1
|
Zhou Y, Maitz MF, Zhang K, Voit B, Appelhans D. Dynamic and Diverse Coacervate Architectures by Controlled Demembranization. J Am Chem Soc 2025; 147:12239-12250. [PMID: 40135632 DOI: 10.1021/jacs.5c01526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The dynamics of membranes are integral to regulating biological pathways in living systems, particularly in mediating intra- and extracellular communication between membraneless and membranized nano- and microcompartments. Mimicking these dynamics using biomimetic cell structures deepens our understanding of biologically driven processes, including morphological transformations, communication, and molecular sequestration within distinct environments (e.g., (membraneless) organelles, cytoplasm, cells, and the extracellular matrix). In this context, the demembranization of membranized coacervates represents a promising approach to endow them with additional functionalities and dynamic reconfiguration capabilities in response to external or biological stimuli. This versatility broadens their applicability in synthetic biology, systems biology, and biotechnology. Here, we present a strategy for controlled demembranization of membranized coacervate droplets. The membranized coacervates are created by coating membraneless coacervates with terpolymer-based nanoparticles to form a solid-like membrane. The addition of an anionic polysaccharide then triggers the demembranization process arising from electrostatic competition with the membrane components, resulting in polysaccharide-containing demembranized coacervate droplets. This membranization/demembranization process not only allows for the controlled structural reconfiguration of the coacervate entities but also varies their permeability toward (biological) (macro)molecules and nano- and microscale objects. Additionally, integrating an additional polymersome layer in this process facilitates the creation of bilayer and ″Janus-like″ membranized coacervates, advancing the development of coacervate protocells with hierarchical and asymmetric membrane structures. Our work highlights the control over both membranization and demembranization processes of coacervate protocells, establishing a platform for creating advanced protein-containing synthetic protocells with dynamic and diverse (membrane(less)) architectures.
Collapse
Affiliation(s)
- Yang Zhou
- Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden 01062, Germany
| | - Manfred F Maitz
- Division Polymer Biomaterials Science, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Kehu Zhang
- Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Brigitte Voit
- Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden 01062, Germany
| | - Dietmar Appelhans
- Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| |
Collapse
|
2
|
Yuan J, Tanaka H. Network-forming phase separation of oppositely charged polyelectrolytes forming coacervates in a solvent. Nat Commun 2025; 16:1517. [PMID: 39952921 PMCID: PMC11828884 DOI: 10.1038/s41467-025-56583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
The formation of coacervates through phase separation of oppositely charged polyelectrolytes (PEs) is critical for understanding biological condensates and developing responsive materials. Traditionally, coacervates are viewed as spherical droplets with growth dynamics resembling liquid-liquid phase separation. However, our fluid particle dynamics simulations incorporating hydrodynamic and electrostatic interactions challenge this perspective. Here, we find that oppositely charged PEs form a percolated network even in semi-dilute solutions, coarsening with a unique growth law, ℓ ∝ t1/2. This self-similarity, absent for neutral polymers in poor solvents, arises because PEs in good solvents exhibit weaker, longer-range attractions due to spatial charge inhomogeneity under global charge neutrality. This results in a lower density of the PEs-rich phase and reduced interfacial tension. Increased charge asymmetry further slows network coarsening. Additionally, coacervate droplets initially display irregular shapes due to weak interfacial tension, transitioning slowly to spherical forms. Our research provides new insights into coacervate morphology and coarsening dynamics.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha District, Guangzhou, 511453, China
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
3
|
Lee J, Pir Cakmak F, Booth R, Keating CD. Hybrid Protocells Based on Coacervate-Templated Fatty Acid Vesicles Combine Improved Membrane Stability with Functional Interior Protocytoplasm. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406671. [PMID: 39402790 PMCID: PMC11673456 DOI: 10.1002/smll.202406671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/24/2024] [Indexed: 12/28/2024]
Abstract
Prebiotically-plausible compartmentalization mechanisms include membrane vesicles formed by amphiphile self-assembly and coacervate droplets formed by liquid-liquid phase separation. Both types of structures form spontaneously and can be related to cellular compartmentalization motifs in today's living cells. As prebiotic compartments, they have complementary capabilities, with coacervates offering excellent solute accumulation and membranes providing superior boundaries. Herein, protocell models constructed by spontaneous encapsulation of coacervate droplets by mixed fatty acid/phospholipid and by purely fatty acid membranes are described. Coacervate-supported membranes form over a range of coacervate and lipid compositions, with membrane properties impacted by charge-charge interactions between coacervates and membranes. Vesicles formed by coacervate-templated membrane assembly exhibit profoundly different permeability than traditional fatty acid or blended fatty acid/phospholipid membranes without a coacervate interior, particularly in the presence of magnesium ions (Mg2+). While fatty acid and blended membrane vesicles are disrupted by the addition of Mg2+, the corresponding coacervate-supported membranes remain intact and impermeable to externally-added solutes. With the more robust membrane, fluorescein diacetate (FDA) hydrolysis, which is commonly used for cell viability assays, can be performed inside the protocell model due to the simple diffusion of FDA and then following with the coacervate-mediated abiotic hydrolysis to fluorescein.
