1
|
Zhao J, Zhu D, Chen Y, Ma P, Li S, Ye S, Cao W, Han S, Fang Y. T-type calcium channels attenuate anxiety in MPTP-treated mice through modulating burst firing of dopaminergic neuron. Neuropharmacology 2025; 272:110424. [PMID: 40118209 DOI: 10.1016/j.neuropharm.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
T-type calcium channel(T-VGCC) is a critical voltage-gated channel extensively involved in signal transmission and functional regulation of the nervous system. Recent studies have shown that T-VGCC exhibits low-threshold activation properties and generate high-frequency firing, making it essential in neuronal firing patterns. However, the effects of T-VGCC on dopaminergic (DAergic) neurons in the substantia nigra (SN) remain unclear. In the present study, we constructed Parkinson's disease (PD) model mice using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and we found that intracerebroventricular injection of T-VGCC blocker (Mibefradil) alleviates the anxiety behavior and the extent of damage to DAergic neurons in MPTP-treated mice. In vivo electrophysiological experiments demonstrated that T-VGCC directly regulates the burst firing of DAergic neurons. Correlation analysis suggested a strong association between DAergic neuron burst firing and anxiety-like behaviors in mice. Notably, calcium imaging experiments revealed that inhibiting T-VGCC significantly decreased calcium signal levels in DAergic neurons of MPTP-treated mice. To sum up, our research results for the first time reveal the crucial role that the burst firing of DAergic neurons in the SN mediated by T-VGCC plays in regulating anxiety behavior in PD. This discovery offers a potential therapeutic target for PD patients with anxiety.
Collapse
Affiliation(s)
- Jihu Zhao
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Deyuan Zhu
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yue Chen
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Suya Li
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shifei Ye
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Wei Cao
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shuai Han
- Department of Anesthesiology, Northern Jiangsu People' S Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yibin Fang
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Fukuoka R, Yano Y, Hara N, Sadamoto C, Maturana AD, Kita M. Hyperpolarization Modulation of the T-Type hCa v3.2 Channel by Human Synenkephalin [1-53], a Shrew Neurotoxin Analogue without Paralytic Effects. Angew Chem Int Ed Engl 2025:e202503891. [PMID: 40274533 DOI: 10.1002/anie.202503891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Mammalian secreted venoms mainly consist of peptides and proteases used for defense or predation. Blarina paralytic peptides (BPPs), mealworm-targeting neurotoxins from shrew, are very similar to human synenkephalin. This peptide is released from proenkephalin in the brain along with opioid peptides that mediate analgesic and antidepressant effects, though its physiological function is unclear. Here, we synthesized and characterized human synenkephalin [1-53] (hSYN) and reveal its disulfide bond connectivity. Similar to BPP2, hSYN caused a hyperpolarizing shift in the human T-type voltage-gated calcium channel (hCav3.2) at 0.74 µM, but did not paralyze mealworms. Molecular docking and molecular dynamics simulations showed that hSYN and BPP2 interact with hCav3.2 channel differently, due to differences in polar residues. Since Cav3.2 channel regulates neuronal excitability and is implicated in conditions like autism and epilepsy, our findings on hSYN could provide insight into the channel gating and agonistic mechanisms, along with potential pathways for developing treatments for neurological disorders.
Collapse
Affiliation(s)
- Ryo Fukuoka
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Yusuke Yano
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Nozomi Hara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Chihiro Sadamoto
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Andres D Maturana
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Masaki Kita
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
- Promotion Office for Open Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
3
|
Liu X, Feng C, Yan L, Cao J, Zhu X, Li M, Zhao G. Calcium channels as pharmacological targets for cancer therapy. Clin Exp Med 2025; 25:94. [PMID: 40131496 PMCID: PMC11937194 DOI: 10.1007/s10238-025-01632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Ca2+, as critical second messengers in biological processes, plays a pivotal role in the regulation of diverse cellular signaling pathways. The dysregulation of calcium signaling is intricately linked to the progression of various cancers. The capacity of Ca2+ to modulate cell death and proliferation, along with its potential for pharmacological manipulation, presents a promising avenue for the development of novel cancer therapeutics. This review provides a comprehensive overview of the classification of Ca2+ channels and their mechanisms of action in oncogenesis, explores the application of Ca2+ blockers in cancer treatment, and underscores the importance of conducting further clinical trials.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Medical and Radiation Oncology, Linyi People's Hospital, Linyi, 276000, China
| | - Changyun Feng
- Department of Pediatrics, Linyi Maternal and Child Health Hospital, Linyi, 276000, China
| | - Li Yan
- Department of Medical and Radiation Oncology, Linyi People's Hospital, Linyi, 276000, China
| | - Jili Cao
- Zhejiang Key Laboratory of Disease-Syndrome Integration for Cancer Prevention and Treatment, Tongde Hospital of Zhejiang Province Afflicted to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, 310012, Zhejiang, China
| | - Xinping Zhu
- Zhejiang Key Laboratory of Disease-Syndrome Integration for Cancer Prevention and Treatment, Tongde Hospital of Zhejiang Province Afflicted to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, 310012, Zhejiang, China
| | - Mingqian Li
- Zhejiang Key Laboratory of Disease-Syndrome Integration for Cancer Prevention and Treatment, Tongde Hospital of Zhejiang Province Afflicted to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, 310012, Zhejiang, China.
| | - Guizhi Zhao
- The Integrated Traditional Chinese and Western Medicine School of Clinical Medicne (Tongde Hospital of Zhejiang Province), Zhejiang Chinese Medical University, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
4
|
Barkdull AP, Holcomb M, Forli S. A quantitative analysis of ligand binding at the protein-lipid bilayer interface. Commun Chem 2025; 8:89. [PMID: 40121339 PMCID: PMC11929912 DOI: 10.1038/s42004-025-01472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
The majority of drugs target membrane proteins, and many of these proteins contain ligand binding sites embedded within the lipid bilayer. However, targeting these therapeutically relevant sites is hindered by limited characterization of both the sites and the molecules that bind to them. Here, we introduce the Lipid-Interacting LigAnd Complexes Database (LILAC-DB), a curated dataset of 413 structures of ligands bound at the protein-bilayer interface. Analysis of these structures reveals that ligands binding to lipid-exposed sites exhibit distinct chemical properties, such as higher calculated partition coefficient (clogP), molecular weight, and a greater number of halogen atoms, compared to ligands that bind to soluble proteins. Additionally, we demonstrate that the atomic properties of these ligands vary significantly depending on their depth within and exposure to the lipid bilayer. We also find that ligand binding sites exposed to the bilayer have distinct amino acid compositions compared to other protein regions, which may aid in the identification of lipid-exposed binding sites. This analysis provides valuable guidelines for researchers pursuing structure-based drug discovery targeting underexploited ligand binding sites at the protein-lipid bilayer interface.
