consolidates the latest advancements in research on anti-phage mechanisms, encompassing strategies such as systems associated with reduced nicotinamide adenine dinucleotide (NAD+) to halt the propagation of the phage, symbiotic bacteria episymbiont-mediated modulation of gene expression in host bacteria to resist phage infection, and defence-related reverse transcriptase (DRT) encoded by bacteria to curb phage infections. We conduct an in-depth analysis of the underlying mechanisms by which bacteria undergo alterations in antibiotic susceptibility after developing phage resistance. We also discuss the remaining challenges and promising directions for phage-based therapy in the future.
Collapse
Affiliation(s)
- Huanhuan Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenyue Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haoxuan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zhao L, Zhao Z, Li N, Wang X. The nucleic acid detection using CRISPR/Cas biosensing system with micro-nano modality for point-of-care applications. Talanta 2025; 286:127457. [PMID: 39724853 DOI: 10.1016/j.talanta.2024.127457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Nucleic acid detection is considered the golden standard for diagnosing infectious diseases caused by various pathogens, including viruses, bacteria, and parasites. PCR and other amplification-based technologies are highly sensitive and specific, allowing for accurate detection and identification of low-level causative pathogens by targeting and amplifying their unique genetic segment (DNA or RNA). However, it is important to recognize that machinery-dependent diagnostic methods may only sometimes be available or practical in resource-limited settings, where direct implementation can be challenging. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based diagnostics offer a promising alternative for nucleic acid detection. These methods provide gene sequence-specific targeting, multiplexing capability, rapid result disclosure, and ease of operation, making them suitable for point-of-care (POC) applications. CRISPR-Cas-based nucleic acid detection leverages the intrinsic gene-editing capabilities of CRISPR systems to detect specific DNA or RNA sequences with high precision, ensuring high specificity in identifying pathogens. When integrated with micro- and nano-technologies, CRISPR-based diagnostics gain additional benefits, including automated microfluidic processes, enhanced multiplexed detection, improved sensitivity through nanoparticle integration, and combined detection strategies. In this review, we analyze the motivations for tailoring the CRISPR-Cas system with microfluidic formats or nanoscale materials for nucleic acid biosensing and detection. We discuss and categorize current achievements in such systems, highlighting their differences, commonalities, and opportunities for addressing challenges, particularly for POC diagnostics. Micro- and nano-technologies can significantly enhance the practical utility of the CRISPR-Cas system, enabling more comprehensive diagnostic and surveillance capabilities. By integrating these technologies, CRISPR-based diagnostics can achieve higher levels of automation, sensitivity, and multiplexing, making them invaluable tools in the global effort to diagnose and control infectious diseases.
Collapse
Affiliation(s)
- Liang Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Zihao Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Ning Li
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
3
|
Gao Y, Mardian R, Ma J, Li Y, French CE, Wang B. Programmable trans-splicing riboregulators for complex cellular logic computation. Nat Chem Biol 2025; 21:758-766. [PMID: 39747656 DOI: 10.1038/s41589-024-01781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
Synthetic genetic circuits program the cellular input-output relationships to execute customized functions. However, efforts to scale up these circuits have been hampered by the limited number of reliable regulatory mechanisms with high programmability, performance, predictability and orthogonality. Here we report a class of split-intron-enabled trans-splicing riboregulators (SENTRs) based on de novo designed external guide sequences. SENTR libraries provide low leakage expression, wide dynamic range, high predictability with machine learning and low crosstalk at multiple component levels. SENTRs can sense RNA targets, process signals by logic computation and transduce them into various outputs, either mRNAs or noncoding RNAs. We subsequently demonstrate that digital logic operation with up to six inputs can be implemented using multiple orthogonal SENTRs to regulate a single gene simultaneously and coupling SENTRs with split intein-mediated protein trans-splicing. SENTR represents a powerful and versatile regulatory tool at the post-transcriptional level in Escherichia coli, suggesting broad biotechnological applications.