Collapse
Affiliation(s)
- Jessica Lee
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Fatma Pir Cakmak
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Richard Booth
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Christine D. Keating
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
4
|
Ray S, Buell AK. Emerging experimental methods to study the thermodynamics of biomolecular condensate formation. J Chem Phys 2024; 160:091001. [PMID: 38445729 DOI: 10.1063/5.0190160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
The formation of biomolecular condensates in vivo is increasingly recognized to underlie a multitude of crucial cellular functions. Furthermore, the evolution of highly dynamic protein condensates into progressively less reversible assemblies is thought to be involved in a variety of disorders, from cancer over neurodegeneration to rare genetic disorders. There is an increasing need for efficient experimental methods to characterize the thermodynamics of condensate formation and that can be used in screening campaigns to identify and rationally design condensate modifying compounds. Theoretical advances in the field are also identifying the key parameters that need to be measured in order to obtain a comprehensive understanding of the underlying interactions and driving forces. Here, we review recent progress in the development of efficient and quantitative experimental methods to study the driving forces behind and the temporal evolution of biomolecular condensates.
Collapse
Affiliation(s)
- Soumik Ray
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Dumelie JG, Chen Q, Miller D, Attarwala N, Gross SS, Jaffrey SR. Biomolecular condensates create phospholipid-enriched microenvironments. Nat Chem Biol 2024; 20:302-313. [PMID: 37973889 PMCID: PMC10922641 DOI: 10.1038/s41589-023-01474-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Proteins and RNA can phase separate from the aqueous cellular environment to form subcellular compartments called condensates. This process results in a protein-RNA mixture that is chemically different from the surrounding aqueous phase. Here, we use mass spectrometry to characterize the metabolomes of condensates. To test this, we prepared mixtures of phase-separated proteins and extracts of cellular metabolites and identified metabolites enriched in the condensate phase. Among the most condensate-enriched metabolites were phospholipids, due primarily to the hydrophobicity of their fatty acyl moieties. We found that phospholipids can alter the number and size of phase-separated condensates and in some cases alter their morphology. Finally, we found that phospholipids partition into a diverse set of endogenous condensates as well as artificial condensates expressed in cells. Overall, these data show that many condensates are protein-RNA-lipid mixtures with chemical microenvironments that are ideally suited to facilitate phospholipid biology and signaling.
