1
|
Feng W, Sheng S, He J, Wang X, Zhu J, Yu J, Zhang J, Wang F, Zhang L, Sitti M. Electric field-coupled two-photon polymerization system for on-demand modulation of 3D-printed structural color. PNAS NEXUS 2025; 4:pgaf074. [PMID: 40365162 PMCID: PMC12070393 DOI: 10.1093/pnasnexus/pgaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/19/2025] [Indexed: 05/15/2025]
Abstract
Advanced manufacturing has been extensively studied using various resin monomers and customized apparatus. Multimaterial microfabrication tools remain limited due to the size constraints inherent in extrusion-based fabrication methods. In addition, prior research predominantly employs monomers as "inert" resins, with minimal emphasis on altering their properties during fabrication. In this study, we propose a novel approach to field-coupled advanced manufacturing, wherein external stimulative fields are integrated to dynamically modulate the properties of "dynamic" resins during 3D printing. As a demonstration, we utilize an electric field-coupled two-photon polymerization (EF-TPP) technique to fabricate structurally colorful microstructures. To address the challenges of limited fabrication approach and resins in the field of structural color, we present an EF-TPP system that enables the production of 3D structural colorful microstructures. By coupling the electric field with the two-photon polymerization (TPP) process, this method enhances 3D printing capabilities, allowing for the bottom-up fabrication of structural colorful microstructures. Furthermore, it integrates existing electrically tunable heliconical cholesteric liquid crystals, enabling the modulation of structural color during printing while also accelerating the printing speed. This approach facilitates the production of microstructures with multiple structural colors without requiring changes to the resin ink. By eliminating the lithography step, the EF-TPP system promotes green manufacturing practices and introduces an unconventional paradigm for fabricating dynamic, microscale structural colorful devices. Additionally, the electric field-integrated two-photon lithography system provides a foundational strategy for advancing field-coupled manufacturing methodologies.
Collapse
Affiliation(s)
- Wei Feng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, Institute of Humanoid Robots, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Shurong Sheng
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei 230088, China
| | - Jiaqing He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, Institute of Humanoid Robots, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Jiaqi Zhu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jiangfan Yu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Jianhua Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Fan Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
2
|
Jeon J, Moon H, Park J, Won S, Park JE, Ku Z, Kim JO, Wie JJ. Collective and Rapid High Amplitude Magnetic Oscillation of Anisotropic Micropillar Arrays. ACS NANO 2025; 19:9946-9957. [PMID: 40050612 DOI: 10.1021/acsnano.4c15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Magnetic soft actuators allow high-frequency shape reconfiguration of the micropillar array by rapid rotation of an external magnetic field; however, viscoelastic soft actuators cannot instantaneously reach an equilibrium deformation state to minimize the magnetic moment at a given short time scale, resulting in a significant reduction of the strain amplitude. Herein, we report high-frequency magnetic oscillation of a micropillar array without significant reduction in frequency or strain amplitude by programming the magnetization direction of hard magnetic microparticles embedded in a soft elastomer. Various oscillatory motions, including bending, twisting, and torsion under time-varying external magnetic fields, are demonstrated via programming the magnetization of anisotropic micropillars. Hybridization of microparticles and nanorods in magnetic composites improves the magnetic amplitude of micropillars through a synergistic effect. The translation of microscopic oscillatory motion into a macroscopic function is achieved by the rapid and large-amplitude magnetically programmable collective deformation of the micropillar array. Collective oscillatory torsion of the micropillar array functions as the legs in a walking robot as well as micropaddles that can program the chirality of the liquid flow. Point- or line-symmetric torsion enables the flow direction (counterclockwise or clockwise) to be programmed according to the direction of applied magnetic field to the micropillar array.
