1
|
Ouyang Z, Sheng G, Zhong Y, Wang J, Cai J, Deng S, Deng Q. Palladium Single Atom-supported Covalent Organic Frameworks for Aqueous-phase Hydrogenative Hydrogenolysis of Aromatic Aldehydes via Hydrogen Heterolysis. Angew Chem Int Ed Engl 2025; 64:e202418790. [PMID: 39503318 DOI: 10.1002/anie.202418790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Developing a method for the tandem hydrogenative hydrogenolysis of bio-based furfuryl aldehydes to methylfurans is crucial for synthesizing sustainable biofuels and chemicals; however, it poses a challenge due to the easy hydrogenation of the C=C bond and difficult cleavage of the C-O bond. Herein, a palladium (Pd) single-atom-supported covalent organic framework was fabricated and showed a unique 2,5-dimethylfuran yield of up to 98.2 % when reacted with 5-methyl furfuryl aldehyde in an unprecedented water solvent at 30 °C. Furthermore, it exhibited excellent catalytic universality while converting various furfuryl-, benzyl-, and heterocyclic aldehydes at room temperature. The analysis of the catalytic mechanism confirmed that H2 was heterolytically activated on the Pd-N pair and triggered the keto-enol tautomerism of the covalent organic frameworks (COFs) host, resulting in H--Pd⋅⋅⋅O-H+ sites. These sites served as novel asymmetric hydrogenation sites for the C=O group and hydrogenolysis sites for the C-OH group through a scarce SN2 mechanism. This study demonstrated remarkable bifunctional catalysis through the H2-induced keto-enol tautomerism of COF catalysts for the atypical preparation of methyl aromatics in a water solvent at room temperature.
Collapse
Affiliation(s)
- Zhihao Ouyang
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, College of Chemical Engineering, Zhejiang University of Technology, No. 18 Chaowang Avenue, Hangzhou, 310014, China
| | - Yao Zhong
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Jianxin Cai
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551E. Tyler Mall, Tempe, AZ, 85287, USA
| | - Qiang Deng
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| |
Collapse
|
2
|
Chen H, Wang Z, Cui H, Cao S, Chen Z, Zhang Y, Wei S, Liu S, Wei B, Lu X. In-situ construction of iron-modified nickel nanoparticles assisted by hexamethylenetetramine with the internal and external collaboration for highly selective electrocatalytic carbon dioxide reduction. J Colloid Interface Sci 2024; 672:75-85. [PMID: 38833736 DOI: 10.1016/j.jcis.2024.05.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Carbon dioxide (CO2) electroreduction provides a sustainable route for realizing carbon neutrality and energy supply. Up to now, challenges remain in employing abundant and inexpensive nickel materials as candidates for CO2 reduction due to their low activity and favorable hydrogen evolution. Here, the representative iron-modified nickel nanoparticles embedded in nitrogen-doped carbon (Ni1-Fe0.125-NC) with the porous botryoid morphology were successfully developed. Hexamethylenetetramine is used as nitrogen-doped carbon source. The collaboration of internal lattice expansion with electron effect and external confinement effect with size effect endows the significant enhancement in electrocatalytic CO2 reduction. The optimized Ni1-Fe0.125-NC exhibits broad potential ranges for continuous carbon monoxide (CO) production. A superb CO Faradaic efficiency (FECO) of 85.0 % realized at -1.1 V maintains a longtime durability over 35 h, which exceeds many state-of-the-art metal catalysts. Theoretical calculations further confirm that electron redistribution promotes the desorption of CO in the process for favorable CO production. This work opens a new avenue to design efficient nickel-based materials by considering the intrinsic structure and external confinement for CO2 reduction.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Science, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Hongzhi Cui
- Jinzhou Oil Production Plant of Liaohe Oilfield, CNPC, PR China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Zengxuan Chen
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Yi Zhang
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Shuxian Wei
- College of Science, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China.
| | - Baojun Wei
- College of Science, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China.