Collapse
Affiliation(s)
- Allison Pearl Barkdull
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Wang J, Du BY, Zhang X, Qu X, Yang Y, Yang Z, Wang YF, Zhang P. Cryo-EM structures of Arabidopsis CNGC1 and CNGC5 reveal molecular mechanisms underlying gating and calcium selectivity. NATURE PLANTS 2025; 11:632-642. [PMID: 39979428 DOI: 10.1038/s41477-025-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025]
Abstract
Plant cyclic nucleotide-gated channels (CNGCs) belong to the cyclic nucleotide-binding domain (CNBD) channel family, but are phylogenetically classified in a distinct branch. In contrast to their animal counterparts of K+-selective or non-selective cation channels, plant CNGCs mainly mediate Ca2+ influx and are involved in various physiological processes, such as stomatal movements, pollen-tube growth and immune responses. Here, we present the cryo-EM structure and electrophysiological analysis of plant CNGC representatives, Arabidopsis CNGC1 and CNGC5. We found that CNGC1 and CNGC5 contain a unique extracellular domain featuring disulfide bonds that is essential for channel gating via coupling of the voltage-sensing domain with the pore domain. The pore domain selectivity filter possesses a Gln residue at the constriction site that determines the Ca2+ selectivity. Replacement of this Gln with Glu, typically observed in CNBD-type non-selective cation channels, could convert CNGC1 and CNGC5 from Ca2+-selective channels to non-selective cation channels permeable to Ca2+, Na+ or K+. In addition, we found that the CNGC1 and CNGC5 CNBD homology domain contains intrinsic-ligand-like interactions, which may devoid the binding of cyclic nucleotides and lead to gating independent of cAMP or cGMP. This research not only provides a mechanistic understanding of plant CNGCs' function, but also adds to the comprehensive knowledge of the CNBD channels.
Collapse
Affiliation(s)
- Jianping Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo-Ya Du
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Qu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Gündüz MG, Dengiz C, Denzinger K, Huang S, Lee JT, Nafie JW, Armstrong DW, Wolber G, Zamponi GW. Biginelli dihydropyrimidines and their acetylated derivatives as L-/T-type calcium channel blockers: Synthesis, enantioseparation, and molecular modeling studies. Arch Pharm (Weinheim) 2025; 358:e2400584. [PMID: 40128864 PMCID: PMC11933517 DOI: 10.1002/ardp.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Biginelli dihydropyrimidines (DHPMs) are considered superior over 1,4-dihydropyridines (DHPs) in terms of both light and metabolic stabilities. Nevertheless, DHPs dominate the market as the most prescribed calcium channel blockers with strong therapeutic potential in managing cardiovascular ailments. To overcome the restrictions that complicate the formulation and postadministration of DHPs, employing bioisosteric replacement by exchanging the DHP ring with DHPM appears as a logical approach for the improved formulations of new calcium channel blockers. In this study, we obtained DHPM derivatives via Biginelli synthesis and acetylated their N-3 position by heating them in acetic anhydride (GD1-GD12). We also incorporated the DHPM scaffold into a condensed ring system (GD13 and GD14). These DHPMs were evaluated for their ability to block both L- (Cav1.2) and T- (Cav3.2) type calcium channels. Compounds carrying acetyl moiety on the N-3 position of the DHPM scaffold appeared to be more effective inhibitors of both channels. Retesting GD4 enantiomers, separated using high-performance liquid chromatography (HPLC) on a chiral stationary phase, revealed that the (R)-isomer predominantly contributes to the outstanding inhibitory activity of GD4 on calcium channels. Molecular modeling studies, including docking, molecular dynamics simulations, and dynophore analysis, provided insights into the binding mechanism of DHPMs to Cav1.2 and Cav3.2, for the first time.
Collapse
Affiliation(s)
- Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of PharmacyHacettepe University, SıhhiyeAnkaraTurkey
| | - Cagatay Dengiz
- Department of ChemistryMiddle East Technical UniversityAnkaraTurkey
| | - Katrin Denzinger
- Molecular Design Group, Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyFreie Universität BerlinBerlinGermany
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryCanada
| | | | | | - Daniel W. Armstrong
- Department of Chemistry & BiochemistryUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Gerhard Wolber
- Molecular Design Group, Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyFreie Universität BerlinBerlinGermany
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryCanada
| |
Collapse
|
7
|
Chen Z, Minor DL. Electrosome assembly: Structural insights from high voltage-activated calcium channel (CaV)-chaperone interactions. Biochem Soc Trans 2025; 53:BST20240422. [PMID: 39912874 DOI: 10.1042/bst20240422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Ion channels are multicomponent complexes (termed here as"electrosomes") that conduct the bioelectrical signals required for life. It has been appreciated for decades that assembly is critical for proper channel function, but knowledge of the factors that undergird this important process has been lacking. Although there are now exemplar structures of representatives of most major ion channel classes, there has been no direct structural information to inform how these complicated, multipart complexes are put together or whether they interact with chaperone proteins that aid in their assembly. Recent structural characterization of a complex of the endoplasmic membrane protein complex (EMC) chaperone and a voltage-gated calcium channel (CaV) assembly intermediate comprising the pore-forming CaVα1 and cytoplasmic CaVβ subunits offers the first structural view into the assembly of a member of the largest ion channel class, the voltagegated ion channel (VGIC) superfamily. The structure shows how the EMC remodels the CaVα1/CaVβ complex through a set of rigid body movements for handoff to the extracellular CaVα2δ subunit to complete channel assembly in a process that involves intersubunit coordination of a divalent cation and ordering of CaVα1 elements. These findings set a new framework for deciphering the structural underpinnings of ion channel biogenesis that has implications for understanding channel function, how drugs and disease mutations act, and for investigating how other membrane proteins may engage the ubiquitous EMC chaperone.
Collapse
Affiliation(s)
- Zhou Chen
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Department of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- California Institute for Quantitative Biomedical Research, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Kavli Institute for Fundamental Neuroscience, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720 CA 94720, U.S.A
| |
Collapse
|
8
|
Jan L. Voltage sensors. Mol Pharmacol 2025; 107:100011. [PMID: 40023511 DOI: 10.1016/j.molpha.2024.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/06/2024] [Indexed: 03/04/2025] Open
Abstract
Widely distributed in all kingdoms of life, voltage sensors in the membrane serve important functions via their movements driven by changes in voltage across the membrane (membrane potential). A voltage sensor domain contains 4 transmembrane segments (S1-S4). The S1-S3 helices form a hydrophobic constriction site (HCS, also known as the gating charge transfer center) that spans roughly one-third of the membrane thickness. Flanked by aqueous vestibules connected to the extracellular solution above the HCS or cytoplasmic solution below the HCS, the HCS forms a gating pore for the S4 segment bearing multiple basic residues. Membrane potential changes cause S4 to move through the HCS in a 310 helical conformation. This S4 translocation generates a gating current as the positively charged S4 basic residues traverse the membrane electric field, transferring these gating charges from one aqueous vestibule to the other. For voltage-gated ion channels with their voltage sensor domains connected to pore domains, the HCS in the voltage sensor domain allows S4 but not ions to go through, while the channel pore formed by the pore domains mediates ion permeation. Voltage sensor mutations could result in ω currents that are conducted through the gating pore of mutant voltage-gated ion channels. These ω currents may cause pathological consequences in patients with periodic paralysis. Besides voltage-gated ion channels, the sperm-specific Na+/H+ exchanger and voltage-sensing phosphatases contain voltage sensors for membrane potential regulation. Notably, voltage-gated proton channels that are important for pH homeostasis are formed solely by the voltage sensor domain, which mediates proton permeation. SIGNIFICANCE STATEMENT: Voltage sensors mediate voltage regulation of ion channels, transporters, and phosphatases. The voltage sensor domain composed of 4 transmembrane segments (S1-S4) focuses the membrane electric field to the hydrophobic constriction site. To mediate voltage regulation, S4 basic residues within a 310 helix move across the hydrophobic constriction site without concurrent ion flow through this gating pore. As a counterexample, voltage-gated proton channels are formed by the voltage sensor to mediate proton permeation. These ingeniously engineered voltage sensors are conserved throughout evolution.