Collapse
Affiliation(s)
- Jisoo Jeon
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Hojun Moon
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Jaeseo Park
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sukyoung Won
- Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeong Eun Park
- Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Zahyun Ku
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Jun Oh Kim
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jeong Jae Wie
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
- The Michael M. Szwarc Polymer Research Institute, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| |
Collapse
|
3
|
Ren Z, Xin C, Liang K, Wang H, Wang D, Xu L, Hu Y, Li J, Chu J, Wu D. Femtosecond laser writing of ant-inspired reconfigurable microbot collectives. Nat Commun 2024; 15:7253. [PMID: 39179567 PMCID: PMC11343760 DOI: 10.1038/s41467-024-51567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Microbot collectives can cooperate to accomplish complex tasks that are difficult for a single individual. However, various force-induced microbot collectives maintained by weak magnetic, light, and electric fields still face challenges such as unstable connections, the need for a continuous external stimuli source, and imprecise individual control. Here, we construct magnetic and light-driven ant microbot collectives capable of reconfiguring multiple assembled architectures with robustness. This methodology utilizes a flexible two-photon polymerization strategy to fabricate microbots consisting of magnetic photoresist, hydrogel, and metal nanoparticles. Under the cooperation of magnetic and light fields, the microbots can reversibly and selectively assemble (e.g., 90° assembly and 180° assembly) into various morphologies. Moreover, we demonstrate the ability of assembled microbots to cross a one-body-length gap and their adaptive capability to move through a constriction and transport microcargo. Our strategy will broaden the abilities of clustered microbots, including gap traversal, micro-object manipulation, and drug delivery.
Collapse
Affiliation(s)
- Zhongguo Ren
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Xin
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Kaiwen Liang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Heming Wang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Dawei Wang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Liqun Xu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Yanlei Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaru Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
5
|
Gao Y, Ou L, Liu K, Guo Y, Li W, Xiong Z, Wu C, Wang J, Tang J, Li D. Template-Guided Silicon Micromotor Assembly for Enhanced Cell Manipulation. Angew Chem Int Ed Engl 2024; 63:e202405895. [PMID: 38660927 DOI: 10.1002/anie.202405895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Light-driven micro/nanorobots (LMNRs) are tiny, untethered machines with great potential in fields like precision medicine, nano manufacturing, and various other domains. However, their practicality hinges on developing light-manipulation strategies that combine versatile functionalities, flexible design options, and precise controllability. Our study introduces an innovative approach to construct micro/nanorobots (MNRs) by utilizing micro/nanomotors as fundamental building blocks. Inspired by silicon Metal-Insulator-Semiconductor (MIS) solar cell principles, we design a new type of optomagnetic hybrid micromotors (OHMs). These OHMs have been skillfully optimized with integrated magnetic constituent, resulting in efficient light propulsion, precise magnetic navigation, and the potential for controlled assembly. One of the key features of the OHMs is their ability to exhibit diverse motion modes influenced by fracture surfaces and interactions with the environment, streamlining cargo conveyance along "micro expressway"-the predesigned microchannels. Further enhancing their versatility, a template-guided assembly strategy facilitates the assembly of these micromotors into functional microrobots, encompassing various configurations such as "V-shaped", "N-shaped", and 3D structured microrobots. The heightened capabilities of these microrobots, underscore the innovative potential inherent in hybrid micromotor design and assembly, which provides a foundational platform for the realization of multi-component microrobots. Our work moves a step toward forthcoming microrobotic entities boasting advanced functionalities.
Collapse
Affiliation(s)
- Yuxin Gao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Leyan Ou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Kunfeng Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yuan Guo
- The Third People's Hospital of Ganzhou, Ganzhou City, Jiangxi Province, 341000, P. R. China
| | - Wanyuan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Ze Xiong
- Wireless and Smart Bioelectronics Lab, School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
6
|
Donato S, Nocentini S, Martella D, Kolagatla S, Wiersma DS, Parmeggiani C, Delaney C, Florea L. Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi-Level Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306802. [PMID: 38063817 DOI: 10.1002/smll.202306802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Indexed: 05/18/2024]
Abstract
Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.
