1
|
Reiser J, Albers J, Svetlove A, Mertiny M, Kommoss FKF, Schwab C, Schneemann A, Tromba G, Wacker I, Curticean RE, Schroeder RR, Kauczor HU, Wielpütz MO, Dullin C, Wagner WL. Integrated 3D imaging of FFPE lung tissue combining microCT, light and electron microscopy allows for contextualized ultrastructural and histological analysis. Sci Rep 2025; 15:18656. [PMID: 40437062 PMCID: PMC12120005 DOI: 10.1038/s41598-025-02770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 05/15/2025] [Indexed: 06/01/2025] Open
Abstract
Classical histopathology of formalin fixed and paraffin embedded (FFPE) tissue using light microscopy (LM) remains the undisputed gold standard in biomedical microstructural lung tissue analysis. To extend this method, we developed an integrative imaging and processing pipeline which adds 3D context and screening capabilities by microCT (µCT) imaging of the entire paraffin block and adds ultrastructural information by correlative same-slide scanning electron microscopy (SEM). The different modalities are integrated by elastic registration to provide hybrid image datasets. Without compromising standard light microscopic readout, we overcome the limitations of conventional histology by combining and integrating several imaging modalities. The biochemical information contained in histological and immunohistological tissue staining is embedded into the 3D tissue configuration and is amplified by adding ultrastructural visualization of features of interest. By combining µCT and conventional histological processing, specimens can be screened, and specifically preselected areas of interest can be targeted in the subsequent sectioning process. While most of the µCT data shown in the manuscript was acquired at a Synchrotron, we further demonstrate that our workflow can also be applied using X-ray microscopy.
Collapse
Affiliation(s)
- Johanna Reiser
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Jonas Albers
- Biological X-ray Imaging, European Molecular Biology Laboratory, Notkestrasse 85, 22607, Hamburg, Germany
| | - Angelika Svetlove
- Biological X-ray Imaging, European Molecular Biology Laboratory, Notkestrasse 85, 22607, Hamburg, Germany
| | - Mara Mertiny
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Felix K F Kommoss
- Dept. of Pathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Constantin Schwab
- Dept. of Pathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Anna Schneemann
- Carl Zeiss Microscopy GmbH, Carl-Zeiss-Strasse 22, 73447, Oberkochen, Germany
| | - Giuliana Tromba
- Italian synchrotron "Elettra", Strada Statale 14 - km 163,5 in AREA Science Park, Basovizza, Italy
| | - Irene Wacker
- 3DMM2O, Cluster of Excellence (EXC-2082/1-390761711) and Cryo Electron Microscopy, Heidelberg University / Medical Faculty, BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Ronald E Curticean
- 3DMM2O, Cluster of Excellence (EXC-2082/1-390761711) and Cryo Electron Microscopy, Heidelberg University / Medical Faculty, BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Rasmus R Schroeder
- 3DMM2O, Cluster of Excellence (EXC-2082/1-390761711) and Cryo Electron Microscopy, Heidelberg University / Medical Faculty, BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Department of Diagnostic Radiology and Neuroradiology, University Hospital Greifswald, Ferdinand-Sauerbruch-Strasse, 17475, Greifswald, Germany
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
- Italian synchrotron "Elettra", Strada Statale 14 - km 163,5 in AREA Science Park, Basovizza, Italy.
- Department of Clinical and Interventional Radiology, University Medicine Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.
- Translational Molecular Imaging, MPI for Multidisciplinary Sciences - City Campus, Herman Rein Str. 3, 37075, Goettingen, Germany.