Collapse
Affiliation(s)
- Lily Jan
- Departments of Physiology, Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, California.
| |
Collapse
|
9
|
Sondgeroth K, Boyman E, Pathare R, Porta M. Voltage-Gated Calcium Channels and the Parity-Dependent Differential Uterine Response to Oxytocin in Rats. Reprod Sci 2025; 32:300-315. [PMID: 39806167 PMCID: PMC11825554 DOI: 10.1007/s43032-024-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
The experience of pregnancy affects uterine function well beyond delivery. We previously demonstrated that the response to oxytocin is more robust in the uteri of proven breeder rats. This study investigates the contribution of T-type calcium channels (TTCCs) and L-type calcium channels (LTCCs) to the distinct response of virgin (V) and proven breeder (PB) rat uteri to oxytocin. Dose-inhibition responses to mibefradil (TTCC inhibitor) and verapamil (LTCC inhibitor) were conducted on isolated V and PB uterine strips. These experiments were followed by dose-response curves to oxytocin (10-10 to 10-5 M) in the presence of 10 µM of each inhibitor. Area-under-the-curve (AUC), amplitude, frequency, and duration of contractions were measured. V uteri generally showed a greater dependence on VGCCs, especially TTCCs. However, PB uteri exhibited a stronger frequency response to oxytocin. Blocking TTCCs had a more pronounced impact on the differential oxytocin response, particularly affecting the frequency component of contractions. The stronger frequency response in PB uteri may be due to a higher concentration of TTCCs in their myometrial pacemaker cells. This study provides supporting evidence that pregnancy induces lasting changes in uterine calcium handling. Our findings suggest that TTCCs play a more important role than LTCC in the parity-dependent differential response to oxytocin. The impact of ORAI and TRP channels still needs to be evaluated, to gain a more comprehensive understanding of the relative impact of voltage-gated calcium channels vs. storage-operated calcium entry channels on this phenomenon.
Collapse
Affiliation(s)
- Korie Sondgeroth
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
| | - Elisabeth Boyman
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Riya Pathare
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Maura Porta
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA.
| |
Collapse
|
10
|
Yao X, Gao S, Yan N. Structural biology of voltage-gated calcium channels. Channels (Austin) 2024; 18:2290807. [PMID: 38062897 PMCID: PMC10761187 DOI: 10.1080/19336950.2023.2290807] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Voltage-gated calcium (Cav) channels mediate Ca2+ influx in response to membrane depolarization, playing critical roles in diverse physiological processes. Dysfunction or aberrant regulation of Cav channels can lead to life-threatening consequences. Cav-targeting drugs have been clinically used to treat cardiovascular and neuronal disorders for several decades. This review aims to provide an account of recent developments in the structural dissection of Cav channels. High-resolution structures have significantly advanced our understanding of the working and disease mechanisms of Cav channels, shed light on the molecular basis for their modulation, and elucidated the modes of actions (MOAs) of representative drugs and toxins. The progress in structural studies of Cav channels lays the foundation for future drug discovery efforts targeting Cav channelopathies.
Collapse
Affiliation(s)
- Xia Yao
- TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shuai Gao
- TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, China
| |
Collapse
|
11
|
Tomida S, Ishima T, Nagai R, Aizawa K. T-Type Voltage-Gated Calcium Channels: Potential Regulators of Smooth Muscle Contractility. Int J Mol Sci 2024; 25:12420. [PMID: 39596484 PMCID: PMC11594734 DOI: 10.3390/ijms252212420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging evidence has indicated a possible link between attenuation of contractility in aortic smooth muscle cells and pathogenesis of aortic dissection, as revealed through comprehensive, multi-omic analyses of familial thoracic aortic aneurysm and dissection models. While L-type voltage-gated calcium channels have been extensively investigated for their roles in smooth muscle contraction, more recent investigations have suggested that downregulation of T-type voltage-gated calcium channels, rather than their L-type counterparts, may be more closely associated with impaired contractility observed in vascular smooth muscle cells. This review provides a detailed examination of T-type voltage-gated calcium channels, highlighting their structure, electrophysiology, biophysics, expression patterns, functional roles, and potential mechanisms through which their downregulation may contribute to reduced contractile function. Furthermore, the application of multi-omic approaches in investigating calcium channels is discussed.
Collapse
Affiliation(s)
- Shota Tomida
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- School of Medicine, Faculty of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
| |
Collapse
|
12
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Nilsson M, Wang K, Mínguez-Viñas T, Angelini M, Berglund S, Olcese R, Pantazis A. Voltage-dependent G-protein regulation of Ca V2.2 (N-type) channels. SCIENCE ADVANCES 2024; 10:eadp6665. [PMID: 39259796 PMCID: PMC11389781 DOI: 10.1126/sciadv.adp6665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
How G proteins inhibit N-type, voltage-gated, calcium-selective channels (CaV2.2) during presynaptic inhibition is a decades-old question. G proteins Gβγ bind to intracellular CaV2.2 regions, but the inhibition is voltage dependent. Using the hybrid electrophysiological and optical approach voltage-clamp fluorometry, we show that Gβγ acts by selectively inhibiting a subset of the four different CaV2.2 voltage-sensor domains (VSDs I to IV). During regular "willing" gating, VSD-I and -IV activations resemble pore opening, VSD III activation is hyperpolarized, and VSD II appears unresponsive to depolarization. In the presence of Gβγ, CaV2.2 gating is "reluctant": pore opening and VSD I activation are strongly and proportionally inhibited, VSD IV is modestly inhibited, while VSD III is not. We propose that Gβγ inhibition of VSDs I and IV underlies reluctant CaV2.2 gating and subsequent presynaptic inhibition.
Collapse
Affiliation(s)
- Michelle Nilsson
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Kaiqian Wang
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Teresa Mínguez-Viñas
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stina Berglund
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Antonios Pantazis
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
14
|
Nilsson M, Wang K, Mínguez-Viñas T, Angelini M, Berglund S, Olcese R, Pantazis A. Electrical and G-protein Regulation of CaV2.2 (N-type) Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.600263. [PMID: 38979276 PMCID: PMC11230437 DOI: 10.1101/2024.06.29.600263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
How G-proteins inhibit N-type, voltage-gated, calcium-selective channels (Ca V 2.2) during presynaptic inhibition is a decades-old question. G-proteins Gβγ bind to intracellular Ca V 2.2 regions, but the inhibition is voltage-dependent. Using the hybrid electrophysiological and optical approach voltage-clamp fluorometry, we show that Gβγ acts by selectively inhibiting a subset of the four different Ca V 2.2 voltage-sensor domains (VSDs I-IV). During regular "willing" gating, VSDs I and IV activation resemble pore opening, VSD III activation is hyperpolarized, and VSD II appears unresponsive to depolarization. In the presence of Gβγ, Ca V 2.2 gating is "reluctant": pore opening and VSD-I activation are strongly and proportionally inhibited, VSD IV is modestly inhibited while VSD III is not. We propose that Gβγ inhibition of VSD-I and -IV underlies reluctant Ca V 2.2 gating and subsequent presynaptic inhibition.
