1
|
Sprague DY, Rusch K, Dunn RL, Borchardt JM, Ban S, Bubnis G, Chiu GC, Wen C, Suzuki R, Chaudhary S, Lee HJ, Yu Z, Dichter B, Ly R, Onami S, Lu H, Kimura KD, Yemini E, Kato S. Unifying community whole-brain imaging datasets enables robust neuron identification and reveals determinants of neuron position in C. elegans. CELL REPORTS METHODS 2025; 5:100964. [PMID: 39826553 PMCID: PMC11840940 DOI: 10.1016/j.crmeth.2024.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
We develop a data harmonization approach for C. elegans volumetric microscopy data, consisting of a standardized format, pre-processing techniques, and human-in-the-loop machine-learning-based analysis tools. Using this approach, we unify a diverse collection of 118 whole-brain neural activity imaging datasets from five labs, storing these and accompanying tools in an online repository WormID (wormid.org). With this repository, we train three existing automated cell-identification algorithms, CPD, StatAtlas, and CRF_ID, to enable accuracy that generalizes across labs, recovering all human-labeled neurons in some cases. We mine this repository to identify factors that influence the developmental positioning of neurons. This growing resource of data, code, apps, and tutorials enables users to (1) study neuroanatomical organization and neural activity across diverse experimental paradigms, (2) develop and benchmark algorithms for automated neuron detection, segmentation, cell identification, tracking, and activity extraction, and (3) share data with the community and comply with data-sharing policies.
Collapse
Affiliation(s)
- Daniel Y Sprague
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevin Rusch
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Raymond L Dunn
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jackson M Borchardt
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Steven Ban
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Greg Bubnis
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Grace C Chiu
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Chentao Wen
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ryoga Suzuki
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Shivesh Chaudhary
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hyun Jee Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zikai Yu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Ryan Ly
- Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shuichi Onami
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Eviatar Yemini
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Saul Kato
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Pan P, Zhang P, Premachandran S, Peng R, Wang S, Fan Q, Sun Y, Calarco JA, Liu X. High-Resolution Imaging and Morphological Phenotyping of C. elegans through Stable Robotic Sample Rotation and Artificial Intelligence-Based 3-Dimensional Reconstruction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0513. [PMID: 39479356 PMCID: PMC11522223 DOI: 10.34133/research.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Accurate visualization and 3-dimensional (3D) morphological profiling of small model organisms can provide quantitative phenotypes benefiting genetic analysis and modeling of human diseases in tractable organisms. However, in the highly studied nematode Caenorhabditis elegans, accurate morphological phenotyping remains challenging because of notable decrease in image resolution of distant signal under high magnification and complexity in the 3D reconstruction of microscale samples with irregular shapes. Here, we develop a robust robotic system that enables the contactless, stable, and uniform rotation of C. elegans for multi-view fluorescent imaging and 3D morphological phenotyping via the precise reconstruction of 3D models. Contactless animal rotation accommodates a variety of body shapes and sizes found at different developmental stages and in mutant strains. Through controlled rotation, high-resolution fluorescent imaging of C. elegans structures is obtained by overcoming the limitations inherent in both widefield and confocal microscopy. Combining our robotic system with machine learning, we create, for the first time, precise 3D reconstructions of C. elegans at the embryonic and adult stages, enabling 3D morphological phenotyping of mutant strains in an accurate and comprehensive fashion. Intriguingly, our morphological phenotyping discovered a genetic interaction between 2 RNA binding proteins (UNC-75/CELF and MBL-1/MBNL), which are highly conserved between C. elegans and humans and implicated in neurological and muscular disorders. Our system can thus generate quantitative morphological readouts facilitating the investigation of genetic variations and disease mechanisms. More broadly, our method will also be amenable for 3D phenotypic analysis of other biological samples, like zebrafish and Drosophila larvae.
