1
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
2
|
Adachi Y, Terakura S, Osaki M, Okuno Y, Sato Y, Sagou K, Takeuchi Y, Yokota H, Imai K, Steinberger P, Leitner J, Hanajiri R, Murata M, Kiyoi H. Cullin-5 deficiency promotes chimeric antigen receptor T cell effector functions potentially via the modulation of JAK/STAT signaling pathway. Nat Commun 2024; 15:10376. [PMID: 39658572 PMCID: PMC11631977 DOI: 10.1038/s41467-024-54794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a promising therapy for cancer, but factors that enhance the efficacy of CAR T cell remain elusive. Here we perform a genome-wide CRISPR screening to probe genes that regulate the proliferation and survival of CAR T cells following repetitive antigen stimulations. We find that genetic ablation of CUL5, encoding a core element of the multi-protein E3 ubiquitin-protein ligase complex, cullin-RING ligase 5, enhances human CD19 CAR T cell expansion potential and effector functions, potentially via the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. In this regard, CUL5 knockout CD19 CAR T cells show sustained STAT3 and STAT5 phosphorylation, as well as delayed phosphorylation and degradation of JAK1 and JAK3. In vivo, shRNA-mediated knockdown of CUL5 enhances CD19 CAR T treatment outcomes in tumor-bearing mice. Our findings thus imply that targeting CUL5 in the ubiquitin system may enhance CAR T cell effector functions to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Sagou
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirofumi Yokota
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Lv M, Feng Y, Zeng S, Zhang Y, Shen W, Guan W, E X, Zeng H, Zhao R, Yu J. Network pharmacology in combination with bibliometrics analysis on the mechanism of compound Kushen injection in the treatment of radiation pneumonia and lung cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9789-9809. [PMID: 38918234 DOI: 10.1007/s00210-024-03238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Radiation pneumonia is a common adverse reaction during radiotherapy in lung cancer patients, which negatively impacts the quality of life and survival of patients. Recent studies have shown that compound Kushen injection (CKI), a traditional Chinese medicine (TCM), has great anti-inflammatory and anticancer potential, but the mechanism is still unclear. We used CiteSpace, the R package "bibliometrix," and VOSviewers to perform a bibliometrics analysis of 162 articles included from the Web of Science core collection. A network pharmacology-based approach was used to screen effective compounds, screen and predict target genes, analyze biological functions and pathways, and construct regulatory networks and protein interaction networks. Molecular docking experiments were used to identify the affinity of key compounds and core target. The literature metrology analysis revealed that over 90% of the CKI-related studies were conducted by Chinese scholars and institutions, with a predominant focus on tumors, while research on radiation pneumonia remained limited. Our investigation identified 60 active ingredients of CKI, 292 genes associated with radiation pneumonia, 533 genes linked to lung cancer, and 37 common targets of CKI in the treatment of both radiation pneumonia and lung cancer. These core potential targets were found to be significantly associated with the OS of lung cancer patients, and the key compounds exhibited a good docking affinity with these targets. Additionally, GO and KEGG enrichment analysis highlighted that the bioinformatics annotation of these common genes mainly involved ubiquitin protein ligase binding, cytokine receptor binding, and the PI3K/Akt signaling pathway. Our study revealed that the main active components of CKI, primarily quercetin, luteolin, and naringin, might act on major core targets, including AKT1, PTGS2, and PPARG, and further regulated key signaling pathways such as the PI3K/Akt pathway, thereby playing a crucial role in the treatment of radiation pneumonia and lung cancer. Moreover, this study had a certain promotional effect on further clinical application and provided a theoretical basis for subsequent experimental research.