Collapse
Affiliation(s)
- Yuanli Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rizki Mardian
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jiaxin Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
| | - Yang Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
| | - Christopher E French
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Joint Research Center for Engineering Biology, International Campus, Zhejiang University, Haining, China
| | - Baojun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Chen J, Chen Y, Huang L, Lin X, Chen H, Xiang W, Liu L. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat Biotechnol 2025; 43:558-568. [PMID: 38811761 DOI: 10.1038/s41587-024-02255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Type V and type VI CRISPR-Cas systems have been shown to cleave nonspecific single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) in trans, but this has not been observed in type II CRISPR-Cas systems using single guide RNA. We show here that the type II CRISPR-Cas9 systems directed by CRISPR RNA and trans-activating CRISPR RNA dual RNAs show RuvC domain-dependent trans-cleavage activity for both ssDNA and ssRNA substrates. Cas9 possesses sequence preferences for trans-cleavage substrates, preferring to cleave T- or C-rich ssDNA substrates. We find that the trans-cleavage activity of Cas9 can be activated by target ssDNA, double-stranded DNA and ssRNA. The crystal structure of Cas9 in complex with guide RNA and target RNA provides a structural basis for the binding of target RNA to activate Cas9. Based on the trans-cleavage activity of Cas9 and nucleic acid amplification technology, we develop the nucleic acid detection platforms DNA-activated Cas9 detection and RNA-activated Cas9 detection, which are capable of detecting DNA and RNA samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Linglong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wenwen Xiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Cao L, Chen W, Kang W, Lei C, Nie Z. Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing. Anal Bioanal Chem 2025; 417:1699-1711. [PMID: 39601843 DOI: 10.1007/s00216-024-05678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The precise target recognition and nuclease-mediated effective signal amplification capacities of CRISPR-Cas systems have attracted considerable research interest within the biosensing field. Guided by insights into their structural and biochemical mechanisms, researchers have endeavored to engineer the key biocomponents of CRISPR-Cas systems with stimulus-responsive functionalities. By the incorporation of protein/nucleic acid engineering techniques, a variety of conditional CRISPR-Cas systems whose activities depend on the presence of target triggers have been established for the efficient detection of diverse types of non-nucleic acid analytes. In this review, we summarized recent research progress in engineering Cas proteins, guide RNA, and substrate nucleic acids to possess target analyte-responsive abilities for diverse biosensing applications. Furthermore, we also discussed the challenges and future possibilities of the stimulus-responsive CRISPR-Cas systems in versatile biosensing.
Collapse
Affiliation(s)
- Linxin Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
6
|
Cao L, Wang Z, Lei C, Nie Z. Engineered CRISPR/Cas Ribonucleoproteins for Enhanced Biosensing and Bioimaging. Anal Chem 2025; 97:5866-5879. [PMID: 40066952 DOI: 10.1021/acs.analchem.4c06789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
CRISPR-Cas systems represent a highly programmable and precise nucleic acid-targeting platform, which has been strategically engineered as a versatile toolkit for biosensing and bioimaging applications. Nevertheless, their analytical performance is constrained by inherent functional and activity limitations of natural CRISPR/Cas systems, underscoring the critical role of molecular engineering in enhancing their capabilities. This review comprehensively examines recent advancements in engineering CRISPR/Cas ribonucleoproteins (RNPs) to enhance their functional capabilities for advanced molecular detection and cellular imaging. We explore innovative strategies for developing enhanced CRISPR/Cas RNPs, including Cas protein engineering through protein mutagenesis and fusion techniques, and guide RNA engineering via chemical and structural modifications. Furthermore, we evaluate these engineered RNPs' applications in sensitive biomarker detection and live-cell genomic DNA and RNA monitoring, while analyzing the current challenges and prospective developments in CRISPR-Cas RNP engineering for advanced biosensing and bioimaging.
Collapse
Affiliation(s)
- Linxin Cao
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemial Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zeyuan Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemial Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Chunyang Lei
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemial Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemial Biology, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
7
|
Liu H, Lv MM, Li X, Su M, Nie YG, Ying ZM. Ligation-recognition triggered RPA-Cas12a cis-cleavage fluorogenic RNA aptamer for one-pot and label-free detection of MicroRNA in breast cancer. Biosens Bioelectron 2025; 272:117106. [PMID: 39740588 DOI: 10.1016/j.bios.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
"One-pot" assays which combine amplification with CRISPR/Cas12a system are in constant attracted for biosensors development. Herein, we present a one-pot isothermal assay that Ligation-recognition triggered Recombinase Polymerase Amplification (RPA)-CRISPR/Cas12a cis-cleavage (LRPA-CRISPR) fluorescent biosensor for sensitive, specific, and label-free miRNA detection. Firstly, we reveal the programmed double-stranded DNA amplicons, which utilized the ligation-recognition and polymerization to form and amplified by the RPA system. Meanwhile, we enabled exponential ligation-recognition triggered recombinase polymerase amplification of miRNA-21 sequences and exploited the cis-cleavage mechanism of Cas12a with transcription to generate functional Mango RNA for signal output. This assay can be completed within 40 min and can allow a limit of detection of 3.43 aM for miRNA-21 detection, owing to the RPA with transcription amplification and enables to product the functional Mango RNA aptamer by in vitro transcription that binds to the TO1-Biotin fluorogenic dye. Moreover, our method exhibits the advantages of self-supply crRNA, label-free, excellent specificity, and universal detection platform via the design of one-pot detection in serum and cell samples, showing tremendous potential in biomarkers diagnostics of breast cancer.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Meng-Mei Lv