Collapse
Affiliation(s)
- Peng Pan
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Pengsong Zhang
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Sharanja Premachandran
- Department of Cell & Systems Biology,
University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Ran Peng
- College of Marine Engineering,
Dalian Maritime University, Dalian 116026, China
| | - Shaojia Wang
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qigao Fan
- School of Internet of Things Engineering,
Jiangnan University, Wuxi 214122, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - John A. Calarco
- Department of Cell & Systems Biology,
University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
3
|
Beckett LJ, Williams PM, Toh LS, Hessel V, Gerstweiler L, Fisk I, Toronjo-Urquiza L, Chauhan VM. Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism. NPJ Microgravity 2024; 10:79. [PMID: 39060303 PMCID: PMC11282318 DOI: 10.1038/s41526-024-00418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Spaceflight presents significant challenges to the physiological state of living organisms. This can be due to the microgravity environment experienced during long-term space missions, resulting in alterations in muscle structure and function, such as atrophy. However, a comprehensive understanding of the adaptive mechanisms of biological systems is required to devise potential solutions and therapeutic approaches for adapting to spaceflight conditions. This review examines the current understanding of the challenges posed by spaceflight on physiological changes, alterations in metabolism, dysregulation of pathways and the suitability and advantages of using the model organism Caenorhabditis elegans nematodes to study the effects of spaceflight. Research has shown that changes in the gene and protein composition of nematodes significantly occur across various larval stages and rearing environments, including both microgravity and Earth gravity settings, often mirroring changes observed in astronauts. Additionally, the review explores significant insights into the fundamental metabolic changes associated with muscle atrophy and growth, which could lead to the development of diagnostic biomarkers and innovative techniques to prevent and counteract muscle atrophy. These insights not only advance our understanding of microgravity-induced muscle atrophy but also lay the groundwork for the development of targeted interventions to mitigate its effects in the future.
Collapse
Affiliation(s)
- Laura J Beckett
- School of Pharmacy, University of Nottingham, Nottingham, UK
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | | | - Li Shean Toh
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Volker Hessel
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | - Lukas Gerstweiler
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | - Ian Fisk
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Luis Toronjo-Urquiza
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
4
|
Faerberg DF, Aprison EZ, Ruvinsky I. Accelerated hermaphrodite maturation on male pheromones suggests a general principle of coordination between larval behavior and development. Development 2024; 151:dev202961. [PMID: 38975828 PMCID: PMC11266794 DOI: 10.1242/dev.202961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Environment in general and social signals in particular could alter development. In Caenorhabditis elegans, male pheromones hasten development of hermaphrodite larvae. We show that this involves acceleration of growth and both somatic and germline development during the last larval stage (L4). Larvae exposed to male pheromones spend more time in L3 and less in the quiescent period between L3 and L4. This behavioral alteration improves provision in early L4, likely allowing for faster development. Larvae must be exposed to male pheromones in late L3 for behavioral and developmental effects to occur. Latter portions of other larval stages also contain periods of heightened sensitivity to environmental signals. Behavior during the early part of the larval stages is biased toward exploration, whereas later the emphasis shifts to food consumption. We argue that this organization allows assessment of the environment to identify the most suitable patch of resources, followed by acquisition of sufficient nutrition and salient information for the developmental events in the next larval stage. Evidence from other species indicates that such coordination of behavior and development may be a general feature of larval development.
Collapse
Affiliation(s)
- Denis F. Faerberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Sprague DY, Rusch K, Dunn RL, Borchardt JM, Ban S, Bubnis G, Chiu GC, Wen C, Suzuki R, Chaudhary S, Lee HJ, Yu Z, Dichter B, Ly R, Onami S, Lu H, Kimura KD, Yemini E, Kato S. Unifying community-wide whole-brain imaging datasets enables robust automated neuron identification and reveals determinants of neuron positioning in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591397. [PMID: 38746302 PMCID: PMC11092512 DOI: 10.1101/2024.04.28.591397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We develop a data harmonization approach for C. elegans volumetric microscopy data, still or video, consisting of a standardized format, data pre-processing techniques, and a set of human-in-the-loop machine learning based analysis software tools. We unify a diverse collection of 118 whole-brain neural activity imaging datasets from 5 labs, storing these and accompanying tools in an online repository called WormID (wormid.org). We use this repository to train three existing automated cell identification algorithms to, for the first time, enable accuracy in neural identification that generalizes across labs, approaching human performance in some cases. We mine this repository to identify factors that influence the developmental positioning of neurons. To facilitate communal use of this repository, we created open-source software, code, web-based tools, and tutorials to explore and curate datasets for contribution to the scientific community. This repository provides a growing resource for experimentalists, theorists, and toolmakers to (a) study neuroanatomical organization and neural activity across diverse experimental paradigms, (b) develop and benchmark algorithms for automated neuron detection, segmentation, cell identification, tracking, and activity extraction, and (c) inform models of neurobiological development and function.