Collapse
Affiliation(s)
- Simone Donato
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
| | - Sara Nocentini
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Daniele Martella
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Srikanth Kolagatla
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| | - Diederik S Wiersma
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Colm Delaney
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| | - Larisa Florea
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| |
Collapse
|
7
|
Young OM, Xu X, Sarker S, Sochol RD. Direct laser writing-enabled 3D printing strategies for microfluidic applications. LAB ON A CHIP 2024; 24:2371-2396. [PMID: 38576361 PMCID: PMC11060139 DOI: 10.1039/d3lc00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Over the past decade, additive manufacturing-or "three-dimensional (3D) printing"-has attracted increasing attention in the Lab on a Chip community as a pathway to achieve sophisticated system architectures that are difficult or infeasible to fabricate via conventional means. One particularly promising 3D manufacturing technology is "direct laser writing (DLW)", which leverages two-photon (or multi-photon) polymerization (2PP) phenomena to enable high geometric versatility, print speeds, and precision at length scales down to the 100 nm range. Although researchers have demonstrated the potential of using DLW for microfluidic applications ranging from organ on a chip and drug delivery to micro/nanoparticle processing and soft microrobotics, such scenarios present unique challenges for DLW. Specifically, microfluidic systems typically require macro-to-micro fluidic interfaces (e.g., inlet and outlet ports) to facilitate fluidic loading, control, and retrieval operations; however, DLW-based 3D printing relies on a micron-to-submicron-sized 2PP volume element (i.e., "voxel") that is poorly suited for manufacturing these larger-scale fluidic interfaces. In this Tutorial Review, we highlight and discuss the four most prominent strategies that researchers have developed to circumvent this trade-off and realize macro-to-micro interfaces for DLW-enabled microfluidic components and systems. In addition, we consider the possibility that-with the advent of next-generation commercial DLW printers equipped with new dynamic voxel tuning, print field, and laser power capabilities-the overall utility of DLW strategies for Lab on a Chip fields may soon expand dramatically.
Collapse
Affiliation(s)
- Olivia M Young
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, MA, 01003, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
8
|
Cui Z, Wang Y, den Toonder JMJ. Metachronal Motion of Biological and Artificial Cilia. Biomimetics (Basel) 2024; 9:198. [PMID: 38667209 PMCID: PMC11048255 DOI: 10.3390/biomimetics9040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cilia are slender, hair-like cell protrusions that are present ubiquitously in the natural world. They perform essential functions, such as generating fluid flow, propulsion, and feeding, in organisms ranging from protozoa to the human body. The coordinated beating of cilia, which results in wavelike motions known as metachrony, has fascinated researchers for decades for its role in functions such as flow generation and mucus transport. Inspired by nature, researchers have explored diverse materials for the fabrication of artificial cilia and developed several methods to mimic the metachronal motion observed in their biological counterparts. In this review, we will introduce the different types of metachronal motion generated by both biological and artificial cilia, the latter including pneumatically, photonically, electrically, and magnetically driven artificial cilia. Furthermore, we review the possible applications of metachronal motion by artificial cilia, focusing on flow generation, transport of mucus, particles, and droplets, and microrobotic locomotion. The overall aim of this review is to offer a comprehensive overview of the metachronal motions exhibited by diverse artificial cilia and the corresponding practical implementations. Additionally, we identify the potential future directions within this field. These insights present an exciting opportunity for further advancements in this domain.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ye Wang
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jaap M. J. den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Ren Z, Sitti M. Design and build of small-scale magnetic soft-bodied robots with multimodal locomotion. Nat Protoc 2024; 19:441-486. [PMID: 38097687 DOI: 10.1038/s41596-023-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/21/2023] [Indexed: 02/12/2024]
Abstract
Small-scale magnetic soft-bodied robots can be designed to operate based on different locomotion modes to navigate and function inside unstructured, confined and varying environments. These soft millirobots may be useful for medical applications where the robots are tasked with moving inside the human body. Here we cover the entire process of developing small-scale magnetic soft-bodied millirobots with multimodal locomotion capability, including robot design, material preparation, robot fabrication, locomotion control and locomotion optimization. We describe in detail the design, fabrication and control of a sheet-shaped soft millirobot with 12 different locomotion modes for traversing different terrains, an ephyra jellyfish-inspired soft millirobot that can manipulate objects in liquids through various swimming modes, a larval zebrafish-inspired soft millirobot that can adjust its body stiffness for efficient propulsion in different swimming speeds and a dual stimuli-responsive sheet-shaped soft millirobot that can switch its locomotion modes automatically by responding to changes in the environmental temperature. The procedure is aimed at users with basic expertise in soft robot development. The procedure requires from a few days to several weeks to complete, depending on the degree of characterization required.