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China.
| |
Collapse
|
3
|
Li G, Wang R, Pang J, Wang A, Li N, Zhang T. Production of Renewable Hydrocarbon Biofuels with Lignocellulose and Its Derivatives over Heterogeneous Catalysts. Chem Rev 2024; 124:2889-2954. [PMID: 38483065 DOI: 10.1021/acs.chemrev.2c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In recent years, the issues of global warming and CO2 emission reduction have garnered increasing global attention. In the 21st Conference of the Parties (convened in Paris in 2015), 179 nations and the European Union signed a pivotal agreement to limit the global temperature increase of this century to well below 2 K above preindustrial levels. To fulfill this objective, extensive research has been conducted to use renewable energy sources as potential replacements for traditional fossil fuels. Among them, the production of hydrocarbon transportation fuels from CO2-neutral and renewable biomass has proven to be a particularly promising solution due to its compatibility with existing infrastructure. This review systematically summarizes research progress in the synthesis of liquid hydrocarbon biofuels from lignocellulose during the past two decades. Based on the chemical structure (including n-paraffins, iso-paraffins, aromatics, and cycloalkanes) of hydrocarbon transportation fuels, the synthesis pathways of these biofuels are discussed in four separate sections. Furthermore, this review proposes three guiding principles for the design of practical hydrocarbon biofuels, providing insights into future directions for the development of viable biomass-derived liquid fuels.
Collapse
Affiliation(s)
- Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ran Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Sinopec Beijing Research Institute of Chemical Industry Yanshan Branch, Beijing 102500, China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Shao P, Wan YM, Yi L, Chen S, Zhang HX, Zhang J. Enhancing Electroreduction CO 2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305199. [PMID: 37775943 DOI: 10.1002/smll.202305199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Indexed: 10/01/2023]
Abstract
Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.
Collapse
Affiliation(s)
- Ping Shao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yu-Mei Wan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Luocai Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shumei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
5
|
Wei X, Liu Y, Zhu X, Bo S, Xiao L, Chen C, Nga TTT, He Y, Qiu M, Xie C, Wang D, Liu Q, Dong F, Dong CL, Fu XZ, Wang S. Dynamic Reconstitution Between Copper Single Atoms and Clusters for Electrocatalytic Urea Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300020. [PMID: 36744440 DOI: 10.1002/adma.202300020] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/29/2023] [Indexed: 05/05/2023]
Abstract
Electrocatalytic CN coupling between carbon dioxide and nitrate has emerged to meet the comprehensive demands of carbon footprint closing, valorization of waste, and sustainable manufacture of urea. However, the identification of catalytic active sites and the design of efficient electrocatalysts remain a challenge. Herein, the synthesis of urea catalyzed by copper single atoms decorated on a CeO2 support (denoted as Cu1 -CeO2 ) is reported. The catalyst exhibits an average urea yield rate of 52.84 mmol h-1 gcat. -1 at -1.6 V versus reversible hydrogen electrode. Operando X-ray absorption spectra demonstrate the reconstitution of copper single atoms (Cu1 ) to clusters (Cu4 ) during electrolysis. These electrochemically reconstituted Cu4 clusters are real active sites for electrocatalytic urea synthesis. Favorable CN coupling reactions and urea formation on Cu4 are validated using operando synchrotron-radiation Fourier transform infrared spectroscopy and theoretical calculations. Dynamic and reversible transformations of clusters to single-atom configurations occur when the applied potential is switched to an open-circuit potential, endowing the catalyst with superior structural and electrochemical stabilities.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410012, China
- College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yingying Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410012, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226007, China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230052, China
| | - Lei Xiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610056, China
| | - Chen Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410012, China
| | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City, Taiwan, 251301, China
| | - Yuanqing He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410012, China
| | - Mengyi Qiu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410012, China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410012, China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410012, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230052, China