Collapse
Affiliation(s)
| | - Kevin Rusch
- Department of Neurobiology, UMass Chan Medical School
| | - Raymond L. Dunn
- Department of Neurology, University of California San Francisco
| | | | - Steven Ban
- Department of Neurology, University of California San Francisco
| | - Greg Bubnis
- Department of Neurology, University of California San Francisco
| | - Grace C. Chiu
- Department of Neurology, University of California San Francisco
| | - Chentao Wen
- RIKEN Center for Biosystems Dynamics Research
| | - Ryoga Suzuki
- Graduate School of Science, Nagoya City University
| | - Shivesh Chaudhary
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Hyun Jee Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Zikai Yu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | | | - Ryan Ly
- Scientific Data Division, Lawrence Berkeley National Laboratory
| | | | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | | | | | - Saul Kato
- Department of Neurology, University of California San Francisco
| |
Collapse
|
6
|
Nahar S, Morales Moya LJ, Brunner J, Hendriks GJ, Towbin B, Hauser Y, Brancati G, Gaidatzis D, Großhans H. Dynamics of miRNA accumulation during C. elegans larval development. Nucleic Acids Res 2024; 52:5336-5355. [PMID: 38381904 PMCID: PMC11109986 DOI: 10.1093/nar/gkae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Temporally and spatially controlled accumulation underlies the functions of microRNAs (miRNAs) in various developmental processes. In Caenorhabditis elegans, this is exemplified by the temporal patterning miRNAs lin-4 and let-7, but for most miRNAs, developmental expression patterns remain poorly resolved. Indeed, experimentally observed long half-lives may constrain possible dynamics. Here, we profile miRNA expression throughout C. elegans postembryonic development at high temporal resolution, which identifies dynamically expressed miRNAs. We use mathematical models to explore the underlying mechanisms. For let-7, we can explain, and experimentally confirm, a striking stepwise accumulation pattern through a combination of rhythmic transcription and stage-specific regulation of precursor processing by the RNA-binding protein LIN-28. By contrast, the dynamics of several other miRNAs cannot be explained by regulation of production rates alone. Specifically, we show that a combination of oscillatory transcription and rhythmic decay drive rhythmic accumulation of miR-235, orthologous to miR-92 in other animals. We demonstrate that decay of miR-235 and additional miRNAs depends on EBAX-1, previously implicated in target-directed miRNA degradation (TDMD). Taken together, our results provide insight into dynamic miRNA decay and establish a resource to studying both the developmental functions of, and the regulatory mechanisms acting on, miRNAs.
Collapse
Affiliation(s)
- Smita Nahar
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | | - Jana Brunner
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gert-Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Benjamin Towbin
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Bern, Bern, Switzerland
| | - Yannick P Hauser
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Giovanna Brancati
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Patil G, van Zon JS. Timers, variability, and body-wide coordination: C. elegans as a model system for whole-animal developmental timing. Curr Opin Genet Dev 2024; 85:102172. [PMID: 38432125 DOI: 10.1016/j.gde.2024.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Successful development requires both precise timing of cellular processes, such as division and differentiation, and tight coordination of timing between tissues and organs. Yet, how time information is encoded with high precision and synchronized between tissues, despite inherent molecular noise, is unsolved. Here, we propose the nematode C. elegans as a unique model system for studying body-wide control of developmental timing. Recent studies combining genetics, quantitative analysis, and simulations have 1) mapped core timers controlling larval development, indicating temporal gradients as an underlying mechanism, and 2) elucidated general principles that make timing insensitive to inherent fluctuations and variation in environmental conditions. As the molecular regulators of C. elegans developmental timing are broadly conserved, these mechanisms likely apply also to higher organisms.