Collapse
Affiliation(s)
- Minghe Lv
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Yue Feng
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Su Zeng
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Yang Zhang
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Wenhao Shen
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Wenhui Guan
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Xiangyu E
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Hongwei Zeng
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China.
| | - Ruping Zhao
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China.
| | - Jingping Yu
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China.
| |
Collapse
|
4
|
Cunha SMF, Lam S, Mallard B, Karrow NA, Cánovas Á. Genomic Regions Associated with Resistance to Gastrointestinal Nematode Parasites in Sheep-A Review. Genes (Basel) 2024; 15:187. [PMID: 38397178 PMCID: PMC10888242 DOI: 10.3390/genes15020187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Gastrointestinal nematodes (GINs) can be a major constraint and global challenge to the sheep industry. These nematodes infect the small intestine and abomasum of grazing sheep, causing symptoms such as weight loss, diarrhea, hypoproteinemia, and anemia, which can lead to death. The use of anthelmintics to treat infected animals has led to GIN resistance, and excessive use of these drugs has resulted in residue traced in food and the environment. Resistance to GINs can be measured using multiple traits, including fecal egg count (FEC), Faffa Malan Chart scores, hematocrit, packed cell volume, eosinophilia, immunoglobulin (Ig), and dagginess scores. Genetic variation among animals exists, and understanding these differences can help identify genomic regions associated with resistance to GINs in sheep. Genes playing important roles in the immune system were identified in several studies in this review, such as the CFI and MUC15 genes. Results from several studies showed overlapping quantitative trait loci (QTLs) associated with multiple traits measuring resistance to GINs, mainly FEC. The discovery of genomic regions, positional candidate genes, and QTLs associated with resistance to GINs can help increase and accelerate genetic gains in sheep breeding programs and reveal the genetic basis and biological mechanisms underlying this trait.
Collapse
Affiliation(s)
- Samla Marques Freire Cunha
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Bonnie Mallard
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| |
Collapse
|
5
|
Liao X, Li W, Zhou H, Rajendran BK, Li A, Ren J, Luan Y, Calderwood DA, Turk B, Tang W, Liu Y, Wu D. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8 + T cells. Nat Commun 2024; 15:603. [PMID: 38242867 PMCID: PMC10798966 DOI: 10.1038/s41467-024-44885-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
CD8+ T cells play an important role in anti-tumor immunity. Better understanding of their regulation could advance cancer immunotherapies. Here we identify, via stepwise CRISPR-based screening, that CUL5 is a negative regulator of the core signaling pathways of CD8+ T cells. Knocking out CUL5 in mouse CD8+ T cells significantly improves their tumor growth inhibiting ability, with significant proteomic alterations that broadly enhance TCR and cytokine signaling and their effector functions. Chemical inhibition of neddylation required by CUL5 activation, also enhances CD8 effector activities with CUL5 validated as a major target. Mechanistically, CUL5, which is upregulated by TCR stimulation, interacts with the SOCS-box-containing protein PCMTD2 and inhibits TCR and IL2 signaling. Additionally, CTLA4 is markedly upregulated by CUL5 knockout, and its inactivation further enhances the anti-tumor effect of CUL5 KO. These results together reveal a negative regulatory mechanism for CD8+ T cells and have strong translational implications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hongyue Zhou
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Barani Kumar Rajendran
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ao Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jingjing Ren
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wenwen Tang
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
6
|
Zhang Y, Du L, Wang C, Jiang Z, Duan Q, Li Y, Xie Z, He Z, Sun Y, Huang L, Lu L, Wen C. Neddylation is a novel therapeutic target for lupus by regulating double negative T cell homeostasis. Signal Transduct Target Ther 2024; 9:18. [PMID: 38221551 PMCID: PMC10788348 DOI: 10.1038/s41392-023-01709-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE), a severe autoimmune disorder, is characterized by systemic inflammatory response, autoantibody accumulation and damage to organs. The dysregulation of double-negative (DN) T cells is considered as a crucial commander during SLE. Neddylation, a significant type of protein post-translational modification (PTM), has been well-proved to regulate T cell-mediated immune response. However, the function of neddylation in SLE is still unknown. Here, we reported that neddylation inactivation with MLN4924, a specific inhibitor of NEDD8-activating enzyme E1 (NAE1), or genetic abrogation of Ube2m in T cells decreased DN T cell accumulation and attenuated murine lupus development. Further investigations revealed that inactivation of neddylation blocked Bim ubiquitination degradation and maintained Bim level in DN T cells, contributing to the apoptosis of the accumulated DN T cells in lupus mice. Then double knockout (KO) lupus-prone mice (Ube2m-/-Bim-/-lpr) were generated and results showed that loss of Bim reduced Ube2m deficiency-induced apoptosis in DN T cells and reversed the alleviated lupus progression. Our findings identified that neddylation inactivation promoted Bim-mediated DN T cell apoptosis and attenuated lupus progression. Clinically, we also found that in SLE patients, the proportion of DN T cells was raised and their apoptosis was reduced. Moreover, compared to healthy groups, SLE patients exhibited decreased Bim levels and elevated Cullin1 neddylation levels. Meantime, the inhibition of neddylation induced Bim-dependent apoptosis of DN T cells isolated from SLE patients. Altogether, our findings provide the direct evidence about the function of neddylation during lupus, suggesting a promising therapeutic approach for this disease.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lijun Du
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chenxi Wang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhangsheng Jiang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingchi Duan
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yiping Li
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhijun Xie
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Center of Zhejiang University, Hangzhou, 310029, China
| | - Lin Huang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Chongqing International Institute for Immunology, Chongqing, 400038, China.