Collapse
Affiliation(s)
- Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
10
|
Pu R, Yang X, Mu H, Xu Z, He J. Current status and future application of electrically controlled micro/nanorobots in biomedicine. Front Bioeng Biotechnol 2024; 12:1353660. [PMID: 38314349 PMCID: PMC10834684 DOI: 10.3389/fbioe.2024.1353660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Using micro/nanorobots (MNRs) for targeted therapy within the human body is an emerging research direction in biomedical science. These nanoscale to microscale miniature robots possess specificity and precision that are lacking in most traditional treatment modalities. Currently, research on electrically controlled micro/nanorobots is still in its early stages, with researchers primarily focusing on the fabrication and manipulation of these robots to meet complex clinical demands. This review aims to compare the fabrication, powering, and locomotion of various electrically controlled micro/nanorobots, and explore their advantages, disadvantages, and potential applications.
Collapse
Affiliation(s)
- Ruochen Pu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiyu Yang
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Mu
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Xu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin He
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Park S, Choi G, Kang M, Kim W, Kim J, Jeong HE. Bioinspired magnetic cilia: from materials to applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:153. [PMID: 38093810 PMCID: PMC10716204 DOI: 10.1038/s41378-023-00611-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 01/26/2025]
Abstract
Microscale and nanoscale cilia are ubiquitous in natural systems where they serve diverse biological functions. Bioinspired artificial magnetic cilia have emerged as a highly promising technology with vast potential applications, ranging from soft robotics to highly precise sensors. In this review, we comprehensively discuss the roles of cilia in nature and the various types of magnetic particles utilized in magnetic cilia; additionally, we explore the top-down and bottom-up fabrication techniques employed for their production. Furthermore, we examine the various applications of magnetic cilia, including their use in soft robotics, droplet and particle control systems, fluidics, optical devices, and sensors. Finally, we present our conclusions and the future outlook for magnetic cilia research and development, including the challenges that need to be overcome and the potential for further integration with emerging technologies.
Collapse
Affiliation(s)
- Seongjin Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Geonjun Choi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| |
Collapse
|
12
|
Srinivasaraghavan Govindarajan R, Sikulskyi S, Ren Z, Stark T, Kim D. Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing. Polymers (Basel) 2023; 15:4377. [PMID: 38006101 PMCID: PMC10675433 DOI: 10.3390/polym15224377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered the market of two-photon polymerization (2PP) AM. To facilitate the development of microdevices with soft components through the application of 2PP technique and IP-PDMS material, this research paper presents a comprehensive material characterization of IP-PDMS. The significance of this study lies in the scarcity of existing research on this material and the thorough investigation of its properties, many of which are reported here for the first time. Particularly, for uncured IP-PDMS resin, this work evaluates a surface tension of 26.7 ± 4.2 mN/m, a contact angle with glass of 11.5 ± 0.6°, spin-coating behavior, a transmittance of more than 90% above 440 nm wavelength, and FTIR with all the properties reported for the first time. For cured IP-PDMS, novel characterizations include a small mechanical creep, a velocity-dependent friction coefficient with glass, a typical dielectric permittivity value of 2.63 ± 0.02, a high dielectric/breakdown strength for 3D-printed elastomers of up to 73.3 ± 13.3 V/µm and typical values for a spin coated elastomer of 85.7 ± 12.4 V/µm, while the measured contact angle with water of 103.7 ± 0.5°, Young's modulus of 5.96 ± 0.2 MPa, and viscoelastic DMA mechanical characterization are compared with the previously reported values. Friction, permittivity, contact angle with water, and some of the breakdown strength measurements were performed with spin-coated cured IP-PDMS samples. Based on the performed characterization, IP-PDMS shows itself to be a promising material for micro-scale soft MEMS, including microfluidics, storage devices, and micro-scale smart material technologies.