Collapse
|
8
|
Stojanovski K, Gheorghe I, Lenart P, Lanjuin A, Mair WB, Towbin BD. Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1. Nat Commun 2023; 14:7564. [PMID: 37985670 PMCID: PMC10661912 DOI: 10.1038/s41467-023-43230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Even slight imbalance between the growth rate of different organs can accumulate to a large deviation from their appropriate size during development. Here, we use live imaging of the pharynx of C. elegans to ask if and how organ size scaling nevertheless remains uniform among individuals. Growth trajectories of hundreds of individuals reveal that pharynxes grow by a near constant volume per larval stage that is independent of their initial size, such that undersized pharynxes catch-up in size during development. Tissue-specific depletion of RAGA-1, an activator of mTOR and growth, shows that maintaining correct pharynx-to-body size proportions involves a bi-directional coupling between pharynx size and body growth. In simulations, this coupling cannot be explained by limitation of food uptake alone, and genetic experiments reveal an involvement of the mechanotransducing transcriptional co-regulator yap-1. Our data suggests that mechanotransduction coordinates pharynx growth with other tissues, ensuring body plan uniformity among individuals.
Collapse
Affiliation(s)
| | - Ioana Gheorghe
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Peter Lenart
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anne Lanjuin
- Department Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William B Mair
- Department Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
9
|
Jordan DJ, Miska EA. Canalisation and plasticity on the developmental manifold of Caenorhabditis elegans. Mol Syst Biol 2023; 19:e11835. [PMID: 37850520 PMCID: PMC10632735 DOI: 10.15252/msb.202311835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
How do the same mechanisms that faithfully regenerate complex developmental programmes in spite of environmental and genetic perturbations also allow responsiveness to environmental signals, adaptation and genetic evolution? Using the nematode Caenorhabditis elegans as a model, we explore the phenotypic space of growth and development in various genetic and environmental contexts. Our data are growth curves and developmental parameters obtained by automated microscopy. Using these, we show that among the traits that make up the developmental space, correlations within a particular context are predictive of correlations among different contexts. Furthermore, we find that the developmental variability of this animal can be captured on a relatively low-dimensional phenotypic manifold and that on this manifold, genetic and environmental contributions to plasticity can be deconvolved independently. Our perspective offers a new way of understanding the relationship between robustness and flexibility in complex systems, suggesting that projection and concentration of dimension can naturally align these forces as complementary rather than competing.
Collapse
Affiliation(s)
- David J Jordan
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Eric A Miska
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Faerberg DF, Aprison EZ, Ruvinsky I. Periods of environmental sensitivity couple larval behavior and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552015. [PMID: 37609125 PMCID: PMC10441318 DOI: 10.1101/2023.08.04.552015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The typical life cycle in most animal phyla includes a larval period that bridges embryogenesis and adulthood1. Despite the great diversity of larval forms, all larvae grow, acquire adult morphology and function, while navigating their habitats to obtain resources necessary for development. How larval development is coordinated with behavior remains substantially unclear. Here, we describe features of the iterative organization of larval stages that serve to assess the environment and procure resources prior to costly developmental commitments. We found that male-excreted pheromones accelerate2-4 the onset of adulthood in C. elegans hermaphrodites by coordinately advancing multiple developmental events and growth during the last larval stage. The larvae are sensitive to the accelerating male pheromones only at the end of the penultimate larval stage, just before the acceleration begins. Other larval stages also contain windows of sensitivity to environmental inputs. Importantly, behaviors associated with search and consumption of food are distinct between early and late portions of larval stages. We infer that each larval stage in C. elegans is subdivided into two epochs: A) global assessment of the environment to identify the most suitable patch and B) consumption of sufficient food and acquisition of salient information for developmental events in the next stage. We predict that in larvae of other species behavior is also divided into distinct epochs optimized either for assessing the habitat or obtaining the resources. Thus, a major role of larval behavior is to coordinate the orderly progression of development in variable environments.