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan, 410000, China
| | - Xiang Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Mei Su
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yin-Gang Nie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhan-Ming Ying
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
8
|
Ding L, Cao S, Bai L, He S, He L, Wang Y, Wu Y, Yu S. Versatile fluorescence biosensors based on CRISPR/Cas12a for determination of site-specific DNA methylation from blood and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125520. [PMID: 39637570 DOI: 10.1016/j.saa.2024.125520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The identification of DNA methylation at specific sites is crucial for the early detection of cancer since DNA methylation is intimately associated to the occurrence and development of cancer. Herein, two types of sensors that can detect site-specific DNA methylation were developed to meet practical requirements using methylation sensitive restriction endonuclease and CRISPR/Cas12a. To accomplish rapid detection of target, an AciI-mediated CRISPR/Cas12a assay was developed by coupling AciI to recognize DNA methylation with Cas12a to identify site-specific DNA. Since protospacer adjacent motif (PAM)-dependent endonuclease activity and trans-cleavage activity of Cas12a, it is possible to detect site-specific DNA methylation within 2 h with high specificity and acceptable sensitivity. To satisfy the needs of trace target detection, we developed an GlaI-strand displacement amplification (SDA) assisted CRISPR/Cas12a system. The system converts double-stranded methylated DNA to abundant single-stranded by GlaI and SDA. Then, the combination of SDA and CRISPR/Cas12a enable cascades amplification of signal. The approach can therefore be used to detect methylation at different specified sites, even those without PAM, and can increase sensitivity with a detection limit down to 8.19 fM. Importantly, the assay can distinguish between colorectal cancer and precancerous tissue, as well as identify colorectal patients and healthy people. This study provides a new avenue for the development of new biosensors for methylation analysis, and the two methods devised have the potential to meet the multiple requirements of site-specific methylation testing in various clinical settings.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lanxin Bai
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Nursing and Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Yang Q, Dong MJ, Xu J, Xing Y, Wang Y, Yang J, Meng X, Xie T, Li Y, Dong H. CRISPR/RNA Aptamer System Activated by an AND Logic Gate for Biomarker-Driven Theranostics. J Am Chem Soc 2025; 147:169-180. [PMID: 39699588 DOI: 10.1021/jacs.4c08719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The development of an engineered RNA device capable of detecting multiple biomarkers to evaluate pathological states and autonomously implement responsive therapies is urgently needed. Here, we report InCasApt, an integrated nano CRISPR Cas13a/RNA aptamer theranostic platform capable of achieving both biomarker detection and biomarker-driven therapy. Within this system, a Cas13a/crRNA complex, a hairpin reporter (HR), a dinitroaniline caged Ce6 photosensitizer (Ce6-DN), and a DN-binding RNA aptamer precursor (DNBApt) are coloaded onto dendritic mesoporous silicon nanoparticles (DMSN) in a controlled manner. While InCasApt remains inert in normal cells, its programmable theranostic capabilities are activated in tumor cells that have elevated expression of carcinogenic miRNA-155 and miRNA-21. These miRNAs act as an AND logic gate, generating fluorescence for disease condition evaluation and ROS for photodynamic therapy. This process also upregulates antioncogene BRG1 and suppresses tumor migration by inhibiting the function of miRNA-155 and miRNA-21. These effects underscore the versatility of InCasApt as an miRNA-targeting strategy for bridging the gap between diagnosis and therapy.
Collapse
Affiliation(s)
- Qiqi Yang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming-Jie Dong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Jianglian Xu
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Wang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinlong Yang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianzhen Xie
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Wu CQ, Feng HY, Liu Y, Xu L. Genetically Expressed RNA Strand Displacement for Cellular Manipulation. Chembiochem 2024; 25:e202400669. [PMID: 39304987 DOI: 10.1002/cbic.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024]
Abstract
Nucleic acid strand displacement is a pivotal concept in dynamic nucleic acid nanotechnologies, which has been extensively investigated and applied across various fields. Compared with DNA systems, the genetically expressed RNA strand displacement technology offers unique advantages for construction of genetic circuits in living cells, where RNA expression and modulation may be seamlessly integrated into the genomic network for long-term and stable regulations of diversified biological functionalities. This Concept paper provides an overview of previous efforts on developments of synthetic gene circuits through utilization of RNA strand displacement, including our endeavors in this field. Moreover, future prospects, potential applications and challenges of the genetically expressed RNA strand displacement technology are also discussed.
Collapse
Affiliation(s)
- Chao-Qun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui-Ye Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524002, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
11
|
Jiang G, Gao Y, Zhou N, Wang B. CRISPR-powered RNA sensing in vivo. Trends Biotechnol 2024; 42:1601-1614. [PMID: 38734565 DOI: 10.1016/j.tibtech.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024]
Abstract
RNA sensing in vivo evaluates past or ongoing endogenous RNA disturbances, which is crucial for identifying cell types and states and diagnosing diseases. Recently, the CRISPR-driven genetic circuits have offered promising solutions to burgeoning challenges in RNA sensing. This review delves into the cutting-edge developments of CRISPR-powered RNA sensors in vivo, reclassifying these RNA sensors into four categories based on their working mechanisms, including programmable reassembly of split single-guide RNA (sgRNA), RNA-triggered RNA processing and protein cleavage, miRNA-triggered RNA interference (RNAi), and strand displacement reactions. Then, we discuss the advantages and challenges of existing methodologies in diverse application scenarios and anticipate and analyze obstacles and opportunities in forthcoming practical implementations.