Collapse
Affiliation(s)
| | | | | | | | - Daewon Kim
- Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA; (R.S.G.); (S.S.); (Z.R.); (T.S.)
| |
Collapse
|
13
|
Li M, Pal A, Byun J, Gardi G, Sitti M. Magnetic Putty as a Reconfigurable, Recyclable, and Accessible Soft Robotic Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304825. [PMID: 37713134 DOI: 10.1002/adma.202304825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Magnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity. It is shown that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one-tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self-healing material that can be recycled and repurposed. The authors anticipate magnetic putty could provide a versatile and accessible tool for various magnetic robotics applications for fast prototyping and explorations for research and educational purposes.
Collapse
Affiliation(s)
- Meng Li
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Aniket Pal
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Applied Mechanics, University of Stuttgart, 70569, Stuttgart, Germany
| | - Junghwan Byun
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Gaurav Gardi
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
14
|
Li M, Yue L, Rajan AC, Yu L, Sahu H, Montgomery SM, Ramprasad R, Qi HJ. Low-temperature 3D printing of transparent silica glass microstructures. SCIENCE ADVANCES 2023; 9:eadi2958. [PMID: 37792949 PMCID: PMC10550221 DOI: 10.1126/sciadv.adi2958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Transparent silica glass is one of the most essential materials used in society and industry, owing to its exceptional optical, thermal, and chemical properties. However, glass is extremely difficult to shape, especially into complex and miniaturized structures. Recent advances in three-dimensional (3D) printing have allowed for the creation of glass structures, but these methods involve time-consuming and high-temperature processes. Here, we report a photochemistry-based strategy for making glass structures of micrometer size under mild conditions. Our technique uses a photocurable polydimethylsiloxane resin that is 3D printed into complex structures and converted to silica glass via deep ultraviolet (DUV) irradiation in an ozone environment. The unique DUV-ozone conversion process for silica microstructures is low temperature (~220°C) and fast (<5 hours). The printed silica glass is highly transparent with smooth surface, comparable to commercial fused silica glass. This work enables the creation of arbitrary structures in silica glass through photochemistry and opens opportunities in unexplored territories for glass processing techniques.
Collapse
Affiliation(s)
- Mingzhe Li
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Arunkumar Chitteth Rajan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Harikrishna Sahu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - S. Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - H. Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Zheng L, Hart N, Zeng Y. Micro-/nanoscale robotics for chemical and biological sensing. LAB ON A CHIP 2023; 23:3741-3767. [PMID: 37496448 PMCID: PMC10530003 DOI: 10.1039/d3lc00404j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The field of micro-/nanorobotics has attracted extensive interest from a variety of research communities and witnessed enormous progress in a broad array of applications ranging from basic research to global healthcare and to environmental remediation and protection. In particular, micro-/nanoscale robots provide an enabling platform for the development of next-generation chemical and biological sensing modalities, owing to their unique advantages as programmable, self-sustainable, and/or autonomous mobile carriers to accommodate and promote physical and chemical processes. In this review, we intend to provide an overview of the state-of-the-art development in this area and share our perspective in the future trend. This review starts with a general introduction of micro-/nanorobotics and the commonly used methods for propulsion of micro-/nanorobots in solution, along with the commonly used methods in their fabrication. Next, we comprehensively summarize the current status of the micro/nanorobotic research in relevance to chemical and biological sensing (e.g., motion-based sensing, optical sensing, and electrochemical sensing). Following that, we provide an overview of the primary challenges currently faced in the micro-/nanorobotic research. Finally, we conclude this review by providing our perspective detailing the future application of soft robotics in chemical and biological sensing.