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Department of Diagnostic Radiology and Neuroradiology, University Hospital Greifswald, Ferdinand-Sauerbruch-Strasse, 17475, Greifswald, Germany
| |
Collapse
|
2
|
Crossley M, Simon A, Marathe S, Rau C, Roth A, Marra V, Staras K. Functional mapping of the molluscan brain guided by synchrotron X-ray tomography. Proc Natl Acad Sci U S A 2025; 122:e2422706122. [PMID: 40014565 PMCID: PMC11892647 DOI: 10.1073/pnas.2422706122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Molluscan brains are composed of morphologically consistent and functionally interrogable neurons, offering rich opportunities for understanding how neural circuits drive behavior. Nonetheless, detailed component-level CNS maps are often lacking, total neuron numbers are unknown, and organizational principles remain poorly defined, limiting a full and systematic characterization of circuit operation. Here, we establish an accessible, generalizable approach, harnessing synchrotron X-ray tomography, to rapidly determine the three-dimensional structure of the multimillimeter-scale CNS of Lymnaea. Focusing on the feeding ganglia, we generate a full neuron-level reconstruction, revealing key design principles and revising cell count estimates upward threefold. Our atlas uncovers the superficial but also nonsuperficial ganglionic architecture, reveals the cell organization in normally hidden regions-ganglionic "dark sides"-and details features of single-neuron morphology, together guiding targeted follow-up functional investigation based on intracellular recordings. Using this approach, we identify three pivotal neuron classes: a command-like food-signaling cell type, a feeding central pattern generator interneuron, and a unique behavior-specific motoneuron, together significantly advancing understanding of the function of this classical control circuit. Combining our morphological and electrophysiological data, we also establish a functional CNS atlas in Lymnaea as a shared and scalable resource for the research community. Our approach enables the rapid construction of cell atlases in large-scale nervous systems, with key relevance to functional circuit interrogation in a diverse range of model organisms.
Collapse
Affiliation(s)
- Michael Crossley
- Department of Neuroscience, University of Sussex, BrightonBN1 9QG, United Kingdom
| | - Anna Simon
- Wolfson Institute for Biomedical Research, University College London, LondonWC1E 6BT, United Kingdom
| | - Shashidhara Marathe
- Diamond Light Source, Harwell Science and Innovation Campus, DidcotOX11 0DE, United Kingdom
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, DidcotOX11 0DE, United Kingdom
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College London, LondonWC1E 6BT, United Kingdom
| | - Vincenzo Marra
- Department of Neuroscience, University of Sussex, BrightonBN1 9QG, United Kingdom
| | - Kevin Staras
- Department of Neuroscience, University of Sussex, BrightonBN1 9QG, United Kingdom
| |
Collapse
|
3
|
Gilloteaux J, Charlier C, Suain V, Nicaise C. Astrocyte alterations during Osmotic Demyelination Syndrome: intermediate filaments, aggresomes, proteasomes, and glycogen storages. Ultrastruct Pathol 2025; 49:170-215. [PMID: 40062739 DOI: 10.1080/01913123.2025.2468700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION A murine model mimicking the human osmotic demyelination syndrome (ODS) revealed with histology demyelinated alterations in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei 12 h and 48 h after chronic hyponatremia due to a fast reinstatement of osmolality. Abnormal expression astrocyte markers ALDHL1 and GFAP with immunohistochemistry in these ODS altered zones, prompted aims to verify in both protoplasmic and fibrillar astrocytes with ultrastructure those changes and other associated subcellular modifications. METHOD This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6), and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of those four groups of mice, with LM and ultrastructure microscopy, the thalamic zones included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3) samples. There, comparisons between astrocytes included organelles, GFAP, and glycogen content changes. RESULTS Thalamic ODS epicenter damages comprised both protoplasmic (PA) and fibrillar (FA) astrocyte necroses along with those of neuropil destructions and neuron Wallerian demyelinated injuries surrounded by a centrifugal region gradient revealing worse to mild destructions. Ultrastructure aspects of resilient HN and ODS12h PAs disclosed altered mitochondria and accumulations of beta- to alpha-glycogen granules that became eventually captured into phagophores as glycophagosomes in ODS48h. HN and ODS12h time lapse FAs accumulated ribonucleoproteins, cytoskeletal aggresomes, and proteasomes but distant and resilient ODS48h FAs maintained GFAP fibrils along with typical mitochondria and dispersed β-glycogen, including in their neuropil surroundings. Thus, ODS triggered astrocyte injuries that involved both post-transcriptional and post-translational modifications such that astrocytes were unable to use glycogen and metabolites due to their own mitochondria defects while accumulated stalled ribonucleoproteins, cytoskeletal aggresomes were associated with proteasomes and GFAP ablation. Resilient but distant astrocytes revealed restitution of amphibolism where typical carbohydrate storages were revealed along with GFAP, as tripartite extensions supply for restored nerve axon initial segments, neural Ranvier's junctions, and oligodendrocyte -neuron junctional contacts. CONCLUSION ODS caused astrocyte damage associated with adjacent neuropil destruction that included a regional demyelination caused by a loss of dispatched energetic and metabolic exchanges within the injured region, bearing proportional and collateral centrifugal injuries, which involved reactive repairs time after rebalanced osmolarity.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
- Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at the Northumbria University, Newcastle upon Tyne, UK
| | - Corry Charlier
- Electron Microscopy Platform, MORPH-IM, Université de Namur, Bruxelles, Belgium
| | - Valérie Suain
- CMMI - The Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Charles Nicaise
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Albers J, Svetlove A, Duke E. Synchrotron X-ray imaging of soft biological tissues - principles, applications and future prospects. J Cell Sci 2024; 137:jcs261953. [PMID: 39440473 PMCID: PMC11529875 DOI: 10.1242/jcs.261953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Synchrotron-based tomographic phase-contrast X-ray imaging (SRµCT or SRnCT) is a versatile isotropic three-dimensional imaging technique that can be used to study biological samples spanning from single cells to human-sized specimens. SRµCT and SRnCT take advantage of the highly brilliant and coherent X-rays produced by a synchrotron light source. This enables fast data acquisition and enhanced image contrast for soft biological samples owing to the exploitation of phase contrast. In this Review, we provide an overview of the basics behind the technique, discuss its applications for biologists and provide an outlook on the future of this emerging technique for biology. We introduce the latest advances in the field, such as whole human organs imaged with micron resolution, using X-rays as a tool for virtual histology and resolving neuronal connections in the brain.
Collapse
Affiliation(s)
- Jonas Albers
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Angelika Svetlove
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Elizabeth Duke
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Oz S, Saar G, Olszakier S, Heinrich R, Kompanets MO, Berlin S. Revealing the MRI-Contrast in Optically Cleared Brains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400316. [PMID: 38647385 PMCID: PMC11165557 DOI: 10.1002/advs.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The current consensus holds that optically-cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue-clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI-contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast. Furthermore, it remains unknown whether non-delipidating clearing methods can produce MRI-compatible specimens or whether MRI-contrast can be re-established. These limitations hinder the development of multimodal MRI-light-microscopy (LM) imaging approaches. This study assesses the relation between MRI-contrast, and delipidation in optically-cleared whole brains following different tissue-clearing approaches. It is demonstrated that uDISCO and ECi-brains are MRI-compatible upon tissue rehydration, despite both methods' substantial delipidating-nature. It is also demonstrated that, whereas Scale-clearing preserves most lipids, Scale-cleared brain lack MRI-contrast. Furthermore, MRI-contrast is restored to lipid-free CLARITY-brains without introducing lipids. Our results thereby dissociate between the essentiality of lipids to MRI-contrast. A tight association is found between tissue expansion, hyperhydration and loss of MRI-contrast. These findings then enabled us to develop a multimodal MRI-LM-imaging approach, opening new avenues to bridge between the micro- and mesoscale for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Shimrit Oz
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Galit Saar
- Biomedical Core FacilityFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Shunit Olszakier
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Ronit Heinrich
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Mykhail O. Kompanets
- L.M. Litvinenko Institute of Physico‐Organic Chemistry and Coal ChemistryNational Academy of Sciences of UkraineKyivUkraine
| | - Shai Berlin
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| |
Collapse
|
6
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
7
|
Hu Z, Zhang Y, Li P, Batey D, Maiden A. Near-field multi-slice ptychography: quantitative phase imaging of optically thick samples with visible light and X-rays. OPTICS EXPRESS 2023; 31:15791-15809. [PMID: 37157672 DOI: 10.1364/oe.487002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ptychography is a form of lens-free coherent diffractive imaging now used extensively in electron and synchrotron-based X-ray microscopy. In its near-field implementation, it offers a route to quantitative phase imaging at an accuracy and resolution competitive with holography, with the added advantages of extended field of view and blind deconvolution of the illumination beam profile from the sample image. In this paper we show how near-field ptychography can be combined with a multi-slice model, adding to this list of advantages the unique ability to recover high-resolution phase images of larger samples, whose thickness places them beyond the depth of field of alternative methods.