| | - Chengping Wen
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Zhang H, Xue K, Li W, Yang X, Gou Y, Su X, Qian F, Sun L. Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity. Nat Commun 2024; 15:252. [PMID: 38177117 PMCID: PMC10766641 DOI: 10.1038/s41467-023-44168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Asthma exacerbations caused by respiratory viral infections are a serious global health problem. Impaired antiviral immunity is thought to contribute to the pathogenesis, but the underlying mechanisms remain understudied. Here using mouse models we find that Cullin5 (CUL5), a key component of Cullin-RING E3 ubiquitin ligase 5, is upregulated and associated with increased neutrophil count and influenza-induced exacerbations of house dust mite-induced asthma. By contrast, CUL5 deficiency mitigates neutrophilic lung inflammation and asthma exacerbations by augmenting IFN-β production. Mechanistically, following thymic stromal lymphopoietin stimulation, CUL5 interacts with O-GlcNAc transferase (OGT) and induces Lys48-linked polyubiquitination of OGT, blocking the effect of OGT on mitochondrial antiviral-signaling protein O-GlcNAcylation and RIG-I signaling activation. Our results thus suggest that, in mouse models, pre-existing allergic injury induces CUL5 expression, impairing antiviral immunity and promoting neutrophilic inflammation for asthma exacerbations. Targeting of the CUL5/IFN-β signaling axis may thereby serve as a possible therapy for treating asthma exacerbations.
Collapse
Affiliation(s)
- Haibo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Keke Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wen Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xinyi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yusen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
8
|
Zhao B, Sun L, Yuan Q, Hao Z, An F, Zhang W, Zhu X, Wang B. BAP31 Knockout in Macrophages Affects CD4 +T Cell Activation through Upregulation of MHC Class II Molecule. Int J Mol Sci 2023; 24:13476. [PMID: 37686286 PMCID: PMC10487781 DOI: 10.3390/ijms241713476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The differentiation of CD4+T cells is a crucial component of the immune response. The spleen and thymus, as immune organs, are closely associated with the differentiation and development of T cells. Previous studies have suggested that BAP31 may play a role in modulating T cell activation, but the specific impact of BAP31 on T cells through macrophages remains uncertain. In this study, we present evidence that BAP31 macrophage conditional knockout (BAP31-MCKO) mice display an enlarged spleen and thymus, accompanied by activated clustering and disrupted differentiation of CD4+T cells. In vitro co-culture studies were conducted to investigate the impact of BAP31-MCKO on the activation and differentiation of CD4+T cells. The examination of costimulatory molecule expression in BMDMs and RAW 264.7 cells, based on the endoplasmic reticulum function of BAP31, revealed an increase in the expression of antigen presenting molecules, particularly MHC-II molecule, in the absence of BAP31 in BMDMs or RAW264.7 cells. These findings suggest that BAP31 plays a role in the activation and differentiation of CD4+T cells by regulating the MHC class II molecule on macrophages. These results provide further support for the importance of BAP31 in developing interaction between macrophages and CD4+T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (B.Z.); (L.S.); (Q.Y.); (Z.H.); (F.A.); (W.Z.); (X.Z.)