Collapse
|
15
|
Zelenovskii P, Soares M, Bornes C, Marin-Montesinos I, Sardo M, Kopyl S, Kholkin A, Mafra L, Figueiredo F. Detection of helical water flows in sub-nanometer channels. Nat Commun 2024; 15:5516. [PMID: 38951494 PMCID: PMC11217464 DOI: 10.1038/s41467-024-49878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Nanoscale flows of liquids can be revealed in various biological processes and underlie a wide range of nanofluidic applications. Though the integral characteristics of these systems, such as permeability and effective diffusion coefficient, can be measured in experiments, the behaviour of the flows within nanochannels is still a matter of speculation. Herein, we used a combination of quadrupolar solid-state NMR spectroscopy, computer simulation, and dynamic vapour sorption measurements to analyse water diffusion inside peptide nanochannels. We detected a helical water flow coexisting with a conventional axial flow that are independent of each other, immiscible, and associated with diffusion coefficients that may differ up to 3 orders of magnitude. The trajectory of the helical flow is dictated by the screw-like distribution of ionic groups within the channel walls, while its flux is governed by external water vapour pressure. Similar flows may occur in other types of nanochannels containing helicoidally distributed ionic groups and be exploited in various nanofluidic lab-on-a-chip devices.
Collapse
Affiliation(s)
- Pavel Zelenovskii
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal.
| | - Márcio Soares
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos Bornes
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Ildefonso Marin-Montesinos
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mariana Sardo
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Svitlana Kopyl
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Andrei Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Luís Mafra
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Filipe Figueiredo
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
16
|
Huang J, Fan X, Jin X, Lyu C, Guo Q, Liu T, Chen J, Davakan A, Lory P, Yan N. Structural basis for human Ca v3.2 inhibition by selective antagonists. Cell Res 2024; 34:440-450. [PMID: 38605177 PMCID: PMC11143251 DOI: 10.1038/s41422-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Cav3.2 subtype of T-type calcium channels has been targeted for developing analgesics and anti-epileptics for its role in pain and epilepsy. Here we present the cryo-EM structures of Cav3.2 alone and in complex with four T-type calcium channel selective antagonists with overall resolutions ranging from 2.8 Å to 3.2 Å. The four compounds display two binding poses. ACT-709478 and TTA-A2 both place their cyclopropylphenyl-containing ends in the central cavity to directly obstruct ion flow, meanwhile extending their polar tails into the IV-I fenestration. TTA-P2 and ML218 project their 3,5-dichlorobenzamide groups into the II-III fenestration and place their hydrophobic tails in the cavity to impede ion permeation. The fenestration-penetrating mode immediately affords an explanation for the state-dependent activities of these antagonists. Structure-guided mutational analysis identifies several key residues that determine the T-type preference of these drugs. The structures also suggest the role of an endogenous lipid in stabilizing drug binding in the central cavity.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA.
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chen Lyu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qinmeng Guo
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tao Liu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaofeng Chen
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Amaël Davakan
- IGF, Université de Montpellier, CNRS, INSERM, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Schott K, Usher SG, Serra O, Carnevale V, Pless SA, Chua HC. Unplugging lateral fenestrations of NALCN reveals a hidden drug binding site within the pore region. Proc Natl Acad Sci U S A 2024; 121:e2401591121. [PMID: 38787877 PMCID: PMC11145269 DOI: 10.1073/pnas.2401591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.
Collapse
Affiliation(s)
- Katharina Schott
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Samuel George Usher
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Oscar Serra
- Department of Biology, Temple University, Philadelphia, PA19122
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA19122
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA19122
| | - Vincenzo Carnevale
- Department of Biology, Temple University, Philadelphia, PA19122
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA19122
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA19122
| | - Stephan Alexander Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Han Chow Chua
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
18
|
Rogers M, Obergrussberger A, Kondratskyi A, Fertig N. Using automated patch clamp electrophysiology platforms in ion channel drug discovery: an industry perspective. Expert Opin Drug Discov 2024; 19:523-535. [PMID: 38481119 DOI: 10.1080/17460441.2024.2329104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Automated patch clamp (APC) is now well established as a mature technology for ion channel drug discovery in academia, biotech and pharma companies, and in contract research organizations (CRO), for a variety of applications including channelopathy research, compound screening, target validation and cardiac safety testing. AREAS COVERED Ion channels are an important class of drugged and approved drug targets. The authors present a review of the current state of ion channel drug discovery along with new and exciting developments in ion channel research involving APC. This includes topics such as native and iPSC-derived cells in ion channel drug discovery, channelopathy research, organellar and biologics in ion channel drug discovery. EXPERT OPINION It is our belief that APC will continue to play a critical role in ion channel drug discovery, not only in 'classical' hit screening, target validation and cardiac safety testing, but extending these applications to include high throughput organellar recordings and optogenetics. In this way, with advancements in APC capabilities and applications, together with high resolution cryo-EM structures, ion channel drug discovery will be re-invigorated, leading to a growing list of ion channel ligands in clinical development.
Collapse
Affiliation(s)
- Marc Rogers
- Albion Drug Discovery Services Ltd, Cambridge, UK
| | | | | | | |
Collapse
|
19
|
Wang D, Herzig V, Dekan Z, Rosengren KJ, Payne CD, Hasan MM, Zhuang J, Bourinet E, Ragnarsson L, Alewood PF, Lewis RJ. Novel Scorpion Toxin ω-Buthitoxin-Hf1a Selectively Inhibits Calcium Influx via Ca V3.3 and Ca V3.2 and Alleviates Allodynia in a Mouse Model of Acute Postsurgical Pain. Int J Mol Sci 2024; 25:4745. [PMID: 38731963 PMCID: PMC11084959 DOI: 10.3390/ijms25094745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 μM) and CaV3.3 (IC50 = 0.49 μM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Zoltan Dekan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (K.J.R.); (C.D.P.)
| | - Colton D. Payne
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (K.J.R.); (C.D.P.)
| | - Md. Mahadhi Hasan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh;
| | - Jiajie Zhuang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, 34090 Montpellier, France;
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Paul F. Alewood
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Richard J. Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| |
Collapse
|
20
|
Weiss N, Zamponi GW. The T-type calcium channelosome. Pflugers Arch 2024; 476:163-177. [PMID: 38036777 DOI: 10.1007/s00424-023-02891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
Collapse
Affiliation(s)
- Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
21
|
Schott K, Usher SG, Serra O, Carnevale V, Pless SA, Chua HC. Unplugging lateral fenestrations of NALCN reveals a hidden drug binding site within the pore module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536537. [PMID: 38328210 PMCID: PMC10849497 DOI: 10.1101/2023.04.12.536537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The sodium (Na + ) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (Na V s and Ca V s, respectively). Unlike Na V s and Ca V s, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145 and Y1436) that block these openings. Structural data suggest that oc-cluded lateral fenestrations underlie the pharmacological resistance of NALCN to lipophilic compounds, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned resi-dues with alanine (AAAA) and compared the effects of Na V , Ca V and NALCN block-ers on both wild-type (WT) and AAAA channels. Most compounds behaved in a simi-lar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cav-ity through distinct fenestrations, implying structural specificity to their modes of ac-cess. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug bind-ing site(s) within the pore region. Intrigued by the activity of 2-APB and its ana-logues, we tested additional compounds containing the diphenylmethane/amine moiety on WT channels. We identified compounds from existing clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the resistance of NALCN to pharmacological targeting, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties. Significance statement The sodium leak channel (NALCN) is essential for survival: mutations cause life-threatening developmental disorders in humans. However, no treatment is currently available due to the resistance of NALCN to pharmacological targeting. One likely reason is that the lateral fenestrations, a common route for clinically used drugs to enter and block related ion channels, are occluded in NALCN. Using a combination of computational and functional approaches, we unplugged the fenestrations of NALCN which led us to the first molecularly defined drug binding site within the pore region. Besides that, we also identified additional NALCN modulators from existing clinically used therapeutics, thus expanding the pharmacological toolbox for this leak channel.