Collapse
|
8
|
Li BZ, Sumera A, Booker SA, McCullagh EA. Current Best Practices for Analysis of Dendritic Spine Morphology and Number in Neurodevelopmental Disorder Research. ACS Chem Neurosci 2023; 14:1561-1572. [PMID: 37070364 PMCID: PMC10161226 DOI: 10.1021/acschemneuro.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Quantitative methods for assessing neural anatomy have rapidly evolved in neuroscience and provide important insights into brain health and function. However, as new techniques develop, it is not always clear when and how each may be used to answer specific scientific questions posed. Dendritic spines, which are often indicative of synapse formation and neural plasticity, have been implicated across many brain regions in neurodevelopmental disorders as a marker for neural changes reflecting neural dysfunction or alterations. In this Perspective we highlight several techniques for staining, imaging, and quantifying dendritic spines as well as provide a framework for avoiding potential issues related to pseudoreplication. This framework illustrates how others may apply the most rigorous approaches. We consider the cost-benefit analysis of the varied techniques, recognizing that the most sophisticated equipment may not always be necessary for answering some research questions. Together, we hope this piece will help researchers determine the best strategy toward using the ever-growing number of techniques available to determine neural changes underlying dendritic spine morphology in health and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ben-Zheng Li
- Department
of Physiology and Biophysics, University
of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anna Sumera
- Simons
Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Sam A Booker
- Simons
Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Elizabeth A. McCullagh
- Department
of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
9
|
Frost J, Schmitzer B, Töpperwien M, Eckermann M, Franz J, Stadelmann C, Salditt T. 3d virtual histology reveals pathological alterations of cerebellar granule cells in multiple sclerosis. Neuroscience 2023; 520:18-38. [PMID: 37061161 DOI: 10.1016/j.neuroscience.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
We investigate structural properties of neurons in the granular layer of human cerebellum with respect to their involvement in multiple sclerosis (MS). To this end we analyze data recorded by X-ray phase contrast tomography from tissue samples collected post mortem from a MS and a healthy control group. Using automated segmentation and histogram analysis based on optimal transport theory (OT) we find that the distributions representing nuclear structure in the granular layer move to a more compact nuclear state, i.e. smaller, denser and more heterogeneous nuclei in MS. We have previously made a similar observation for neurons of the dentate gyrus in Alzheimer's disease, suggesting that more compact structure of neuronal nuclei which we attributed to increased levels of heterochromatin, may possibly represent a more general phenomenon of cellular senescence associated with neurodegeneration.
Collapse
Affiliation(s)
- Jakob Frost
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany
| | - Bernhard Schmitzer
- Institute of Computer Science, Georg-August Universität Göttingen, Germany
| | - Mareike Töpperwien
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Present address: ESRF, Grenoble, France; Present adress: YXLON GmbH, Hamburg, Germany
| | - Marina Eckermann
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Present address: ESRF, Grenoble, France
| | - Jonas Franz
- Institute of Neuropathology, Universical Medical Center Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, Universical Medical Center Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August Universität Göttingen, Germany
| | - Tim Salditt
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August Universität Göttingen, Germany
| |
Collapse
|
10
|
Abstract
The ability to view biomolecules in cells and measure changes in their structure, quantity, distribution, and interaction is fundamental to understanding biology. By coupling nano -scale resolution with meso and even macro scale volumes, the enhanced focused ion beam-scanning electron microscopy (FIB-SEM) pipeline has enabled numerous transformational discoveries in life science, many of which were major new landmarks in their fields. This pipeline consists of EM sample preparation, FIB-SEM sample preparation, FIB-SEM imaging, data alignment, and image analysis. While the EM sample preparation, data alignment, and image analysis are consistent with those from other volume Electron Microscopy (vEM) approaches, the enhanced FIB-SEM sample preparation and imaging are unique to the rest of comparable methods. We here illustrate the detailed methods of enhanced FIB-SEM sample preparation and image acquisition that have not been previously described. These methods can also be applied to the conventional FIB-SEM platforms for improved image acquisition quality and pipeline throughput.