| |
Collapse
|
9
|
Huang W, Qian Z, Shi Y, Zhang Z, Hou R, Mei J, Xu J, Ding J. PSMC2 is a Novel Prognostic Biomarker and Predicts Immunotherapeutic Responses: From Pancreatic Cancer to Pan-Cancer. Pharmgenomics Pers Med 2023; 16:747-758. [PMID: 37581119 PMCID: PMC10423611 DOI: 10.2147/pgpm.s418533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Background Proteasome 26S subunit ATPase 2 (PSMC2) is a part of the 19S regulatory complex, which catalyzes the unfolding and transport of substrates into the 20S proteasome. Our previous research demonstrated that PSMC2 participates in the tumorigenesis and progression of pancreatic cancer (PC). However, no systematic analysis has been conducted to conclude its expression pattern and correlation with tumor immunity. Aim To investigate the expression level of PSMC2 in PC, its prognostic value and its relationship with tumor immunity. Methods In numerous public and internal cohorts, the expression, prognostic significance, and immunological connections of PSMC2 in PC were investigated. Additionally, using data from The Cancer Genome Atlas (TCGA), a pan-cancer analysis was carried out to examine PSMC2's immunological assocaition, and the predictive power of PSMC2 for immunotherapy was also evaluated in numerous public cohorts. Results PSMC2 was overexpressed in tumor tissues and linked to unfavorable prognosis in PC. PSMC2 was not only positively correlated with TIICs, also positively correlated with immune checkpoints in PC. In addition to PC, PSMC2 was expected to be an indicator of high immunogenicity in most cancer types. Importantly, PSMC2 could predict the immunotherapeutic responses in various cancer types, including urothelial carcinoma and breast cancer. Conclusion From PC to pan-cancer analysis, we report that PSMC2 is a novel prognostic biomarker in multiple cancer types. PSMC2 is related to the immuno-hot phenotype and predicts the outcome of immunotherapy. Therefore, the current study emphasizes that cancer patients with high PMSC2 expression should actively receive immunotherapy to improve their prognosis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, People's Republic of China
| | - Yuxin Shi
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Zheming Zhang
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Rui Hou
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Jie Mei
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Junying Xu
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Junli Ding
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| |
Collapse
|
10
|
Fathman CG, Yip L, Gómez-Martín D, Yu M, Seroogy CM, Hurt CR, Lin JT, Jenks JA, Nadeau KC, Soares L. How GRAIL controls Treg function to maintain self-tolerance. Front Immunol 2022; 13:1046631. [PMID: 36569931 PMCID: PMC9773990 DOI: 10.3389/fimmu.2022.1046631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) normally maintain self-tolerance. Tregs recognize "self" such that when they are not working properly, such as in autoimmunity, the immune system can attack and destroy one's own tissues. Current therapies for autoimmunity rely on relatively ineffective and too often toxic therapies to "treat" the destructive inflammation. Restoring defective endogenous immune regulation (self-tolerance) would represent a paradigm shift in the therapy of these diseases. One recent approach to restore self-tolerance is to use "low dose IL-2" as a therapy to increase the number of circulating Tregs. However, studies to-date have not demonstrated that low-dose IL-2 therapy can restore concomitant Treg function, and phase 2 studies in low dose IL-2 treated patients with autoimmune diseases have failed to demonstrate significant clinical benefit. We hypothesize that the defect in self-tolerance seen in autoimmunity is not due to an insufficient number of available Tregs, but rather, due to defects in second messengers downstream of the IL-2R that normally control Treg function and stability. Previous studies from our lab and others have demonstrated that GRAIL (a ubiquitin E3 ligase) is important in Treg function. GRAIL expression is markedly diminished in Tregs from patients with autoimmune diseases and allergic asthma and is also diminished in Tregs of mice that are considered autoimmune prone. In the relevant pathway in Tregs, GRAIL normally blocks cullin ring ligase activity, which inhibits IL-2R desensitization in Tregs and consequently promotes Treg function. As a result of this defect in GRAIL expression, the Tregs of patients with autoimmune diseases and allergic asthma degrade IL-2R-associated pJAK1 following activation with low dose