1
|
Xu C, Tran QG, Liu D, Zhai C, Wojtas L, Liu W. Charge-assisted hydrogen bonding in a bicyclic amide cage: an effective approach to anion recognition and catalysis in water. Chem Sci 2024:d4sc05236f. [PMID: 39309075 PMCID: PMC11409225 DOI: 10.1039/d4sc05236f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Hydrogen bonding is prevalent in biological systems, dictating a myriad of life-sustaining functions in aqueous environments. Leveraging hydrogen bonding for molecular recognition in water encounters significant challenges in synthetic receptors on account of the hydration of their functional groups. Herein, we introduce a water-soluble hydrogen bonding cage, synthesized via a dynamic approach, exhibiting remarkable affinities and selectivities for strongly hydrated anions, including sulfate and oxalate, in water. We illustrate the use of charge-assisted hydrogen bonding in amide-type synthetic receptors, offering a general molecular design principle that applies to a wide range of amide receptors for molecular recognition in water. This strategy not only revalidates the functions of hydrogen bonding but also facilitates the effective recognition of hydrophilic anions in water. We further demonstrate an unconventional catalytic mechanism through the encapsulation of the anionic oxalate substrate by the cationic cage, which effectively inverts the charges associated with the substrate and overcomes electrostatic repulsions to facilitate its oxidation by the anionic MnO4 -. Technical applications using this receptor are envisioned across various technical applications, including anion sensing, separation, catalysis, medical interventions, and molecular nanotechnology.
Collapse
Affiliation(s)
- Chengkai Xu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Quy Gia Tran
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Dexin Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Canjia Zhai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Wenqi Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| |
Collapse
|
2
|
Yang X, Jiang W. Enantioselective Recognition of Functional Organic Molecules in Water by Biomimetic Macrocyclic Hosts. J Am Chem Soc 2024; 146:3900-3909. [PMID: 38294833 DOI: 10.1021/jacs.3c11492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Enantioselective recognition of functional organic molecules in water is routine in nature but remains a formidable challenge for synthetic hosts. Here, we reported two pairs of chiral naphthotubes with chiral centers located in the neighborhood of the inward-directing amide groups. These naphthotubes, with a chiral twisted cavity, show highly enantioselective recognition in water to a wide scope of organic molecules (90 chiral guests). The highest enantioselectivity of 34 was achieved with neotame. Small differences between all of the noncovalent interactions shielded in the hydrophobic cavity were revealed to be responsible for the enantioselective recognition in water, which is different from the traditional views. Moreover, these hosts can differentiate the analogues of aspartame using fluorescence spectroscopy. These chiral naphthotubes have made unprecedented achievements in enantioselective recognition, providing the basis for their applications in chiral analysis and separations.
Collapse
Affiliation(s)
- Xiran Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen 518055, China
| |
Collapse
|
3
|
Liu X, Huang T, Chen Z, Yang H. Progress in controllable bioorthogonal catalysis for prodrug activation. Chem Commun (Camb) 2023; 59:12548-12559. [PMID: 37791560 DOI: 10.1039/d3cc04286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bioorthogonal catalysis, a class of catalytic reactions that are mediated by abiotic metals and proceed in biological environments without interfering with native biochemical reactions, has gained ever-increasing momentum in prodrug delivery over the past few decades. Albeit great progress has been attained in developing new bioorthogonal catalytic reactions and optimizing the catalytic performance of transition metal catalysts (TMCs), the use of TMCs to activate chemotherapeutics at the site of interest in vivo remains a challenging endeavor. To translate the bioorthogonal catalysis-mediated prodrug activation paradigm from flasks to animals, TMCs with targeting capability and stimulus-responsive behavior have been well-designed to perform chemical transformations in a controlled manner within highly complex biochemical systems, rendering on-demand drug activation to mitigate off-target toxicity. Here, we review the recent advances in the development of controllable bioorthogonal catalysis systems, with an emphasis on different strategies for engineering TMCs to achieve precise control over prodrug activation. Furthermore, we outline the envisaged challenges and discuss future directions of controllable bioorthogonal catalysis for disease therapy.
Collapse
Affiliation(s)
- Xia Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Tingjing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
4
|
Wang SM, Wang YF, Huang L, Zheng LS, Nian H, Zheng YT, Yao H, Jiang W, Wang X, Yang LP. Chiral recognition of neutral guests by chiral naphthotubes with a bis-thiourea endo-functionalized cavity. Nat Commun 2023; 14:5645. [PMID: 37704639 PMCID: PMC10499783 DOI: 10.1038/s41467-023-41390-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Developing chiral receptors with an endo-functionalized cavity for chiral recognition is of great significance in the field of molecular recognition. This study presents two pairs of chiral naphthotubes containing a bis-thiourea endo-functionalized cavity. Each chiral naphthotube has two homochiral centers which were fixed adjacent to the thiourea groups, causing the skeleton and thiourea groups to twist enantiomerically through chiral transfer. These chiral naphthotubes are highly effective at enantiomerically recognizing various neutral chiral molecules with an enantioselectivity up to 17.0. Furthermore, the mechanism of the chiral recognition has been revealed to be originated from differences in multiple non-covalent interactions. Various factors, such as the shape of cavities, substituents of guests, flexibility of host and binding modes are demonstrated to contribute to creating differences in the non-covalent interactions. Additionally, the driving force behind enantioselectivity is mainly attributed to enthalpic differences, and enthalpy -entropy compensation has also been observed to influence enantioselectivity.