Collapse
|
22
|
Gong Y, Liu R, Zha H, Dong D, Lu N, Yan H, Wan L, Nian Y. Analgesic Buxus alkaloids with Enhanced Selectivity for the Low-Voltage-Gated Calcium Channel Ca v 3.2 over Ca v 3.1 through a New Binding Mode. Angew Chem Int Ed Engl 2024; 63:e202313461. [PMID: 37997012 DOI: 10.1002/anie.202313461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Low-voltage-gated calcium channels (LVGCCs; Cav 3.1-3.3) represent promising drug targets for epilepsy, pain, and essential tremor. At present, modulators with heightened selectivity for a subtype of LVGCCs are still highly desired. In this study we explored three classes of Buxus alkaloids and identified 9(10/19)abeo-artanes Buxusemine H and Buxusemine L (BXSL) as an unprecedented type of Cav 3.2 inhibitors. Particularly, BXSL exhibited Cav 3.2 inhibition comparable to Z944, a non-subtype-selective LVGCCs inhibitor under clinical trial. While lacking specificity for Cav 3.3, BXSL showed a 30-fold selectivity of Cav 3.2 over Cav 3.1. As compared to several well-known inhibitors, the experimental and computational studies suggested BXSL exhibits a distinct binding mode to Cav 3.2, notably through the essential interaction with serine-1543 in domain III. Furthermore, BXSL showed minimal impact on various recombinant and native nociceptive ion channels, while significantly reducing the excitability of isolated mouse dorsal root ganglion neurons. Animal studies in wild-type and Cav 3.2 knock-out mice revealed that BXSL (5 mg/kg), by inhibiting Cav 3.2, exhibits an analgesic effect equivalent to Z944 (10 mg/kg) or mibefradil (10 mg/kg). Moreover, we proposed a structural rationale for the high selectivity of 9(10/19)abeo-artane-type alkaloids towards Cav 3.2 over Cav 3.1. This study introduces a novel analgesic agent and valuable molecular insight for structure-based innovative Cav 3.2 drug development.
Collapse
Affiliation(s)
- Ye Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Rui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Hongjing Zha
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Ding Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Nihong Lu
- Department of Respiratory Medicine, The Third People's Hospital of Kunming, Kunming, 650041, Yunnan, P. R. China
| | - Hui Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Luosheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| |
Collapse
|
23
|
Huang Y, Ma D, Yang Z, Zhao Y, Guo J. Voltage-gated potassium channels KCNQs: Structures, mechanisms, and modulations. Biochem Biophys Res Commun 2023; 689:149218. [PMID: 37976835 DOI: 10.1016/j.bbrc.2023.149218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiwen Zhao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Spafford JD. A governance of ion selectivity based on the occupancy of the "beacon" in one- and four-domain calcium and sodium channels. Channels (Austin) 2023; 17:2191773. [PMID: 37075164 PMCID: PMC10120453 DOI: 10.1080/19336950.2023.2191773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
One of nature's exceptions was discovered when a Cav3 T-type channel was observed to switch phenotype from a calcium channel into a sodium channel by neutralizing an aspartate residue in the high field strength (HFS) +1 position within the ion selectivity filter. The HFS+1 site is dubbed a "beacon" for its location at the entryway just above the constricted, minimum radius of the HFS site's electronegative ring. A classification is proposed based on the occupancy of the HFS+1 "beacon" which correlates with the calcium- or sodium-selectivity phenotype. If the beacon is a glycine, or neutral, non-glycine residue, then the cation channel is calcium-selective or sodium-permeable, respectively (Class I). Occupancy of a beacon aspartate are calcium-selective channels (Class II) or possessing a strong calcium block (Class III). A residue lacking in position of the sequence alignment for the beacon are sodium channels (Class IV). The extent to which animal channels are sodium-selective is dictated in the occupancy of the HFS site with a lysine residue (Class III/IV). Governance involving the beacon solves the quandary the HFS site as a basis for ion selectivity, where an electronegative ring of glutamates at the HFS site generates a sodium-selective channel in one-domain channels but generates a calcium-selective channel in four-domain channels. Discovery of a splice variant in an exceptional channel revealed nature's exploits, highlighting the "beacon" as a principal determinant for calcium and sodium selectivity, encompassing known ion channels composed of one and four domains, from bacteria to animals.
Collapse
Affiliation(s)
- J David Spafford
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Chen Z, Mondal A, Abderemane-Ali F, Jang S, Niranjan S, Montaño JL, Zaro BW, Minor DL. EMC chaperone-Ca V structure reveals an ion channel assembly intermediate. Nature 2023; 619:410-419. [PMID: 37196677 PMCID: PMC10896479 DOI: 10.1038/s41586-023-06175-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Voltage-gated ion channels (VGICs) comprise multiple structural units, the assembly of which is required for function1,2. Structural understanding of how VGIC subunits assemble and whether chaperone proteins are required is lacking. High-voltage-activated calcium channels (CaVs)3,4 are paradigmatic multisubunit VGICs whose function and trafficking are powerfully shaped by interactions between pore-forming CaV1 or CaV2 CaVα1 (ref. 3), and the auxiliary CaVβ5 and CaVα2δ subunits6,7. Here we present cryo-electron microscopy structures of human brain and cardiac CaV1.2 bound with CaVβ3 to a chaperone-the endoplasmic reticulum membrane protein complex (EMC)8,9-and of the assembled CaV1.2-CaVβ3-CaVα2δ-1 channel. These structures provide a view of an EMC-client complex and define EMC sites-the transmembrane (TM) and cytoplasmic (Cyto) docks; interaction between these sites and the client channel causes partial extraction of a pore subunit and splays open the CaVα2δ-interaction site. The structures identify the CaVα2δ-binding site for gabapentinoid anti-pain and anti-anxiety drugs6, show that EMC and CaVα2δ interactions with the channel are mutually exclusive, and indicate that EMC-to-CaVα2δ hand-off involves a divalent ion-dependent step and CaV1.2 element ordering. Disruption of the EMC-CaV complex compromises CaV function, suggesting that the EMC functions as a channel holdase that facilitates channel assembly. Together, the structures reveal a CaV assembly intermediate and EMC client-binding sites that could have wide-ranging implications for the biogenesis of VGICs and other membrane proteins.
Collapse
Affiliation(s)
- Zhou Chen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Abhisek Mondal
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Seil Jang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Sangeeta Niranjan
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - José L Montaño
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Balyn W Zaro
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA.