Collapse
Affiliation(s)
- Jason G Dumelie
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
6
|
Liao J, Yeong V, Obermeyer AC. Charge-Patterned Disordered Peptides Tune Intracellular Phase Separation in Bacteria. ACS Synth Biol 2024; 13:598-612. [PMID: 38308651 DOI: 10.1021/acssynbio.3c00564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Subcellular phase-separated compartments, known as biomolecular condensates, play an important role in the spatiotemporal organization of cells. To understand the sequence-determinants of phase separation in bacteria, we engineered protein-based condensates in Escherichia coli using electrostatic interactions as the main driving force. Minimal cationic disordered peptides were used to supercharge negative, neutral, and positive globular model proteins, enabling their phase separation with anionic biomacromolecules in the cell. The phase behavior was governed by the interaction strength between the cationic proteins and anionic biopolymers, in addition to the protein concentration. The interaction strength primarily depended on the overall net charge of the protein, but the distribution of charge between the globular and disordered domains also had an impact. Notably, the protein charge distribution between domains could tune mesoscale attributes such as the size, number, and subcellular localization of condensates within E. coli cells. The length and charge density of the disordered peptides had significant effects on protein expression levels, ultimately influencing the formation of condensates. Taken together, charge-patterned disordered peptides provide a platform for understanding the molecular grammar underlying phase separation in bacteria.
Collapse
Affiliation(s)
- Jane Liao
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Vivian Yeong
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Robinson AO, Lee J, Cameron A, Keating CD, Adamala KP. Cell-Free Expressed Membraneless Organelles Inhibit Translation in Synthetic Cells. ACS Biomater Sci Eng 2024; 10:773-781. [PMID: 38226971 DOI: 10.1021/acsbiomaterials.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Compartments within living cells create specialized microenvironments, allowing multiple reactions to be carried out simultaneously and efficiently. While some organelles are bound by a lipid bilayer, others are formed by liquid-liquid phase separation such as P-granules and nucleoli. Synthetic minimal cells are widely used to study many natural processes, including organelle formation. In this work, synthetic cells expressing artificial membrane-less organelles that inhibit translation are described. RGG-GFP-RGG, a phase-separating protein derived from Caenorhabditis elegans P-granules, is expressed by cell-free transcription and translation, forming artificial membraneless organelles that can sequester RNA and reduce protein expression in synthetic cells. The introduction of artificial membrane-less organelles creates complex microenvironments within the synthetic cell cytoplasm and functions as a tool to inhibit protein expression in synthetic cells. The engineering of compartments within synthetic cells furthers the understanding of the evolution and function of natural organelles and facilitates the creation of more complex and multifaceted synthetic lifelike systems.
Collapse
Affiliation(s)
- Abbey O Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| | - Jessica Lee
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Anders Cameron
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Statello L, Fernandez-Justel JM, González J, Montes M, Ranieri A, Goñi E, Mas AM, Huarte M. The chromatin-associated lncREST ensures effective replication stress response by promoting the assembly of fork signaling factors. Nat Commun 2024; 15:978. [PMID: 38302450 PMCID: PMC10834948 DOI: 10.1038/s41467-024-45183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Besides the well-characterized protein network involved in the replication stress response, several regulatory RNAs have been shown to play a role in this critical process. However, it has remained elusive whether they act locally at the stressed forks. Here, by investigating the RNAs localizing on chromatin upon replication stress induced by hydroxyurea, we identified a set of lncRNAs upregulated in S-phase and controlled by stress transcription factors. Among them, we demonstrate that the previously uncharacterized lncRNA lncREST (long non-coding RNA REplication STress) is transcriptionally controlled by p53 and localizes at stressed replication forks. LncREST-depleted cells experience sustained replication fork progression and accumulate un-signaled DNA damage. Under replication stress, lncREST interacts with the protein NCL and assists in engaging its interaction with RPA. The loss of lncREST is associated with a reduced NCL-RPA interaction and decreased RPA on chromatin, leading to defective replication stress signaling and accumulation of mitotic defects, resulting in apoptosis and a reduction in tumorigenic potential of cancer cells. These findings uncover the function of a lncRNA in favoring the recruitment of replication proteins to sites of DNA replication.