Collapse
Affiliation(s)
- Liuzheng Zheng
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| | - Nathan Hart
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| |
Collapse
|
16
|
Yan Y, Wang T, Zhang R, Liu Y, Hu W, Sitti M. Magnetically assisted soft milli-tools for occluded lumen morphology detection. SCIENCE ADVANCES 2023; 9:eadi3979. [PMID: 37585531 PMCID: PMC10431716 DOI: 10.1126/sciadv.adi3979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Methodologies based on intravascular imaging have revolutionized the diagnosis and treatment of endovascular diseases. However, current methods are limited in detecting, i.e., visualizing and crossing, complicated occluded vessels. Therefore, we propose a miniature soft tool comprising a magnet-assisted active deformation segment (ADS) and a fluid drag-driven segment (FDS) to visualize and cross the occlusions with various morphologies. First, via soft-bodied deformation and interaction, the ADS could visualize the structure details of partial occlusions with features as small as 0.5 millimeters. Then, by leveraging the fluidic drag from the pulsatile flow, the FDS could automatically detect an entry point selectively from severe occlusions with complicated microchannels whose diameters are down to 0.2 millimeters. The functions have been validated in both biologically relevant phantoms and organs ex vivo. This soft tool could help enhance the efficacy of minimally invasive medicine for the diagnosis and treatment of occlusions in various circulatory systems.
Collapse
Affiliation(s)
- Yingbo Yan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
17
|
Lee JG, Raj RR, Day NB, Shields CW. Microrobots for Biomedicine: Unsolved Challenges and Opportunities for Translation. ACS NANO 2023; 17:14196-14204. [PMID: 37494584 PMCID: PMC10928690 DOI: 10.1021/acsnano.3c03723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Microrobots are being explored for biomedical applications, such as drug delivery, biological cargo transport, and minimally invasive surgery. However, current efforts largely focus on proof-of-concept studies with nontranslatable materials through a "design-and-apply" approach, limiting the potential for clinical adaptation. While these proof-of-concept studies have been key to advancing microrobot technologies, we believe that the distinguishing capabilities of microrobots will be most readily brought to patient bedsides through a "design-by-problem" approach, which involves focusing on unsolved problems to inform the design of microrobots with practical capabilities. As outlined below, we propose that the clinical translation of microrobots will be accelerated by a judicious choice of target applications, improved delivery considerations, and the rational selection of translation-ready biomaterials, ultimately reducing patient burden and enhancing the efficacy of therapeutic drugs for difficult-to-treat diseases.
Collapse
Affiliation(s)
| | | | | | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| |
Collapse
|
18
|
Yarali E, Zadpoor AA, Staufer U, Accardo A, Mirzaali MJ. Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterials. ACS APPLIED BIO MATERIALS 2023; 6:2562-2575. [PMID: 37319268 PMCID: PMC10354748 DOI: 10.1021/acsabm.3c00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Mechanical and morphological design parameters, such as stiffness or porosity, play important roles in creating orthopedic implants and bone substitutes. However, we have only a limited understanding of how the microarchitecture of porous scaffolds contributes to bone regeneration. Meta-biomaterials are increasingly used to precisely engineer the internal geometry of porous scaffolds and independently tailor their mechanical properties (e.g., stiffness and Poisson's ratio). This is motivated by the rare or unprecedented properties of meta-biomaterials, such as negative Poisson's ratios (i.e., auxeticity). It is, however, not clear how these unusual properties can modulate the interactions of meta-biomaterials with living cells and whether they can facilitate bone tissue engineering under static and dynamic cell culture and mechanical loading conditions. Here, we review the recent studies investigating the effects of the Poisson's ratio on the performance of meta-biomaterials with an emphasis on the relevant mechanobiological aspects. We also highlight the state-of-the-art additive manufacturing techniques employed to create meta-biomaterials, particularly at the micrometer scale. Finally, we provide future perspectives, particularly for the design of the next generation of meta-biomaterials featuring dynamic properties (e.g., those made through 4D printing).