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| |
Collapse
|
26
|
Xu YM, Wijeratne EMK, Calderon-Rivera A, Loya-López S, Perez-Miller S, Khanna R, Gunatilaka AAL. Argentatin C Analogues with Potential Antinociceptive Activity and Other Triterpenoid Constituents from the Aerial Parts of Parthenium incanum. ACS OMEGA 2023; 8:20085-20095. [PMID: 37305315 PMCID: PMC10249386 DOI: 10.1021/acsomega.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Four new triterpenes, 25-dehydroxy-25-methoxyargentatin C (1), 20S-hydroxyargentatin C (2), 20S-hydroxyisoargentatin C (3), and 24-epi-argentatin C (4), together with 10 known triterpenes (5-14) were isolated from the aerial parts of Parthenium incanum. The structures of 1-4 were elucidated by detailed analysis of their spectroscopic data, and the known compounds 5-14 were identified by comparison of their spectroscopic data with those reported. Since argentatin C (11) was found to exhibit antinociceptive activity by decreasing the excitability of rat and macaque dorsal root ganglia (DRG) neurons, 11 and its new analogues 1-4 were evaluated for their ability to decrease the excitability of rat DRG neurons. Of the argentatin C analogues tested, 25-dehydroxy-25-methoxyargentatin C (1) and 24-epi-argentatin C (4) decreased neuronal excitability in a manner comparable to 11. Preliminary structure-activity relationships for the action potential-reducing effects of argentatin C (11) and its analogues 1-4, and their predicted binding sites in pain-relevant voltage-gated sodium and calcium channels (VGSCs and VGCCs) in DRG neurons are presented.
Collapse
Affiliation(s)
- Ya-ming Xu
- Southwest
Center for Natural Products Research, School of Natural Resources
and the Environment, College of Agriculture and Life Sciences, University of Arizona, 1064 E. Lowell St., Tucson, Arizona 85719, United States
| | - E. M. Kithsiri Wijeratne
- Southwest
Center for Natural Products Research, School of Natural Resources
and the Environment, College of Agriculture and Life Sciences, University of Arizona, 1064 E. Lowell St., Tucson, Arizona 85719, United States
| | - Aida Calderon-Rivera
- NYU
Pain Research Center and Department of Molecular Pathobiology, College
of Dentistry, New York University, 433 First Avenue, New York, New York 10010, United States
| | - Santiago Loya-López
- NYU
Pain Research Center and Department of Molecular Pathobiology, College
of Dentistry, New York University, 433 First Avenue, New York, New York 10010, United States
| | - Samantha Perez-Miller
- NYU
Pain Research Center and Department of Molecular Pathobiology, College
of Dentistry, New York University, 433 First Avenue, New York, New York 10010, United States
| | - Rajesh Khanna
- NYU
Pain Research Center and Department of Molecular Pathobiology, College
of Dentistry, New York University, 433 First Avenue, New York, New York 10010, United States
- Department
of Neuroscience and Physiology and Neuroscience Institute, School
of Medicine, New York University, New York, New York 10010, United States
| | - A. A. Leslie Gunatilaka
- Southwest
Center for Natural Products Research, School of Natural Resources
and the Environment, College of Agriculture and Life Sciences, University of Arizona, 1064 E. Lowell St., Tucson, Arizona 85719, United States
| |
Collapse
|
27
|
Ali MY, Gadotti VM, Huang S, Garcia-Caballero A, Antunes FTT, Jung HA, Choi JS, Zamponi GW. Icariside II, a Prenyl-Flavonol, Alleviates Inflammatory and Neuropathic Pain by Inhibiting T-Type Calcium Channels and USP5-Cav3.2 Interactions. ACS Chem Neurosci 2023; 14:1859-1869. [PMID: 37116219 DOI: 10.1021/acschemneuro.3c00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Cav3.2 channels play an important role in the afferent nociceptive pathway, which is responsible for both physiological and pathological pain transmission. Cav3.2 channels are upregulated during neuropathic pain or peripheral inflammation in part due to an increased association with the deubiquitinase USP5. In this study, we investigated nine naturally occurring flavonoid derivatives which we tested for their abilities to inhibit transiently expressed Cav3.2 channels and their interactions with USP5. Icariside II (ICA-II), one of the flavonols studied, inhibited the biochemical interactions between USP5 and Cav3.2 and concomitantly and effectively blocked Cav3.2 channels. Molecular docking analysis predicts that ICA-II binds to the cUBP domain and the Cav3.2 interaction region. In addition, ICA-II was predicted to interact with residues in close proximity to the Cav3.2 channel's fenestrations, thus accounting for the observed blocking activity. In mice with inflammatory and neuropathic pain, ICA-II inhibited both phases of the formalin-induced nocifensive responses and abolished thermal hyperalgesia induced by injection of complete Freund's adjuvant (CFA) into the hind paw. Furthermore, ICA-II produced significant and long-lasting thermal anti-hyperalgesia in female mice, whereas Cav3.2 null mice were resistant to the action of ICA-II. Altogether, our data show that ICA-II has analgesic activity via an action on Cav3.2 channels.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
- Zymedyne Therapeutics, Calgary, AB T2N4G4, Canada
| | - Vinicius M Gadotti
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
- Zymedyne Therapeutics, Calgary, AB T2N4G4, Canada
| | - Sun Huang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Agustin Garcia-Caballero
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Zymedyne Therapeutics, Calgary, AB T2N4G4, Canada
| | - Flavia T T Antunes
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
| |
Collapse
|
28
|
Structure of human Na V1.6 channel reveals Na + selectivity and pore blockade by 4,9-anhydro-tetrodotoxin. Nat Commun 2023; 14:1030. [PMID: 36823201 PMCID: PMC9950489 DOI: 10.1038/s41467-023-36766-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The sodium channel NaV1.6 is widely expressed in neurons of the central and peripheral nervous systems, which plays a critical role in regulating neuronal excitability. Dysfunction of NaV1.6 has been linked to epileptic encephalopathy, intellectual disability and movement disorders. Here we present cryo-EM structures of human NaV1.6/β1/β2 alone and complexed with a guanidinium neurotoxin 4,9-anhydro-tetrodotoxin (4,9-ah-TTX), revealing molecular mechanism of NaV1.6 inhibition by the blocker. The apo-form structure reveals two potential Na+ binding sites within the selectivity filter, suggesting a possible mechanism for Na+ selectivity and conductance. In the 4,9-ah-TTX bound structure, 4,9-ah-TTX binds to a pocket similar to the tetrodotoxin (TTX) binding site, which occupies the Na+ binding sites and completely blocks the channel. Molecular dynamics simulation results show that subtle conformational differences in the selectivity filter affect the affinity of TTX analogues. Taken together, our results provide important insights into NaV1.6 structure, ion conductance, and inhibition.
Collapse
|
29
|
Gao Y, Xu S, Cui X, Xu H, Qiu Y, Wei Y, Dong Y, Zhu B, Peng C, Liu S, Zhang XC, Sun J, Huang Z, Zhao Y. Molecular insights into the gating mechanisms of voltage-gated calcium channel Ca V2.3. Nat Commun 2023; 14:516. [PMID: 36720859 PMCID: PMC9889812 DOI: 10.1038/s41467-023-36260-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
High-voltage-activated R-type CaV2.3 channel plays pivotal roles in many physiological activities and is implicated in epilepsy, convulsions, and other neurodevelopmental impairments. Here, we determine the high-resolution cryo-electron microscopy (cryo-EM) structure of human CaV2.3 in complex with the α2δ1 and β1 subunits. The VSDII is stabilized in the resting state. Electrophysiological experiments elucidate that the VSDII is not required for channel activation, whereas the other VSDs are essential for channel opening. The intracellular gate is blocked by the W-helix. A pre-W-helix adjacent to the W-helix can significantly regulate closed-state inactivation (CSI) by modulating the association and dissociation of the W-helix with the gate. Electrostatic interactions formed between the negatively charged domain on S6II, which is exclusively conserved in the CaV2 family, and nearby regions at the alpha-interacting domain (AID) and S4-S5II helix are identified. Further functional analyses indicate that these interactions are critical for the open-state inactivation (OSI) of CaV2 channels.