Collapse
Affiliation(s)
- Luisa Statello
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| | - José Miguel Fernandez-Justel
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Marta Montes
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Alessia Ranieri
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Aina M Mas
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| |
Collapse
|
9
|
Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. SCIENCE ADVANCES 2023; 9:eadh5152. [PMID: 37729412 PMCID: PMC10511188 DOI: 10.1126/sciadv.adh5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Compartmentalization of RNA in biopolymer-rich membraneless organelles is now understood to be pervasive and critical for the function of extant biology and has been proposed as a prebiotically plausible way to accumulate RNA. However, compartment-RNA interactions that drive encapsulation have the potential to influence RNA structure and function in compartment- and RNA sequence-dependent ways. Here, we detail next-generation sequencing (NGS) experiments performed in membraneless compartments called complex coacervates to characterize the fold of many different transfer RNAs (tRNAs) simultaneously under the potentially denaturing conditions of these compartments. Notably, we find that natural modifications favor the native fold of tRNAs in these compartments. This suggests that covalent RNA modifications could have played a critical role in metabolic processes at the origin of life.
Collapse
Affiliation(s)
- McCauley O. Meyer
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryota Yamagami
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Saehyun Choi
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christine D. Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C. Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Forenzo C, Larsen J. Complex Coacervates as a Promising Vehicle for mRNA Delivery: A Comprehensive Review of Recent Advances and Challenges. Mol Pharm 2023; 20:4387-4403. [PMID: 37561647 DOI: 10.1021/acs.molpharmaceut.3c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Messenger RNA (mRNA)-based therapies have gained significant attention, following the successful deployment of mRNA-based COVID-19 vaccines. Compared with traditional methods of genetic modification, mRNA-based therapies offer several advantages, including a lower risk of genetic mutations, temporary and controlled therapeutic gene expression, and a shorter production time, which facilitates rapid responses to emerging health challenges. Moreover, mRNA-based therapies have shown immense potential in treating a wide range of diseases including cancers, immune diseases, and neurological disorders. However, the current limitations of non-viral vectors for efficient and safe delivery of mRNA therapies, such as low encapsulation efficiency, potential toxicity, and limited stability, necessitate the exploration of novel strategies to overcome these challenges and fully realize the potential of mRNA-based therapeutics. Coacervate-based delivery systems have recently emerged as promising strategies for enhancing mRNA delivery. Coacervates, which are formed by the aggregation of two or more macromolecules, have shown great potential in delivering a wide range of therapeutics due to their ability to form a separated macromolecular-rich fluid phase in an aqueous environment. This phase separation enables the entrapment and protection of therapeutic agents from degradation as well as efficient cellular uptake and controlled release. Additionally, the natural affinity of coacervates for mRNA molecules presents an excellent opportunity for enhancing mRNA delivery to targeted cells and tissues, making coacervate-based delivery systems an attractive option for mRNA-based therapies. This review highlights the limitations of current strategies for mRNA delivery and the advantages of coacervate-based delivery systems to enable mRNA therapeutics. Coacervates protect mRNA from enzymatic degradation and enhance cellular uptake, leading to sustained and controlled gene expression. Despite their promising properties, the specific use of coacervates as mRNA delivery vehicles remains underexplored. This review aims to provide a comprehensive overview of coacervate-mediated delivery of mRNA, exploring the properties and applications of different coacervating agents as well as the challenges and optimization strategies involved in mRNA encapsulation, release, stability, and translation via coacervate-mediated delivery. Through a comprehensive analysis of recent advancements and recommended future directions, our review sheds light on the promising role of coacervate-mediated delivery for RNA therapeutics, highlighting its potential to enable groundbreaking applications in drug delivery and gene therapy.
Collapse
|
11
|
Le Vay KK, Salibi E, Ghosh B, Tang TYD, Mutschler H. Ribozyme activity modulates the physical properties of RNA-peptide coacervates. eLife 2023; 12:e83543. [PMID: 37326308 DOI: 10.7554/elife.83543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Condensed coacervate phases are now understood to be important features of modern cell biology, as well as valuable protocellular models in origin-of-life studies and synthetic biology. In each of these fields, the development of model systems with varied and tuneable material properties is of great importance for replicating properties of life. Here, we develop a ligase ribozyme system capable of concatenating short RNA fragments into long chains. Our results show that the formation of coacervate microdroplets with the ligase ribozyme and poly(L-lysine) enhances ribozyme rate and yield, which in turn increases the length of the anionic polymer component of the system and imparts specific physical properties to the droplets. Droplets containing active ribozyme sequences resist growth, do not wet or spread on unpassivated surfaces, and exhibit reduced transfer of RNA between droplets when compared to controls containing inactive sequences. These altered behaviours, which stem from RNA sequence and catalytic activity, constitute a specific phenotype and potential fitness advantage, opening the door to selection and evolution experiments based on a genotype-phenotype linkage.