Collapse
Affiliation(s)
- Song Pang
- Yale School of Medicine, New Haven, CT, United States.
| | - C Shan Xu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Bosch C, Lindenau J, Pacureanu A, Peddie CJ, Majkut M, Douglas AC, Carzaniga R, Rack A, Collinson L, Schaefer AT, Stegmann H. Femtosecond laser preparation of resin embedded samples for correlative microscopy workflows in life sciences. APPLIED PHYSICS LETTERS 2023; 122:143701. [PMID: 37151852 PMCID: PMC10162021 DOI: 10.1063/5.0142405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023]
Abstract
Correlative multimodal imaging is a useful approach to investigate complex structural relations in life sciences across multiple scales. For these experiments, sample preparation workflows that are compatible with multiple imaging techniques must be established. In one such implementation, a fluorescently labeled region of interest in a biological soft tissue sample can be imaged with light microscopy before staining the specimen with heavy metals, enabling follow-up higher resolution structural imaging at the targeted location, bringing context where it is required. Alternatively, or in addition to fluorescence imaging, other microscopy methods, such as synchrotron x-ray computed tomography with propagation-based phase contrast or serial blockface scanning electron microscopy, might also be applied. When combining imaging techniques across scales, it is common that a volumetric region of interest (ROI) needs to be carved from the total sample volume before high resolution imaging with a subsequent technique can be performed. In these situations, the overall success of the correlative workflow depends on the precise targeting of the ROI and the trimming of the sample down to a suitable dimension and geometry for downstream imaging. Here, we showcase the utility of a femtosecond laser (fs laser) device to prepare microscopic samples (1) of an optimized geometry for synchrotron x-ray tomography as well as (2) for volume electron microscopy applications and compatible with correlative multimodal imaging workflows that link both imaging modalities.
Collapse
Affiliation(s)
- Carles Bosch
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | | | | | - Marta Majkut
- ESRF, The European Synchrotron, Grenoble, France
| | | | - Raffaella Carzaniga
- Electron Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | | | - Lucy Collinson
- Electron Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
12
|
Rzepka N, Bogovic JA, Moore JA. Toward scalable reuse of vEM data: OME-Zarr to the rescue. Methods Cell Biol 2023; 177:359-387. [PMID: 37451774 DOI: 10.1016/bs.mcb.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The growing size of EM volumes is a significant barrier to findable, accessible, interoperable, and reusable (FAIR) sharing. Storage, sharing, visualization and processing are challenging for large datasets. Here we discuss a recent development toward the standardized storage of volume electron microscopy (vEM) data which addresses many of the issues that researchers face. The OME-Zarr format splits data into more manageable, performant chunks enabling streaming-based access, and unifies important metadata such as multiresolution pyramid descriptions. The file format is designed for centralized and remote storage (e.g., cloud storage or file system) and is therefore ideal for sharing large data. By coalescing on a common, community-wide format, these benefits will expand as ever more data is made available to the scientific community.
Collapse
Affiliation(s)
| | - John A Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Joshua A Moore
- German BioImaging-Society for Microscopy and Image Analysis e.V., Konstanz, Germany
| |
Collapse
|
13
|
Chequer Charan D, Hua Y, Wang H, Huang W, Wang F, Elgoyhen AB, Boergens KM, Di Guilmi MN. Volume electron microscopy reveals age-related circuit remodeling in the auditory brainstem. Front Cell Neurosci 2022; 16:1070438. [PMID: 36589288 PMCID: PMC9799098 DOI: 10.3389/fncel.2022.1070438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) is an integral component of the auditory brainstem circuitry involved in sound localization. The giant presynaptic nerve terminal with multiple active zones, the calyx of Held (CH), is a hallmark of this nucleus, which mediates fast and synchronized glutamatergic synaptic transmission. To delineate how these synaptic structures adapt to reduced auditory afferents due to aging, we acquired and reconstructed circuitry-level volumes of mouse MNTB at different ages (3 weeks, 6, 18, and 24 months) using serial block-face electron microscopy. We used C57BL/6J, the most widely inbred mouse strain used for transgenic lines, which displays a type of age-related hearing loss. We found that MNTB neurons reduce in density with age. Surprisingly we observed an average of approximately 10% of poly-innervated MNTB neurons along the mouse lifespan, with prevalence in the low frequency region. Moreover, a tonotopy-dependent heterogeneity in CH morphology was observed in young but not in older mice. In conclusion, our data support the notion that age-related hearing impairments can be in part a direct consequence of several structural alterations and circuit remodeling in the brainstem.