Collapse
Affiliation(s)
- Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoli Cui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Hao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunlong Qiu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiqing Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boling Zhu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Harding EK, Souza IA, Gandini MA, Gadotti VM, Ali MY, Huang S, Antunes FTT, Trang T, Zamponi GW. Differential regulation of Ca v 3.2 and Ca v 2.2 calcium channels by CB 1 receptors and cannabidiol. Br J Pharmacol 2023; 180:1616-1633. [PMID: 36647671 DOI: 10.1111/bph.16035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoids are a promising therapeutic avenue for chronic pain. However, clinical trials often fail to report analgesic efficacy of cannabinoids. Inhibition of voltage gate calcium (Cav ) channels is one mechanism through which cannabinoids may produce analgesia. We hypothesized that cannabinoids and cannabinoid receptor agonists target different types of Cav channels through distinct mechanisms. EXPERIMENTAL APPROACH Electrophysiological recordings from tsA-201 cells expressing either Cav 3.2 or Cav 2.2 were used to assess inhibition by HU-210 or cannabidiol (CBD) in the absence and presence of the CB1 receptor. Homology modelling assessed potential interaction sites for CBD in both Cav 2.2 and Cav 3.2. Analgesic effects of CBD were assessed in mouse models of inflammatory and neuropathic pain. KEY RESULTS HU-210 (1 μM) inhibited Cav 2.2 function in the presence of CB1 receptor but had no effect on Cav 3.2 regardless of co-expression of CB1 receptor. By contrast, CBD (3 μM) produced no inhibition of Cav 2.2 and instead inhibited Cav 3.2 independently of CB1 receptors. Homology modelling supported these findings, indicating that CBD binds to and occludes the pore of Cav 3.2, but not Cav 2.2. Intrathecal CBD alleviated thermal and mechanical hypersensitivity in both male and female mice, and this effect was absent in Cav 3.2 null mice. CONCLUSION AND IMPLICATIONS Our findings reveal differential modulation of Cav 2.2 and Cav 3.2 channels by CB1 receptors and CBD. This advances our understanding of how different cannabinoids produce analgesia through action at different voltage-gated calcium channels and could influence the development of novel cannabinoid-based therapeutics for treatment of chronic pain.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ivana A Souza
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Maria A Gandini
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Vinícius M Gadotti
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Zymedyne Therapeutics, Calgary, AB, Canada
| | - Md Yousof Ali
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Zymedyne Therapeutics, Calgary, AB, Canada
| | - Sun Huang
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Flavia T T Antunes
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Harman T, Udoh M, McElroy DL, Anderson LL, Kevin RC, Banister SD, Ametovski A, Markham J, Bladen C, Doohan PT, Greba Q, Laprairie RB, Snutch TP, McGregor IS, Howland JG, Arnold JC. MEPIRAPIM-derived synthetic cannabinoids inhibit T-type calcium channels with divergent effects on seizures in rodent models of epilepsy. Front Physiol 2023; 14:1086243. [PMID: 37082241 PMCID: PMC10110893 DOI: 10.3389/fphys.2023.1086243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Background: T-type Ca2+ channels (Cav3) represent emerging therapeutic targets for a range of neurological disorders, including epilepsy and pain. To aid the development and optimisation of new therapeutics, there is a need to identify novel chemical entities which act at these ion channels. A number of synthetic cannabinoid receptor agonists (SCRAs) have been found to exhibit activity at T-type channels, suggesting that cannabinoids may provide convenient chemical scaffolds on which to design novel Cav3 inhibitors. However, activity at cannabinoid type 1 (CB1) receptors can be problematic because of central and peripheral toxicities associated with potent SCRAs. The putative SCRA MEPIRAPIM and its analogues were recently identified as Cav3 inhibitors with only minimal activity at CB1 receptors, opening the possibility that this scaffold may be exploited to develop novel, selective Cav3 inhibitors. Here we present the pharmacological characterisation of SB2193 and SB2193F, two novel Cav3 inhibitors derived from MEPIRAPIM. Methods: The potency of SB2193 and SB2193F was evaluated in vitro using a fluorometric Ca2+ flux assay and confirmed using whole-cell patch-clamp electrophysiology. In silico docking to the cryo-EM structure of Cav3.1 was also performed to elucidate structural insights into T-type channel inhibition. Next, in vivo pharmacokinetic parameters in mouse brain and plasma were determined using liquid chromatography-mass spectroscopy. Finally, anticonvulsant activity was assayed in established genetic and electrically-induced rodent seizure models. Results: Both MEPIRAPIM derivatives produced potent inhibition of Cav3 channels and were brain penetrant, with SB2193 exhibiting a brain/plasma ratio of 2.7. SB2193 was further examined in mouse seizure models where it acutely protected against 6 Hz-induced seizures. However, SB2193 did not reduce spontaneous seizures in the Scn1a +/- mouse model of Dravet syndrome, nor absence seizures in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). Surprisingly, SB2193 appeared to increase the incidence and duration of spike-and-wave discharges in GAERS animals over a 4 h recording period. Conclusion: These results show that MEPIRAPIM analogues provide novel chemical scaffolds to advance Cav3 inhibitors against certain seizure types.
Collapse
Affiliation(s)
- Thomas Harman
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael Udoh
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dan L. McElroy
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lyndsey L. Anderson
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jack Markham
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Chris Bladen
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter T. Doohan
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Quentin Greba
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - John G. Howland
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathon C. Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Jonathon C. Arnold,
| |
Collapse
|
32
|
Mustafá ER, McCarthy CI, Portales AE, Cordisco Gonzalez S, Rodríguez SS, Raingo J. Constitutive activity of the dopamine (D 5 ) receptor, highly expressed in CA1 hippocampal neurons, selectively reduces Ca V 3.2 and Ca V 3.3 currents. Br J Pharmacol 2022; 180:1210-1231. [PMID: 36480023 DOI: 10.1111/bph.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CaV 3.1-3 currents differentially contribute to neuronal firing patterns. CaV 3 are regulated by G protein-coupled receptors (GPCRs) activity, but information about CaV 3 as targets of the constitutive activity of GPCRs is scarce. We investigate the impact of D5 recpetor constitutive activity, a GPCR with high levels of basal activity, on CaV 3 functionality. D5 recpetor and CaV 3 are expressed in the hippocampus and have been independently linked to pathophysiological states associated with epilepsy. EXPERIMENTAL APPROACH Our study models were HEK293T cells heterologously expressing D1 or D5 receptor and CaV 3.1-3, and mouse brain slices containing the hippocampus. We used chlorpromazine (D1 /D5 inverse agonist) and a D5 receptor mutant lacking constitutive activity as experimental tools. We measured CaV 3 currents and excitability parameters using the patch-clamp technique. We completed our study with computational modelling and imaging technique. KEY RESULTS We found a higher sensitivity to TTA-P2 (CaV 3 blocker) in CA1 pyramidal neurons obtained from chlorpromazine-treated animals compared with vehicle-treated animals. We found that CaV 3.2 and CaV 3.3-but not CaV 3.1-are targets of D5 receptor constitutive activity in HEK293T cells. Finally, we found an increased firing rate in CA1 pyramidal neurons from chlorpromazine-treated animals in comparison with vehicle-treated animals. Similar changes in firing rate were observed on a neuronal model with controlled CaV 3 currents levels. CONCLUSIONS AND IMPLICATIONS Native hippocampal CaV 3 and recombinant CaV 3.2-3 are sensitive to D5 receptor constitutive activity. Manipulation of D5 receptor constitutive activity could be a valuable strategy to control neuronal excitability, especially in exacerbated conditions such as epilepsy.