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Urs Staufer
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J. Mirzaali
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
19
|
Zhang S, Hu X, Li M, Bozuyuk U, Zhang R, Suadiye E, Han J, Wang F, Onck P, Sitti M. 3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability. SCIENCE ADVANCES 2023; 9:eadf9462. [PMID: 36947622 PMCID: PMC7614626 DOI: 10.1126/sciadv.adf9462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 06/08/2023]
Abstract
Biological cilia play essential roles in self-propulsion, food capture, and cell transportation by performing coordinated metachronal motions. Experimental studies to emulate the biological cilia metachronal coordination are challenging at the micrometer length scale because of current limitations in fabrication methods and materials. We report on the creation of wirelessly actuated magnetic artificial cilia with biocompatibility and metachronal programmability at the micrometer length scale. Each cilium is fabricated by direct laser printing a silk fibroin hydrogel beam affixed to a hard magnetic FePt Janus microparticle. The 3D-printed cilia show stable actuation performance, high temperature resistance, and high mechanical endurance. Programmable metachronal coordination can be achieved by programming the orientation of the identically magnetized FePt Janus microparticles, which enables the generation of versatile microfluidic patterns. Our platform offers an unprecedented solution to create bioinspired microcilia for programmable microfluidic systems, biomedical engineering, and biocompatible implants.
Collapse
Affiliation(s)
- Shuaizhong Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Xinghao Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Eylul Suadiye
- Central Scientific Facility Materials, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Fan Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Patrick Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
20
|
Gu H, Möckli M, Ehmke C, Kim M, Wieland M, Moser S, Bechinger C, Boehler Q, Nelson BJ. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat Commun 2023; 14:1263. [PMID: 36882398 PMCID: PMC9992713 DOI: 10.1038/s41467-023-36819-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Magnetic continuum soft robots can actively steer their tip under an external magnetic field, enabling them to effectively navigate in complex in vivo environments and perform minimally invasive interventions. However, the geometries and functionalities of these robotic tools are limited by the inner diameter of the supporting catheter as well as the natural orifices and access ports of the human body. Here, we present a class of magnetic soft-robotic chains (MaSoChains) that can self-fold into large assemblies with stable configurations using a combination of elastic and magnetic energies. By pushing and pulling the MaSoChain relative to its catheter sheath, repeated assembly and disassembly with programmable shapes and functions are achieved. MaSoChains are compatible with state-of-the-art magnetic navigation technologies and provide many desirable features and functions that are difficult to realize through existing surgical tools. This strategy can be further customized and implemented for a wide spectrum of tools for minimally invasive interventions.
Collapse
Affiliation(s)
- Hongri Gu
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland. .,Department of Physics, University of Konstanz, Konstanz, Germany.
| | - Marino Möckli
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Claas Ehmke
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Minsoo Kim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.
| | - Matthias Wieland
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Simon Moser
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | | | - Quentin Boehler
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Lemma ED, Tabone R, Richler K, Schneider AK, Bizzarri C, Weth F, Niemeyer CM, Bastmeyer M. Selective Positioning of Different Cell Types on 3D Scaffolds via DNA Hybridization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36787205 DOI: 10.1021/acsami.2c23202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) microscaffolds for cell biology have shown their potential in mimicking physiological environments and simulating complex multicellular constructs. However, controlling the localization of cells precisely on microfabricated structures is still complex and usually limited to two-dimensional assays. Indeed, the implementation of an efficient method to selectively target different cell types to specific regions of a 3D microscaffold would represent a decisive step toward cell-by-cell assembly of complex cellular arrangements. Here, we use two-photon lithography (2PL) to fabricate 3D microarchitectures with functional photoresists. UV-mediated click reactions are used to functionalize their surfaces with single-stranded DNA oligonucleotides, using sequential repetition to decorate different scaffold regions with individual DNA addresses. Various immortalized cell lines and stem cells modified by grafting complementary oligonucleotides onto the phospholipid membranes can then be immobilized onto complementary regions of the 3D structures by selective hybridization. This allows controlled cocultures to be established with spatially separated arrays of eukaryotic cells in 3D.