Collapse
Affiliation(s)
- Kristian Kyle Le Vay
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Basusree Ghosh
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - T Y Dora Tang
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
12
|
Slootbeek AD, van Haren MHI, Smokers IBA, Spruijt E. Growth, replication and division enable evolution of coacervate protocells. Chem Commun (Camb) 2022; 58:11183-11200. [PMID: 36128910 PMCID: PMC9536485 DOI: 10.1039/d2cc03541c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Living and proliferating cells undergo repeated cycles of growth, replication and division, all orchestrated by complex molecular networks. How a minimal cell cycle emerged and helped primitive cells to evolve remains one of the biggest mysteries in modern science, and is an active area of research in chemistry. Protocells are cell-like compartments that recapitulate features of living cells and may be seen as the chemical ancestors of modern life. While compartmentalization is not strictly required for primitive, open-ended evolution of self-replicating systems, it gives such systems a clear identity by setting the boundaries and it can help them overcome three major obstacles of dilution, parasitism and compatibility. Compartmentalization is therefore widely considered to be a central hallmark of primitive life, and various types of protocells are actively investigated, with the ultimate goal of developing a protocell capable of autonomous proliferation by mimicking the well-known cell cycle of growth, replication and division. We and others have found that coacervates are promising protocell candidates in which chemical building blocks required for life are naturally concentrated, and chemical reactions can be selectively enhanced or suppressed. This feature article provides an overview of how growth, replication and division can be realized with coacervates as protocells and what the bottlenecks are. Considerations are given for designing chemical networks in coacervates that can lead to sustained growth, selective replication and controlled division, in a way that they are linked together like in the cell cycle. Ultimately, such a system may undergo evolution by natural selection of certain phenotypes, leading to adaptation and the gain of new functions, and we end with a brief discussion of the opportunities for coacervates to facilitate this.
Collapse
Affiliation(s)
- Annemiek D Slootbeek
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Iris B A Smokers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Rhine K, Al-Azzam N, Yu T, Yeo GW. Aging RNA granule dynamics in neurodegeneration. Front Mol Biosci 2022; 9:991641. [PMID: 36188213 PMCID: PMC9523239 DOI: 10.3389/fmolb.2022.991641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022] Open
Abstract
Disordered RNA-binding proteins and repetitive RNA sequences are the main genetic causes of several neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Importantly, these components also seed the formation of cytoplasmic liquid-like granules, like stress granules and P bodies. Emerging evidence demonstrates that healthy granules formed via liquid-liquid phase separation can mature into solid- or gel-like inclusions that persist within the cell. These solidified inclusions are a precursor to the aggregates identified in patients, demonstrating that dysregulation of RNA granule biology is an important component of neurodegeneration. Here, we review recent literature highlighting how RNA molecules seed proteinaceous granules, the mechanisms of healthy turnover of RNA granules in cells, which biophysical properties underly a transition to solid- or gel-like material states, and why persistent granules disrupt the cellular homeostasis of neurons. We also identify various methods that will illuminate the contributions of disordered proteins and RNAs to neurodegeneration in ongoing research efforts.
Collapse
Affiliation(s)
- Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- Stem Cell Program, University of California, San Diego, San Diego, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, United States
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- Stem Cell Program, University of California, San Diego, San Diego, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- Stem Cell Program, University of California, San Diego, San Diego, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, United States
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- Stem Cell Program, University of California, San Diego, San Diego, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|