Collapse
Affiliation(s)
- Guo Jiang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China
| | - Yuanli Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China; School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Nan Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China
| | - Baojun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China.
| |
Collapse
|
12
|
Kumari K, Gusain S, Joshi R. Engineering cold resilience: implementing gene editing tools for plant cold stress tolerance. PLANTA 2024; 261:2. [PMID: 39579237 DOI: 10.1007/s00425-024-04578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
MAIN CONCLUSION This paper highlights the need for innovative approaches to enhance cold tolerance. It underscores how genome-editing tools can deepen our understanding of genes involved in cold stress. Cold stress is a significant abiotic factor in high-altitude regions, adversely affecting plant growth and limiting crop productivity. Plants have evolved various mechanisms in response to low temperatures that enable resistance at both physiological and molecular levels during chilling and freezing stress. Several cold-inducible genes have been isolated and characterized, with most playing key roles in providing tolerance against low-temperature stress. However, many plants fail to survive at low temperatures due to the absence of cold acclimatization mechanisms. Conventional breeding techniques, such as inter-specific or inter-genic hybridization, have had limited effectiveness in enhancing the cold resistance of essential crops. Thus, it is crucial to develop crops with improved adaptability, high yields and resistance to cold stress using advanced genomic approaches. The current availability of gene editing tools offers the opportunity to introduce targeted modifications in plant genomes efficiently, thereby developing cold-tolerant varieties. This review discusses advancements in gene editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)/Cas12a(Cpf1), prime editing (PE) and retron library recombineering (RLR). We focus specifically on the CRISPR/Cas system, which has garnered significant attention in recent years as a groundbreaking tool for genome editing across various species. These techniques will enhance our understanding of molecular interactions under low-temperature stress response and highlight the progress of genome editing in designing future climate-resilient crops.
Collapse
Affiliation(s)
- Khushbu Kumari
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suman Gusain
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Allemailem KS, Almatroudi A, Alrumaihi F, Alradhi AE, Theyab A, Algahtani M, Alhawas MO, Dobie G, Moawad AA, Rahmani AH, Khan AA. Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies. Int J Nanomedicine 2024; 19:10185-10212. [PMID: 39399829 PMCID: PMC11471075 DOI: 10.2147/ijn.s479068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated sequence (CRISPR/Cas) system is a cutting-edge genome-editing tool employed to explore the functions of normal and disease-related genes. The CRISPR/Cas system has a remarkable diversity in the composition and architecture of genomic loci and Cas protein sequences. Owing to its excellent efficiency and specificity, this system adds an outstanding dimension to biomedical research on genetic manipulation of eukaryotic cells. However, safe, efficient, and specific delivery of this system to target cells and tissues and their off-target effects are considered critical bottlenecks for the therapeutic applications. Recently discovered anti-CRISPR proteins (Acr) play a significant role in limiting the effects of this system. Acrs are relatively small proteins that are highly specific to CRISPR variants and exhibit remarkable structural diversity. The in silico approaches, crystallography, and cryo-electron microscopy play significant roles in elucidating the mechanisms of action of Acrs. Acrs block the CRISPR/Cas system mainly by employing four mechanisms: CRISPR/Cas complex assembly interruption, target-binding interference, target cleavage prevention, and degradation of cyclic oligonucleotide signaling molecules. Engineered CRISPR/Cas systems are frequently used in gene therapy, diagnostics, and functional genomics. Understanding the molecular mechanisms underlying Acr action may help in the safe and effective use of CRISPR/Cas tools for genetic modification, particularly in the context of medicine. Thus, attempts to regulate prokaryotic CRISPR/Cas surveillance complexes will advance the development of antimicrobial drugs and treatment of human diseases. In this review, recent updates on CRISPR/Cas systems, especially CRISPR/Cas9 and Acrs, and their novel mechanistic insights are elaborated. In addition, the role of Acrs in the novel applications of CRISPP/Cas biotechnology for precise genome editing and other applications is discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | | | - Gasim Dobie
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Gizan, 82911, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena 07743, Germany
- Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
14
|