Collapse
Affiliation(s)
- Enrico Domenico Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Roberta Tabone
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Kai Richler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Ann-Kathrin Schneider
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Franco Weth
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Lei X, Peng S, Niu Y, Sun S, Zhu Y, Qiu J. Magnetically driven micro-optical choppers fabricated by two-photon polymerization. OPTICS LETTERS 2023; 48:835-838. [PMID: 36723601 DOI: 10.1364/ol.481982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
In this Letter, a series of magnetically driven micro-optical choppers based on customized photoresist were fabricated by two-photon polymerization (TPP) technology. Synthetic Fe3O4 nanoparticles (NPs) were modified and dispersed in the original photoresist to achieve magnetic field response. After accurately formulating a magnetic photoresist containing Rhodamine B to reduce the light transmittance, four micro-optical choppers with different slot widths were printed using optimized processing parameters. The micro-optical choppers were remotely manipulated to rotate by the external magnetic field. More importantly, the function demonstration of the micro-optical choppers with an excellent chopping effect was achieved at a given light wavelength of 515 nm. The magnetically driven micro-optical choppers provide a new approach, to the best of our knowledge, for the fabrication of external field-responsive optical components.
Collapse
|
23
|
Kang M, Lee D, Bae H, Jeong HE. Magnetoresponsive Artificial Cilia Self-Assembled with Magnetic Micro/Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55989-55996. [PMID: 36503219 DOI: 10.1021/acsami.2c18504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biological cilia have exquisitely organized dynamic ultrafine structures with submicron diameters and exceptional aspect ratios, which are self-assembled with ciliary proteins. However, the construction of artificial cilia with size and dynamic functions comparable to biological cilia remains highly challenging. Here, we propose a self-assembly technique that generates magnetoresponsive artificial cilia with a highly ordered 3D structural arrangement using vapor-phase magnetic particles of varying sizes and shapes. We demonstrate that both monodispersed Fe3O4 nanoparticles and Fe microparticles can be assembled layer-by-layer vertically in patterned magnetic fields, generating both "nanoscale" or "microscale" artificial cilia, respectively. The resulting cilia display several structural features, such as diameters of single particle resolution, controllable diameters and lengths spanning from nanometers to micrometers, and accurate positioning. We further demonstrate that both the magnetic nanocilia and microcilia can dynamically and immediately actuate in response to modulated magnetic fields while providing different stroke ranges and actuation torques. Our strategy provides new possibilities for constructing artificial nano- and microcilia with controlled 3D morphology and dynamic field responsiveness using magnetic particles of varied sizes and shapes.
Collapse
Affiliation(s)
- Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Donghyuk Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Haejin Bae
- Ecological Technology Team, Division of Ecological Application Research, National Institute of Ecology, Seocheon-gun33657, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
24
|
Bozuyuk U, Aghakhani A, Alapan Y, Yunusa M, Wrede P, Sitti M. Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces. Nat Commun 2022; 13:6289. [PMID: 36271078 PMCID: PMC9586970 DOI: 10.1038/s41467-022-34023-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/10/2022] [Indexed: 12/25/2022] Open
Abstract
Biological microorganisms overcome the Brownian motion at low Reynolds numbers by utilizing symmetry-breaking mechanisms. Inspired by them, various microrobot locomotion methods have been developed at the microscale by breaking the hydrodynamic symmetry. Although the boundary effects have been extensively studied for microswimmers and employed for surface-rolling microrobots, the behavior of microrobots in the proximity of multiple wall-based "confinement" is yet to be elucidated. Here, we study the confinement effect on the motion of surface-rolling microrobots. Our experiments demonstrate that the locomotion efficiency of spherical microrollers drastically decreases in confined spaces due to out-of-plane rotational flows generated during locomotion. Hence, a slender microroller design, generating smaller rotational flows, is shown to outperform spherical microrollers in confined spaces. Our results elucidate the underlying physics of surface rolling-based locomotion in confined spaces and present a design strategy with optimal flow generation for efficient propulsion in such areas, including blood vessels and microchannels.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany ,grid.5801.c0000 0001 2156 2780Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Amirreza Aghakhani
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Yunus Alapan
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Muhammad Yunusa
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Paul Wrede
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany ,grid.5801.c0000 0001 2156 2780Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Metin Sitti
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany ,grid.5801.c0000 0001 2156 2780Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland ,grid.15876.3d0000000106887552School of Medicine and School of Engineering, Koç University, Istanbul, 34450 Turkey
| |
Collapse
|