Collapse
Affiliation(s)
- Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Yan-Fang Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liping Huang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Li-Shuo Zheng
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hao Nian
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Yu-Tao Zheng
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Xiaoping Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Liu-Pan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
6
|
Bouteille Q, Sonet D, Hennebelle M, Desvergne JP, Morvan E, Scalabre A, Pouget E, Méreau R, Bibal B. Singlet Oxygen Responsive Molecular Receptor to Modulate Atropisomerism and Cation Binding. Chemistry 2023; 29:e202203210. [PMID: 36639240 DOI: 10.1002/chem.202203210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 01/15/2023]
Abstract
In switchable molecular recognition, 1 O2 stimulus responsive receptors offer a unique structural change that is rarely exploited. The employed [4+2] reaction between 1 O2 and anthracene derivatives is quantitative, reversible and easily implemented. To evaluate the full potential of this new stimulus, a non-macrocyclic anthracene-based host was designed for the modular binding of cations. The structural investigation showed that 1 O2 controlled the atropisomerism in an on/off fashion within the pair of hosts. The binding studies revealed higher association constants for the endoperoxide receptor compared to the parent anthracene, due to a more favoured preorganization of the recognition site. The fatigue of the 1 O2 switchable hosts and their complexes was monitored over five cycles of cycloaddition/cycloreversion.
Collapse
Affiliation(s)
- Quentin Bouteille
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Dorian Sonet
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Marc Hennebelle
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Jean-Pierre Desvergne
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UAR 3033 CNRS INSERM, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Brigitte Bibal
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| |
Collapse
|
7
|
Jin JN, Yang XR, Wang YF, Zhao LM, Yang LP, Huang L, Jiang W. Mechanical Training Enabled Reinforcement of Polyrotaxane-Containing Hydrogel. Angew Chem Int Ed Engl 2023; 62:e202218313. [PMID: 36583510 DOI: 10.1002/anie.202218313] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Many strategies have been developed for constructing anisotropic hydrogels, however, it remains a challenge to fabricate hydrogels with anisotropic nanocrystalline domains from intrinsically soft networks. Here, we report a naphthotube-based polyrotaxane-containing hydrogel that can be reinforced via mechanical training. During the training process, the hydrogel can adopt reorientation of polymer chains to form anisotropic structures driven by external uniaxial force. Due to the multiple hydrogen bonding sites and movable feature of naphthotube, the sliding of naphthotube on PEG chains simultaneously inducing the zipping of adjacent polymer chains to form densely anisotropic nanocrystalline domains through hydrogen bonded networks. Thus, the trained hydrogel exhibits an enhanced tension stress of ≈110 kPa, which realize a remarkable enhancement of ≈10 times compare to initial state. This study provides a new tactic for improving the mechanical performance of soft materials.
Collapse
Affiliation(s)
- Jia-Ni Jin
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xi-Ran Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Yan-Fang Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Lei-Min Zhao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liping Huang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
8
|
Yao SY, Yue YX, Ying AK, Hu XY, Li HB, Cai K, Guo DS. An Antitumor Dual-Responsive Host-Guest Supramolecular Polymer Based on Hypoxia-Cleavable Azocalix[4]arene. Angew Chem Int Ed Engl 2023; 62:e202213578. [PMID: 36353747 DOI: 10.1002/anie.202213578] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 11/11/2022]
Abstract
The exploitation of specific guests which can respond to external stimuli is the main approach for the construction of stimuli-responsive supramolecular polymers (SPs) based on host-guest interactions. Most functional guests, however, fail to manifest stimuli-responses. Herein, a hypoxia-responsive dimeric azocalixarene (D-SAC4A) with outstanding hosting properties was used as the macrocyclic building block for the preparation of host stimuli-responsive SPs. Since azocalixarenes can also be compatible with stimuli-responsive guests, an antitumor drug, camptothecin (CPT), was chosen and linked via a disulfide-containing linker to afford a glutathione (GSH)-responsive ditropic guest (D-CPT). A unique dual-responsive SP was obtained by 1 : 1 mixing of D-SAC4A and D-CPT in water, which further assembled into SP nanoparticles (DSPNs). DSPNs displayed outstanding stability against dilution and biological interferants, as well as precise CPT-release under GSH and hypoxia conditions. In vitro and in vivo experiments demonstrated the good biosafety and tumor-suppressive effects of DSPNs.
Collapse
Affiliation(s)
- Shun-Yu Yao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - An-Kang Ying
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Li MS, Dong YW, Pang XY, Chai H, Wang X, Jiang W. The Influence of Small Biomolecules, Salts and Buffers on the Molecular Recognition of Amide Naphthotube in Aqueous Solutions. Chemistry 2023; 29:e202202972. [PMID: 36196913 DOI: 10.1002/chem.202202972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/18/2022]
Abstract
We found the binding affinities of amide naphthotube to neutral organic molecules in water are not influenced by most of small biomolecules, inorganic salts, and PBS and Tris buffers but are reduced in HEPES buffer through competitive binding. Nevertheless, salts do change the binding affinities of amide naphthotube to charged molecules through a screening effect.
Collapse
Affiliation(s)
- Ming-Shuang Li
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Yi-Wei Dong
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Hongxin Chai
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China.,Shenzhen Xinhua Middle School, Shenzhen, 518109, P. R. China
| | - Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| |
Collapse
|
10
|
In memoriam Professor Wei Jiang, one of the young editorial board members. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
|