Wei Y, Wang SG, Xia PF. Blue valorization of lignin-derived monomers via reprogramming marine bacterium Roseovarius nubinhibens. Appl Environ Microbiol 2024; 90:e0089024. [PMID: 38940564 PMCID: PMC11267941 DOI: 10.1128/aem.00890-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Biological valorization of lignin, the second most abundant biopolymer on Earth, is an indispensable sector to build a circular economy and net-zero future. However, lignin is recalcitrant to bioupcycling, demanding innovative solutions. We report here the biological valorization of lignin-derived aromatic carbon to value-added chemicals without requesting extra organic carbon and freshwater via reprogramming the marine Roseobacter clade bacterium Roseovarius nubinhibens. We discovered the unusual advantages of this strain for the oxidation of lignin monomers and implemented a CRISPR interference (CRISPRi) system with the lacI-Ptrc inducible module, nuclease-deactivated Cas9, and programmable gRNAs. This is the first CRISPR-based regulatory system in R. nubinhibens, enabling precise and efficient repression of genes of interest. By deploying the customized CRISPRi, we reprogrammed the carbon flux from a lignin monomer, 4-hydroxybenzoate, to achieve the maximum production of protocatechuate, a pharmaceutical compound with antibacterial, antioxidant, and anticancer properties, with minimal carbon to maintain cell growth and drive biocatalysis. As a result, we achieved a 4.89-fold increase in protocatechuate yield with a dual-targeting CRISPRi system, and the system was demonstrated with real seawater. Our work underscores the power of CRISPRi in exploiting novel microbial chassis and will accelerate the development of marine synthetic biology. Meanwhile, the introduction of a new-to-the-field lineage of marine bacteria unveils the potential of blue biotechnology leveraging resources from the ocean.IMPORTANCEOne often overlooked sector in carbon-conservative biotechnology is the water resource that sustains these enabling technologies. Similar to the "food-versus-fuel" debate, the competition of freshwater between human demands and bioproduction is another controversial issue, especially under global water scarcity. Here, we bring a new-to-the-field lineage of marine bacteria with unusual advantages to the stage of engineering biology for simultaneous carbon and water conservation. We report the valorization of lignin monomers to pharmaceutical compounds without requesting extra organic substrate (e.g., glucose) or freshwater by reprogramming the marine bacterium Roseovarius nubinhibens with a multiplex CRISPR interference system. Beyond the blue lignin valorization, we present a proof-of-principle of leveraging marine bacteria and engineering biology for a sustainable future.
Collapse
Affiliation(s)
- Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Jiao C, Peeck NL, Yu J, Ghaem Maghami M, Kono S, Collias D, Martinez Diaz SL, Larose R, Beisel CL. TracrRNA reprogramming enables direct PAM-independent detection of RNA with diverse DNA-targeting Cas12 nucleases. Nat Commun 2024; 15:5909. [PMID: 39003282 PMCID: PMC11246509 DOI: 10.1038/s41467-024-50243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Many CRISPR-Cas immune systems generate guide (g)RNAs using trans-activating CRISPR RNAs (tracrRNAs). Recent work revealed that Cas9 tracrRNAs could be reprogrammed to convert any RNA-of-interest into a gRNA, linking the RNA's presence to Cas9-mediated cleavage of double-stranded (ds)DNA. Here, we reprogram tracrRNAs from diverse Cas12 nucleases, linking the presence of an RNA-of-interest to dsDNA cleavage and subsequent collateral single-stranded DNA cleavage-all without the RNA necessarily encoding a protospacer-adjacent motif (PAM). After elucidating nuclease-specific design rules, we demonstrate PAM-independent RNA detection with Cas12b, Cas12e, and Cas12f nucleases. Furthermore, rationally truncating the dsDNA target boosts collateral cleavage activity, while the absence of a gRNA reduces background collateral activity and enhances sensitivity. Finally, we apply this platform to detect 16 S rRNA sequences from five different bacterial pathogens using a universal reprogrammed tracrRNA. These findings extend tracrRNA reprogramming to diverse dsDNA-targeting Cas12 nucleases, expanding the flexibility and versatility of CRISPR-based RNA detection.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Natalia L Peeck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sarah Kono
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sandra L Martinez Diaz
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Rachael Larose
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
17
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
18
|
Yee BJ, Ali NA, Mohd-Naim NFB, Ahmed MU. Exploiting the Specificity of CRISPR/Cas System for Nucleic Acids Amplification-Free Disease Diagnostics in the Point-of-Care. CHEM & BIO ENGINEERING 2024; 1:330-339. [PMID: 39974464 PMCID: PMC11835143 DOI: 10.1021/cbe.3c00112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2025]
Abstract
Rapid and reliable molecular diagnostics employing target nucleic acids and small biomarkers are crucial strategies required for the precise detection of numerous diseases. Although diagnoses based on nucleic acid recognition are some of the most efficient and precise procedures, these tests often require expensive equipment and skilled professionals. Recent advancements in diagnostic innovations, particularly those based on clustered regularly interspaced short palindromic repeats (CRISPR), aim to provide thorough screening at homes, in clinics, and in the field. In comparison to traditional molecular techniques like PCR, CRISPR/Cas-based detection, using the single-stranded nucleic acid trans-cleavage abilities of Cas12 or Cas13, shows significant potential as a molecular diagnostic tool. It offers benefits such as attomolar-level sensitivity, single-base precision, and rapid turnover rates. Both Cas enzymes demonstrate exceptional specificity and sensitivity, holding substantial promise in disease diagnostics and beyond. Consequently, various amplification-free CRISPR/Cas-based detection methods have emerged, aiming to maintain sensitivity despite the absence of pre-amplification. This allows for the detection of non-nucleic acid targets and facilitates integration into point-of-care settings. This Review highlights current advances in amplification-free CRISPR/Cas detection systems in disease diagnostics and investigates their utility in point-of-care settings. Furthermore, the mechanisms of alternative CRISPR-based amplification-free detection of other small molecules, aside from nucleic acids, for disease diagnosis will also be briefly discussed.