IL-2, and thus cannot maintain pSTAT5 expression. pSTAT5 controls the transcription of genes required for Treg function. Additionally, the GRAIL-mediated defect may also allow the degradation of the mTOR inhibitor, DEP domain-containing mTOR interacting protein (Deptor). This can lead to IL-2R activation of mTOR and loss of Treg stability in autoimmune patients. Using a monoclonal antibody to the remnant di-glycine tag on ubiquitinated proteins after trypsin digestion, we identified a protein that was ubiquitinated by GRAIL that is important in Treg function, cullin5. Our data demonstrate that GRAIL acts a negative regulator of IL-2R desensitization by ubiquitinating a lysine on cullin5 that must be neddylated to allow cullin5 cullin ring ligase activity. We hypothesize that a neddylation inhibitor in combination with low dose IL-2 activation could be used to substitute for GRAIL and restore Treg function and stability in the Tregs of autoimmune and allergic asthma patients. However, the neddylation activating enzyme inhibitors (NAEi) are toxic when given systemically. By generating a protein drug conjugate (PDC) consisting of a NAEi bound, via cleavable linkers, to a fusion protein of murine IL-2 (to target the drug to Tregs), we were able to use 1000-fold less of the neddylation inhibitor drug than the amount required for therapeutically effective systemic delivery. The PDC was effective in blocking the onset or the progression of disease in several mouse models of autoimmunity (type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis) and a mouse model of allergic asthma in the absence of detectable toxicity. This PDC strategy represents targeted drug delivery at its best where the defect causing the disease was identified, a drug was designed and developed to correct the defect, and the drug was targeted and delivered only to cells that needed it, maximizing safety and efficacy.
Collapse
Affiliation(s)
- C. Garrison Fathman
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Linda Yip
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Mang Yu
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Christine M. Seroogy
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of Wisconsin, Madison, WI, United States
| | | | - Jack T. Lin
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer A. Jenks
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Kari C. Nadeau
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
- Sean N. Parker Center for Allergy & Asthma Research, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Luis Soares
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States
- IL-2Rx, San Jose, CA, United States
| |
Collapse
|
11
|
Bhat SA, Vasi Z, Adhikari R, Gudur A, Ali A, Jiang L, Ferguson R, Liang D, Kuchay S. Ubiquitin proteasome system in immune regulation and therapeutics. Curr Opin Pharmacol 2022; 67:102310. [PMID: 36288660 PMCID: PMC10163937 DOI: 10.1016/j.coph.2022.102310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
The ubiquitin proteasome system (UPS) is a proteolytic machinery for the degradation of protein substrates that are post-translationally conjugated with ubiquitin polymers through the enzymatic action of ubiquitin ligases, in a process termed ubiquitylation. Ubiquitylation of substrates precedes their proteolysis via proteasomes, a hierarchical feature of UPS. E3-ubiquitin ligases recruit protein substrates providing specificity for ubiquitylation. Innate and adaptive immune system networks are regulated by ubiquitylation and substrate degradation via E3-ligases/UPS. Deregulation of E3-ligases/UPS components in immune cells is involved in the development of lymphomas, neurodevelopmental abnormalities, and cancers. Targeting E3-ligases for therapeutic intervention provides opportunities to mitigate the unintended broad effects of 26S proteasome inhibition. Recently, bifunctional moieties such as PROTACs and molecular glues have been developed to re-purpose E3-ligases for targeted degradation of unwanted aberrant proteins, with a potential for clinical use. Here, we summarize the involvement of E3-ligases/UPS components in immune-related diseases with perspectives.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Zahra Vasi
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Ritika Adhikari
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Anish Gudur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Asceal Ali
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Rachel Ferguson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - David Liang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA.
| |
Collapse
|