Collapse
Affiliation(s)
- Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Andrea Estefanía Portales
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Santiago Cordisco Gonzalez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| |
Collapse
|
33
|
Guan W, Orellana KG, Stephens RF, Zhorov BS, Spafford JD. A lysine residue from an extracellular turret switches the ion preference in a Cav3 T-Type channel from calcium to sodium ions. J Biol Chem 2022; 298:102621. [PMID: 36272643 PMCID: PMC9694082 DOI: 10.1016/j.jbc.2022.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Cav3 T-type calcium channels from great pond snail Lymnaea stagnalis have a selectivity-filter ring of five acidic residues, EE(D)DD. Splice variants with exons 12b or 12a spanning the extracellular loop between the outer helix IIS5 and membrane-descending pore helix IIP1 (IIS5-P1) in Domain II of the pore module possess calcium selectivity or dominant sodium permeability, respectively. Here, we use AlphaFold2 neural network software to predict that a lysine residue in exon 12a is salt-bridged to the aspartate residue immediately C terminal to the second-domain glutamate in the selectivity filter. Exon 12b has a similar folding but with an alanine residue in place of lysine in exon 12a. We express LCav3 channels with mutated exons Ala-12b-Lys and Lys-12a-Ala and demonstrate that they switch the ion preference to high sodium permeability and calcium selectivity, respectively. We propose that in the calcium-selective variants, a calcium ion chelated between Domain II selectivity-filter glutamate and aspartate is knocked-out by the incoming calcium ion in the process of calcium permeation, whereas sodium ions are repelled. The aspartate is neutralized by the lysine residue in the sodium-permeant variants, allowing for sodium permeation through the selectivity-filter ring of four negatively charged residues akin to the prokaryotic sodium channels with four glutamates in the selectivity filter. The evolutionary adaptation in invertebrate LCav3 channels highlight the involvement of a key, ubiquitous aspartate, "a calcium beacon" of sorts in the outer pore of Domain II, as determinative for the calcium ion preference over sodium ions through eukaryotic Cav1, Cav2, and Cav3 channels.
Collapse
Affiliation(s)
- Wendy Guan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kaidy G. Orellana
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Robert F. Stephens
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia,Almazov National Medical Research Centre, St. Petersburg, Russia
| | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada,For correspondence: J. David Spafford
| |
Collapse
|
34
|
McArthur JR, Wen J, Hung A, Finol-Urdaneta RK, Adams DJ. µ-Theraphotoxin Pn3a inhibition of Ca V3.3 channels reveals a novel isoform-selective drug binding site. eLife 2022; 11:e74040. [PMID: 35858123 PMCID: PMC9342953 DOI: 10.7554/elife.74040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Low voltage-activated calcium currents are mediated by T-type calcium channels CaV3.1, CaV3.2, and CaV3.3, which modulate a variety of physiological processes including sleep, cardiac pace-making, pain, and epilepsy. CaV3 isoforms' biophysical properties, overlapping expression, and lack of subtype-selective pharmacology hinder the determination of their specific physiological roles in health and disease. We have identified μ-theraphotoxin Pn3a as the first subtype-selective spider venom peptide inhibitor of CaV3.3, with >100-fold lower potency against the other T-type isoforms. Pn3a modifies CaV3.3 gating through a depolarizing shift in the voltage dependence of activation thus decreasing CaV3.3-mediated currents in the normal range of activation potentials. Paddle chimeras of KV1.7 channels bearing voltage sensor sequences from all four CaV3.3 domains revealed preferential binding of Pn3a to the S3-S4 region of domain II (CaV3.3DII). This novel T-type channel pharmacological site was explored through computational docking simulations of Pn3a, site-directed mutagenesis, and full domain II swaps between CaV3 channels highlighting it as a subtype-specific pharmacophore. This research expands our understanding of T-type calcium channel pharmacology and supports the suitability of Pn3a as a molecular tool in the study of the physiological roles of CaV3.3 channels.
Collapse
Affiliation(s)
- Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| | - Jierong Wen
- School of Science, RMIT UniversityMelbourneAustralia
| | - Andrew Hung
- School of Science, RMIT UniversityMelbourneAustralia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| |
Collapse
|
35
|
Gomez K, Tang C, Tan B, Perez-Miller S, Ran D, Loya S, Calderon-Rivera A, Stratton HJ, Duran P, Masterson KA, Gabrielsen AT, Alsbiei O, Dorame A, Serafini M, Moutal A, Wang J, Khanna R. Stereospecific Effects of Benzimidazolonepiperidine Compounds on T-Type Ca 2+ Channels and Pain. ACS Chem Neurosci 2022; 13:2035-2047. [PMID: 35671441 DOI: 10.1021/acschemneuro.2c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
T-type calcium channels activate in response to subthreshold membrane depolarizations and represent an important source of Ca2+ influx near the resting membrane potential. These channels regulate neuronal excitability and have been linked to pain. For this reason, T-type calcium channels are suitable molecular targets for the development of new non-opioid analgesics. Our previous work identified an analogue of benzimidazolonepiperidine, 5bk, that preferentially inhibited CaV3.2 channels and reversed mechanical allodynia. In this study, we synthesized and screened a small library of 47 compounds derived from 5bk. We found several compounds that inhibited the Ca2+ influx in DRG neurons of all sizes. After separating the enantiomers of each active compound, we found two compounds, 3-25-R and 3-14-3-S, that potently inhibited the Ca2+ influx. Whole-cell patch clamp recordings from small- to medium-sized DRG neurons revealed that both compounds decreased total Ca2+. Application of 3-14-3-S (but not 3-25-R) blocked transiently expressed CaV3.1-3.3 channels with a similar IC50 value. 3-14-3-S decreased T-type, but not N-type, Ca2+ currents in DRG neurons. Furthermore, intrathecal delivery of 3-14-3-S relieved tonic, neuropathic, and inflammatory pain in preclinical models. 3-14-3-S did not exhibit any activity against G protein-coupled opioid receptors. Preliminary docking studies also suggest that 3-14-3-S can bind to the central pore domain of T-type channels. Together, our chemical characterization and functional and behavioral data identify a novel T-type calcium channel blocker with in vivo efficacy in experimental models of tonic, neuropathic, and inflammatory pain.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States.,The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, William Levine Hall, Room 320, 160 Frelinghuysen Road, Piscataway, New Jersey 0885, United States
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Dongzhi Ran
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Santiago Loya
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Harrison J Stratton
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Kyleigh A Masterson
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Anna T Gabrielsen
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Omar Alsbiei
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Angie Dorame
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Maria Serafini
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Jun Wang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| |
Collapse
|