Collapse
Affiliation(s)
- Bong Jing Yee
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Gadong 1410, Brunei Darussalam
| | - Nurul Ajeerah Ali
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Gadong 1410, Brunei Darussalam
| | - Noor Faizah binti Mohd-Naim
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Gadong 1410, Brunei Darussalam
- PAPRSB
Institute of Health Science, Universiti
Brunei Darussalam, Gadong 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Gadong 1410, Brunei Darussalam
| |
Collapse
|
19
|
Ding L, Cao S, Qu C, Wu Y, Yu S. Ratiometric CRISPR/Cas12a-Triggered CHA System Coupling with the MSRE to Detect Site-Specific DNA Methylation. ACS Sens 2024; 9:1877-1885. [PMID: 38573977 DOI: 10.1021/acssensors.3c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The precise determination of DNA methylation at specific sites is critical for the timely detection of cancer, as DNA methylation is closely associated with the initiation and progression of cancer. Herein, a novel ratiometric fluorescence method based on the methylation-sensitive restriction enzyme (MSRE), CRISPR/Cas12a, and catalytic hairpin assembly (CHA) amplification were developed to detect site-specific methylation with high sensitivity and specificity. In detail, AciI, one of the commonly used MSREs, was employed to distinguish the methylated target from nonmethylated targets. The CRISPR/Cas12a system was utilized to recognize the site-specific target. In this process, the protospacer adjacent motif and crRNA-dependent identification, the single-base resolution of Cas12a, can effectively ensure detection specificity. The trans-cleavage ability of Cas12a can convert one target into abundant activators and can then trigger the CHA reaction, leading to the accomplishment of cascaded signal amplification. Moreover, with the structural change of the hairpin probe during CHA, two labeled dyes can be spatially separated, generating a change of the Förster resonance energy transfer signal. In general, the proposed strategy of tandem CHA after the CRISPR/Cas12a reaction not only avoids the generation of false-positive signals caused by the target-similar nucleic acid but can also improve the sensitivity. The use of ratiometric fluorescence can eradicate environmental effects by self-calibration. Consequently, the proposed approach had a detection limit of 2.02 fM. This approach could distinguish between colorectal cancer and precancerous tissue, as well as between colorectal patients and healthy people. Therefore, the developed method can serve as an excellent site-specific methylation detection tool, which is promising for biological and disease studies.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Buson F, Gao Y, Wang B. Genetic Parts and Enabling Tools for Biocircuit Design. ACS Synth Biol 2024; 13:697-713. [PMID: 38427821 DOI: 10.1021/acssynbio.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Synthetic biology aims to engineer biological systems for customized tasks through the bottom-up assembly of fundamental building blocks, which requires high-quality libraries of reliable, modular, and standardized genetic parts. To establish sets of parts that work well together, synthetic biologists created standardized part libraries in which every component is analyzed in the same metrics and context. Here we present a state-of-the-art review of the currently available part libraries for designing biocircuits and their gene expression regulation paradigms at transcriptional, translational, and post-translational levels in Escherichia coli. We discuss the necessary facets to integrate these parts into complex devices and systems along with the current efforts to catalogue and standardize measurement data. To better display the range of available parts and to facilitate part selection in synthetic biology workflows, we established biopartsDB, a curated database of well-characterized and useful genetic part and device libraries with detailed quantitative data validated by the published literature.
Collapse
Affiliation(s)
- Felipe Buson
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Talebian S, Dehghani F, Weiss PS, Conde J. Evolution of CRISPR-enabled biosensors for amplification-free nucleic acid detection. Trends Biotechnol 2024; 42:10-13. [PMID: 37516612 DOI: 10.1016/j.tibtech.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
CRISPR biosensors enable rapid and accurate detection of nucleic acids without resorting to target amplification. Specifically, these systems facilitate the simultaneous detection of multiple nucleic acid targets with single-base specificity. This is an invaluable asset that can ultimately facilitate accurate diagnoses of biologically complex diseases.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia; Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia.