Collapse
Affiliation(s)
- Denis F. Faerberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
11
|
Johnson LC, Vo AA, Clancy JC, Myles KM, Pooranachithra M, Aguilera J, Levenson MT, Wohlenberg C, Rechtsteiner A, Ragle JM, Chisholm AD, Ward JD. NHR-23 activity is necessary for C. elegans developmental progression and apical extracellular matrix structure and function. Development 2023; 150:dev201085. [PMID: 37129010 PMCID: PMC10233720 DOI: 10.1242/dev.201085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Collapse
Affiliation(s)
- Londen C. Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John C. Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T. Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chloe Wohlenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Meeuse MWM, Hauser YP, Nahar S, Smith AAT, Braun K, Azzi C, Rempfler M, Großhans H. C. elegans molting requires rhythmic accumulation of the Grainyhead/LSF transcription factor GRH-1. EMBO J 2023; 42:e111895. [PMID: 36688410 PMCID: PMC9929640 DOI: 10.15252/embj.2022111895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
C. elegans develops through four larval stages that are rhythmically terminated by molts, that is, the synthesis and shedding of a cuticular exoskeleton. Each larval cycle involves rhythmic accumulation of thousands of transcripts, which we show here relies on rhythmic transcription. To uncover the responsible gene regulatory networks (GRNs), we screened for transcription factors that promote progression through the larval stages and identified GRH-1, BLMP-1, NHR-23, NHR-25, MYRF-1, and BED-3. We further characterize GRH-1, a Grainyhead/LSF transcription factor, whose orthologues in other animals are key epithelial cell-fate regulators. We find that GRH-1 depletion extends molt durations, impairs cuticle integrity and shedding, and causes larval death. GRH-1 is required for, and accumulates prior to, each molt, and preferentially binds to the promoters of genes expressed during this time window. Binding to the promoters of additional genes identified in our screen furthermore suggests that we have identified components of a core molting-clock GRN. Since the mammalian orthologues of GRH-1, BLMP-1 and NHR-23, have been implicated in rhythmic homeostatic skin regeneration in mouse, the mechanisms underlying rhythmic C. elegans molting may apply beyond nematodes.
Collapse
Affiliation(s)
- Milou W M Meeuse
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Yannick P Hauser
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Smita Nahar
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | | | - Kathrin Braun
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Markus Rempfler
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
13
|
Chatzitheodoridou D, D'Ario M, Jones I, Piñeros L, Serbanescu D, O'Donnell F, Cadart C, Swaffer MP. Meeting report - Cell size and growth: from single cells to the tree of life. J Cell Sci 2022; 135:jcs260634. [PMID: 36259425 DOI: 10.1242/jcs.260634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
In April 2022, The Company of Biologists hosted their first post-pandemic in-person Workshop at Buxted Park Country House in the Sussex countryside. The Workshop, entitled 'Cell size and growth: from single cells to the tree of life', gathered a small group of early-career and senior researchers with expertise in cell size spanning a broad range of organisms, including bacteria, yeast, animal cells, embryos and plants, and working in fields from cell biology to ecology and evolutionary biology. The programme made ample room for fruitful discussions and provided a much-needed opportunity to discuss the most recent findings relating to the regulation of cell size and growth, identify the emerging challenges for the field, and build a community after the pandemic.
Collapse
Affiliation(s)
| | - Marco D'Ario
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ian Jones
- Department of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, SW3 6JB, UK
| | - Liliana Piñeros
- Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1bis gebouw 402-20, Herestraat 49, B-3000 Leuven, Belgium
| | - Diana Serbanescu
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, WC1E 6BT, UK
| | - Frank O'Donnell
- The Company of Biologists, 94 Station Road, Histon, Cambridge, CB24 9LF, UK
| | - Clotilde Cadart
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|