Collapse
Affiliation(s)
- Daniela Chequer Charan
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Huang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Kevin M. Boergens
- Department of Physics, The University of Illinois at Chicago, Chicago, IL, United States,*Correspondence: Kevin M. Boergens Mariano N. Di Guilmi
| | - Mariano N. Di Guilmi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina,*Correspondence: Kevin M. Boergens Mariano N. Di Guilmi
| |
Collapse
|
14
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
15
|
Meechan K, Guan W, Riedinger A, Stankova V, Yoshimura A, Pipitone R, Milberger A, Schaar H, Romero-Brey I, Templin R, Peddie CJ, Schieber NL, Jones ML, Collinson L, Schwab Y. Crosshair, semi-automated targeting for electron microscopy with a motorised ultramicrotome. eLife 2022; 11:e80899. [PMID: 36378502 PMCID: PMC9665851 DOI: 10.7554/elife.80899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
Volume electron microscopy (EM) is a time-consuming process - often requiring weeks or months of continuous acquisition for large samples. In order to compare the ultrastructure of a number of individuals or conditions, acquisition times must therefore be reduced. For resin-embedded samples, one solution is to selectively target smaller regions of interest by trimming with an ultramicrotome. This is a difficult and labour-intensive process, requiring manual positioning of the diamond knife and sample, and much time and training to master. Here, we have developed a semi-automated workflow for targeting with a modified ultramicrotome. We adapted two recent commercial systems to add motors for each rotational axis (and also each translational axis for one system), allowing precise and automated movement. We also developed a user-friendly software to convert X-ray images of resin-embedded samples into angles and cutting depths for the ultramicrotome. This is provided as an open-source Fiji plugin called Crosshair. This workflow is demonstrated by targeting regions of interest in a series of Platynereis dumerilii samples.
Collapse
Affiliation(s)
- Kimberly Meechan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | - Wei Guan
- Francis Crick InstituteLondonUnited Kingdom
| | - Alfons Riedinger
- Electronic Workshop, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Vera Stankova
- Electronic Workshop, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | | | - Rosa Pipitone
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Arthur Milberger
- Mechanical Workshop, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Helmuth Schaar
- Mechanical Workshop, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Inés Romero-Brey
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Rachel Templin
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | | | - Nicole L Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | | | | | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| |
Collapse
|
16
|
Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, Pape C, Parton RG, Schieber NL, Schwab Y, Titze B, Verkade P, Aubrey A, Collinson LM. Volume electron microscopy. NATURE REVIEWS. METHODS PRIMERS 2022; 2:51. [PMID: 37409324 PMCID: PMC7614724 DOI: 10.1038/s43586-022-00131-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 07/07/2023]
Abstract
Life exists in three dimensions, but until the turn of the century most electron microscopy methods provided only 2D image data. Recently, electron microscopy techniques capable of delving deep into the structure of cells and tissues have emerged, collectively called volume electron microscopy (vEM). Developments in vEM have been dubbed a quiet revolution as the field evolved from established transmission and scanning electron microscopy techniques, so early publications largely focused on the bioscience applications rather than the underlying technological breakthroughs. However, with an explosion in the uptake of vEM across the biosciences and fast-paced advances in volume, resolution, throughput and ease of use, it is timely to introduce the field to new audiences. In this Primer, we introduce the different vEM imaging modalities, the specialized sample processing and image analysis pipelines that accompany each modality and the types of information revealed in the data. We showcase key applications in the biosciences where vEM has helped make breakthrough discoveries and consider limitations and future directions. We aim to show new users how vEM can support discovery science in their own research fields and inspire broader uptake of the technology, finally allowing its full adoption into mainstream biological imaging.
Collapse
Affiliation(s)
- Christopher J. Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kimberly Meechan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Present address: Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kristina D. Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Constantin Pape
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert G. Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Yannick Schwab
- Cell Biology and Biophysics Unit/ Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Aubrey Aubrey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| |
Collapse
|
17
|
Zhang Y, Ackels T, Pacureanu A, Zdora MC, Bonnin A, Schaefer AT, Bosch C. Sample Preparation and Warping Accuracy for Correlative Multimodal Imaging in the Mouse Olfactory Bulb Using 2-Photon, Synchrotron X-Ray and Volume Electron Microscopy. Front Cell Dev Biol 2022; 10:880696. [PMID: 35756997 PMCID: PMC9213878 DOI: 10.3389/fcell.2022.880696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time.
Collapse
Affiliation(s)
- Yuxin Zhang
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alexandra Pacureanu
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- ESRF, The European Synchrotron, Grenoble, France
| | - Marie-Christine Zdora
- Department of Physics and Astronomy, University College London, London, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- School of Physics and Astronomy, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Paul Scherrer Institut, Villigen, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, Switzerland
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Carles Bosch
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|