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia; Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal.
| |
Collapse
|
22
|
Liu Y, Liu W, Wang B. Engineering CRISPR guide RNAs for programmable RNA sensors. Biochem Soc Trans 2023; 51:2061-2070. [PMID: 37955062 PMCID: PMC10754282 DOI: 10.1042/bst20221486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
As the most valuable feature of the CRISPR system, the programmability based on Watson-Crick base pairing has been widely exploited in engineering RNA sensors. The base pairing in these systems offers a connection between the RNA of interest and the CRISPR effector, providing a highly specific mechanism for RNA detection both in vivo and in vitro. In the last decade, despite the many successful RNA sensing approaches developed during the era of CRISPR explosion, a deeper understanding of the characteristics of CRISPR systems and the continuous expansion of the CRISPR family members indicates that the CRISPR-based RNA sensor remains a promising area from which a variety of new functions and applications can be engineered. Here, we present a systematic overview of the various strategies of engineering CRISPR gRNA for programmable RNA detection with an aim to clarify the role of gRNA's programmability among the present limitations and future development of CRISPR-enabled RNA sensors.
Collapse
Affiliation(s)
- Yang Liu
- MRC Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Wei Liu
- MRC Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou 311100, China
| |
Collapse
|
23
|
Gao Y, Wang L, Wang B. Customizing cellular signal processing by synthetic multi-level regulatory circuits. Nat Commun 2023; 14:8415. [PMID: 38110405 PMCID: PMC10728147 DOI: 10.1038/s41467-023-44256-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
As synthetic biology permeates society, the signal processing circuits in engineered living systems must be customized to meet practical demands. Towards this mission, novel regulatory mechanisms and genetic circuits with unprecedented complexity have been implemented over the past decade. These regulatory mechanisms, such as transcription and translation control, could be integrated into hybrid circuits termed "multi-level circuits". The multi-level circuit design will tremendously benefit the current genetic circuit design paradigm, from modifying basic circuit dynamics to facilitating real-world applications, unleashing our capabilities to customize cellular signal processing and address global challenges through synthetic biology.
Collapse
Affiliation(s)
- Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Lei Wang
- Center of Synthetic Biology and Integrated Bioengineering & School of Engineering, Westlake University, Hangzhou, 310030, China.
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou, 311100, China.
| |
Collapse
|
24
|
Gao Y, Dong C, Lian J, Wang B. 2nd symposium on engineering biology and BioFoundry. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:100-103. [PMID: 39416908 PMCID: PMC11446387 DOI: 10.1016/j.biotno.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 10/19/2024]
Affiliation(s)
- Yuanli Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Chang Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Jiazhang Lian
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Baojun Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
25
|
Nami Y, Rostampour M, Panahi B. CRISPR-Cas systems and diversity of targeting phages in Lactobacillus johnsonii strains; insights from genome mining approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105500. [PMID: 37703922 DOI: 10.1016/j.meegid.2023.105500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (CAS) genes make up bacteria's adaptive immune system. These genes protect bacteria from being eaten by bacteriophages. In this study, CRISPR-Cas systems were characterized using a genomic approach. For this purpose, genome sequences of Lactobacillus johnsonii strains were retrieved, and the diversity, occurrence, and evolution of the CRISPR-Cas systems were analyzed. Then, homology analyses of spacer sequences in identified CRISPR arrays were performed to analyze and characterize the diversity of target phages and plasmids. Finally, the evolutionary paths of spaceromes in each subtype of CRISPR arrays were performed using acquisition and deletion events surveyed under the selective pressure of foreign plasmids and phages. Results showed that 138 strains contain valid CRISPR-Cas structures (CRISPR loci together with the Cas genes) in their genomes, which accounted for about 17% of the L. johnsonii studied strains belonging to subtypes II-A, I-E, and I-C. Moreover, results indicated that some specific groups of plasmids were targeted with specific CRISPR array systems. Homology analysis of spacer sequences with phage genomes also revealed that spacers of strains that harbored only CRISPR-Cas subtype-II targeted a greater diversity of foreign phages. In conclusion, the current study indicates that there is great diversity between the CRISPR-Cas systems identified in L. johnsonii strains. Such diverse CRISPR-Cas systems indicate that these systems are naturally active and important in terms of adaptive immunity and evolutionary relationships.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | | | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
26
|