| | - Fan Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610056, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, Taiwan, 251301, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410012, China
| |
Collapse
|
6
|
Deng Q, Zhou R, Zhang YC, Li X, Li J, Tu S, Sheng G, Wang J, Zeng Z, Yoskamtorn T, Edman Tsang SC. H + -H - Pairs in Partially Oxidized MAX Phases for Bifunctional Catalytic Conversion of Furfurals into Linear Ketones. Angew Chem Int Ed Engl 2023; 62:e202211461. [PMID: 36156351 DOI: 10.1002/anie.202211461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Currently, less favorable C=O hydrogenation and weak concerted acid catalysis cause unsatisfactory catalytic performance in the upgrading of biomass-derived furfurals (i.e., furfural, 5-methyl furfural, and 5-hydroxymethyl furfural) to ketones (i.e., cyclopentanone, 2,5-hexanedione, and 1-hydroxyl-2,5-hexanedione). A series of partially oxidized MAX phase (i.e., Ti3 AlC2 , Ti2 AlC, Ti3 SiC2 ) supporting Pd catalysts were fabricated, which showed high catalytic activity; Pd/Ti3 AlC2 in particular displayed high performance for conversion of furfurals into targeted ketones. Detailed studies of the catalytic mechanism confirm that in situ hydrogen spillover generates Frustrated Lewis H+ -H- pairs, which not only act as the hydrogenation sites for selective C=O hydrogenation but also provide acid sites for ring opening. The close intimate hydrogenation and acid sites promote bifunctional catalytic reactions, substantially reducing the reported minimum reaction temperature of various furfurals by at least 30-60 °C.
Collapse
Affiliation(s)
- Qiang Deng
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, PR China
| | - Rong Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, PR China.,School of Physics and Materials Science, Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, PR China
| | - Yong-Chao Zhang
- College of Chemical Engineering, Qingdao University of Science & Technology, No. 53 Zhengzhou Road, Qingdao, 266042, PR China
| | - Xiang Li
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, PR China
| | - Jiahui Li
- School of Physics and Materials Science, Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, PR China
| | - Shaobo Tu
- School of Physics and Materials Science, Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, PR China
| | - Guan Sheng
- Center for Electron Microscopy, College of Chemical Engineering, Zhejiang University of Technology, No. 18 Chaowang Avenue, Hangzhou, 310014, PR China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, PR China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, PR China
| | - Tatchamapan Yoskamtorn
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| |
Collapse
|
7
|
Wang H, Liu X, Yang W, Mao G, Meng Z, Wu Z, Jiang HL. Surface-Clean Au 25 Nanoclusters in Modulated Microenvironment Enabled by Metal–Organic Frameworks for Enhanced Catalysis. J Am Chem Soc 2022; 144:22008-22017. [DOI: 10.1021/jacs.2c09136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- He Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Xiyuan Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei071003, P. R. China
| | - Guangyang Mao
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei071003, P. R. China
| | - Zheng Meng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, Anhui230031, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| |
Collapse
|
8
|
Wan T, Wang G, Guo Y, Fan X, Zhao J, Zhang X, Qin J, Fang J, Ma J, Long Y. Special direct route for efficient transfer hydrogenation of nitroarenes at room temperature by monatomic Zr tuned α-Fe2O3. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Qian G, Lyu W, Zhao X, Zhou J, Fang R, Wang F, Li Y. Efficient Photoreduction of Diluted CO
2
to Tunable Syngas by Ni−Co Dual Sites through d‐band Center Manipulation. Angew Chem Int Ed Engl 2022; 61:e202210576. [DOI: 10.1002/anie.202210576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gan Qian
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Wenyuan Lyu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Xin Zhao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Jingyi Zhou
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Ruiqi Fang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Fengliang Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
10
|
Qian G, Lyu W, Zhao X, Zhou J, Fang R, Wang F, Li Y. Efficient Photoreduction of Diluted CO2 to Tunable Syngas by Ni‐Co Dual Sites through d‐band Center Manipulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gan Qian
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Wenyuan Lyu
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Xin Zhao
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Jingyi Zhou
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Ruiqi Fang
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Fengliang Wang
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Yingwei Li
- South China University of Technology School of Chemistry and Chemical Engineering Wushan St. 510640 Guangzhou CHINA
| |
Collapse
|