Single-cell recording of cellular RNAs in bacteria. Nat Biotechnol 2023; 41:1076-1077. [PMID: 36604545 DOI: 10.1038/s41587-022-01625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Jiao C, Reckstadt C, König F, Homberger C, Yu J, Vogel J, Westermann AJ, Sharma CM, Beisel CL. RNA recording in single bacterial cells using reprogrammed tracrRNAs. Nat Biotechnol 2023; 41:1107-1116. [PMID: 36604543 PMCID: PMC7614944 DOI: 10.1038/s41587-022-01604-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Capturing an individual cell's transcriptional history is a challenge exacerbated by the functional heterogeneity of cellular communities. Here, we leverage reprogrammed tracrRNAs (Rptrs) to record selected cellular transcripts as stored DNA edits in single living bacterial cells. Rptrs are designed to base pair with sensed transcripts, converting them into guide RNAs. The guide RNAs then direct a Cas9 base editor to target an introduced DNA target. The extent of base editing can then be read in the future by sequencing. We use this approach, called TIGER (transcribed RNAs inferred by genetically encoded records), to record heterologous and endogenous transcripts in individual bacterial cells. TIGER can quantify relative expression, distinguish single-nucleotide differences, record multiple transcripts simultaneously and read out single-cell phenomena. We further apply TIGER to record metabolic bet hedging and antibiotic resistance mobilization in Escherichia coli as well as host cell invasion by Salmonella. Through RNA recording, TIGER connects current cellular states with past transcriptional states to decipher complex cellular responses in single cells.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Claas Reckstadt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Fabian König
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christina Homberger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
28
|
Lou J, Wang B, Li J, Ni P, Jin Y, Chen S, Xi Y, Zhang R, Duan G. The CRISPR-Cas system as a tool for diagnosing and treating infectious diseases. Mol Biol Rep 2022; 49:11301-11311. [PMID: 35857175 PMCID: PMC9297709 DOI: 10.1007/s11033-022-07752-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 10/26/2022]
Abstract
Emerging and relapsing infectious diseases pose a huge health threat to human health and a new challenge to global public health. Rapid, sensitive and simple diagnostic tools are keys to successful management of infectious patients and containment of disease transmission. In recent years, international research on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-related proteins (Cas) has revolutionized our understanding of biology. The CRISPR-Cas system has the advantages of high specificity, high sensitivity, simple, rapid, low cost, and has begun to be used for molecular diagnosis and treatment of infectious diseases. In this paper, we described the biological principles, application fields and prospects of CRISPR-Cas system in the molecular diagnosis and treatment of infectious diseases, and compared it with existing molecular diagnosis methods, the advantages and disadvantages were summarized.
Collapse
Affiliation(s)
- Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.
- International School of Public Health and One Health, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Prokhorova DV, Vokhtantsev IP, Tolstova PO, Zhuravlev ES, Kulishova LM, Zharkov DO, Stepanov GA. Natural Nucleoside Modifications in Guide RNAs Can Modulate the Activity of the CRISPR-Cas9 System In Vitro. CRISPR J 2022; 5:799-812. [PMID: 36350691 DOI: 10.1089/crispr.2022.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
At the present time, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has been widely adopted as an efficient genomic editing tool. However, there are some actual problems such as the off-target effects, cytotoxicity, and immunogenicity. The incorporation of modifications into guide RNAs permits enhancing both the efficiency and the specificity of the CRISPR-Cas9 system. In this study, we demonstrate that the inclusion of N6-methyladenosine, 5-methylcytidine, and pseudouridine in trans-activating RNA (tracrRNA) or in single guide RNA (sgRNA) enables efficient gene editing in vitro. We found that the complexes of modified guide RNAs with Cas9 protein promoted cleavage of the target short/long duplexes and plasmid substrates. In addition, the modified monomers in guide RNAs allow increasing the specificity of CRISPR-Cas9 system in vitro and promote diminishing both the immunostimulating and the cytotoxic effects of sgRNAs.
Collapse
Affiliation(s)
- Daria V Prokhorova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Ivan P Vokhtantsev
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Polina O Tolstova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Evgenii S Zhuravlev
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lilia M Kulishova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
30
|
Wu Q, Cui L, Liu Y, Li R, Dai M, Xia Z, Wu M. CRISPR-Cas systems target endogenous genes to impact bacterial physiology and alter mammalian immune responses. MOLECULAR BIOMEDICINE 2022; 3:22. [PMID: 35854035 PMCID: PMC9296731 DOI: 10.1186/s43556-022-00084-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
CRISPR-Cas systems are an immune defense mechanism that is widespread in archaea and bacteria against invasive phages or foreign genetic elements. In the last decade, CRISPR-Cas systems have been a leading gene-editing tool for agriculture (plant engineering), biotechnology, and human health (e.g., diagnosis and treatment of cancers and genetic diseases), benefitted from unprecedented discoveries of basic bacterial research. However, the functional complexity of CRISPR systems is far beyond the original scope of immune defense. CRISPR-Cas systems are implicated in influencing the expression of physiology and virulence genes and subsequently altering the formation of bacterial biofilm, drug resistance, invasive potency as well as bacterial own physiological characteristics. Moreover, increasing evidence supports that bacterial CRISPR-Cas systems might intriguingly influence mammalian immune responses through targeting endogenous genes, especially those relating to virulence; however, unfortunately, their underlying mechanisms are largely unclear. Nevertheless, the interaction between bacterial CRISPR-Cas systems and eukaryotic cells is complex with numerous mysteries that necessitate further investigation efforts. Here, we summarize the non-canonical functions of CRISPR-Cas that potentially impact bacterial physiology, pathogenicity, antimicrobial resistance, and thereby altering the courses of mammalian immune responses.
Collapse
Affiliation(s)
- Qun Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Yingying Liu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA.
| |
Collapse
|