1
|
Bouchard G, Zhang W, Ilerten I, Li I, Bhattacharya A, Li Y, Trope W, Shrager JB, Kuo C, Ozawa MG, Giaccia AJ, Tian L, Plevritis SK. A quantitative spatial cell-cell colocalizations framework enabling comparisons between in vitro assembloids and pathological specimens. Nat Commun 2025; 16:1392. [PMID: 39915493 PMCID: PMC11802768 DOI: 10.1038/s41467-024-55129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 11/29/2024] [Indexed: 02/09/2025] Open
Abstract
Spatial omics is enabling unprecedented tissue characterization, but the ability to adequately compare spatial features across samples under different conditions is lacking. We propose a quantitative framework that catalogs significant, normalized, colocalizations between pairs of cell subpopulations, enabling comparisons among a variety of biological samples. We perform cell-pair colocalization analysis on multiplexed immunofluorescence images of assembloids constructed with lung adenocarcinoma (LUAD) organoids and cancer-associated fibroblasts derived from human tumors. Our data show that assembloids recapitulate human LUAD tumor-stroma spatial organization, justifying their use as a tool for investigating the spatial biology of human disease. Intriguingly, drug-perturbation studies identify drug-induced spatial rearrangements that also appear in treatment-naïve human tumor samples, suggesting potential directions for characterizing spatial (re)-organization related to drug resistance. Moreover, our work provides an opportunity to quantify spatial data across different samples, with the common goal of building catalogs of spatial features associated with disease processes and drug response.
Collapse
Affiliation(s)
- Gina Bouchard
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ilayda Ilerten
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Irene Li
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Asmita Bhattacharya
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Yuanyuan Li
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Winston Trope
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Joseph B Shrager
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Calvin Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael G Ozawa
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
- Department of Oncology, University of Oxford, Oxford, UK
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Kowalewski KM, Adair SJ, Talkington A, Wieder JJ, Pitarresi JR, Perez-Vale K, Chu B, Dolatshahi S, Sears R, Stanger BZ, Bauer TW, Lazzara MJ. Hypoxia-induced histone methylation and NF-κB activation in pancreas cancer fibroblasts promote EMT-supportive growth factor secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635486. [PMID: 39974981 PMCID: PMC11838405 DOI: 10.1101/2025.01.30.635486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment contains hypoxic tissue subdomains and cancer-associated fibroblasts (CAFs) of multiple subtypes that play tumor-promoting and -restraining roles. Here, we demonstrate that hypoxia promotes an inflammatory-like CAF phenotype and that hypoxic CAFs selectively promote epithelial-mesenchymal transition (EMT) in PDAC cancer cells through growth factor-mediated cell crosstalk. By analyzing patient tumor single-cell transcriptomics and conducting an inhibitor screen, we identified IGF-2 and HGF as specific EMT-inducing growth factors produced by hypoxic CAFs. We further found that reactive oxygen species-activated NF-κB cooperates with hypoxia-dependent histone methylation to promote IGF-2 and HGF expression in hypoxic CAFs. In lineage-traced autochthonous PDAC mouse tumors, hypoxic CAFs resided preferentially near hypoxic, mesenchymal cancer cells. However, in subcutaneous tumors engineered with hypoxia fate-mapped CAFs, once-hypoxic re-oxygenated CAFs lacked a spatial correlation with mesenchymal cancer cells. Thus, hypoxia promotes reversible CAF-malignant cell interactions that drive EMT through druggable signaling pathways. One-sentence summary We show that hypoxic fibroblasts in pancreas cancer leverage histone methylation and ROS-mediated NF-κB activation to produce growth factors that drive epithelial-mesenchymal transition in malignant cells, demonstrating how tumor stromal features cooperate to initiate a signaling process for disease progression.
Collapse
|
3
|
Chen YI, Tien SC, Ko YL, Chang CC, Hsu MF, Chien HJ, Peng HY, Jeng YM, Tien YW, Chang YT, Chang MC, Hu CM. SEMA7A-mediated juxtacrine stimulation of IGFBP-3 upregulates IL-17RB at pancreatic cancer invasive front. Cancer Gene Ther 2024; 31:1840-1855. [PMID: 39448803 PMCID: PMC11645274 DOI: 10.1038/s41417-024-00849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Tumor invasion is the hallmark of tumor malignancy. The invasive infiltration pattern of tumor cells located at the leading edge is highly correlated with metastasis and unfavorable patient outcomes. However, the regulatory mechanisms governing tumor malignancy at the invasive margin remain unclear. The IL-17B/IL-17RB pathway is known to promote pancreatic cancer invasion and metastasis, yet the specific mechanisms underlying IL-17RB upregulation during invasion are poorly understood. In this study, we unveiled a multistep process for IL-17RB upregulation at the invasive margin, which occurs through direct communication between tumor cells and fibroblasts. Tumor ATP1A1 facilitates plasma membrane expression of SEMA7A, which binds to and induces IGFBP-3 secretion from fibroblasts. The resulting gradient of IGFBP-3 influences the direction and enhances IL-17RB expression to regulate SNAI2 in invasion. These findings highlight the importance of local tumor-fibroblast interactions in promoting cancer cell invasiveness, potentially leading to the development of new therapeutic strategies targeting this communication.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Min-Fen Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung Jen Chien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Peng
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital Hsin-Chu Branch, Hsinchu County, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Yao J, Sun L, Gao F, Zhu W. Mesenchymal stem/stromal cells: dedicator to maintain tumor homeostasis. Hum Cell 2024; 38:21. [PMID: 39607530 DOI: 10.1007/s13577-024-01154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) act as a factor in tumor recurrence after drug treatment with their involvement observed in various cancer types. As a constituent of the tumor microenvironment (TME), MSCs not only provide support to tumor growth but also establish connections with diverse cell populations within the TME, serving as mediators linking different tumor-associated components. MSCs play an important role in maintaining tumor progression due to their stem cell properties and remarkable differentiation capacity. Given the intensification of tumor research and the encouraging results achieved in recent years,the aim of this article is to investigate the supportive role of MSCs in tumor cells as well as in various cellular and non-cellular components of the tumor microenvironment. Furthermore, the article shows that MSCs do not have a specific anatomical ecological niche and describes the contribution of MSCs to the maintenance of tumor homeostasis on the basis of homing, plasticity and tumor-forming properties. By elucidating the critical roles of different components of TME, this study provides a comprehensive understanding of tumor therapy and may offer new insights into defeating cancer.
Collapse
Affiliation(s)
- Juncun Yao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, People's Republic of China
| | - Feng Gao
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, 214500, People's Republic of China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Zhang W, Zhu L, Fang F, Zhang F, Wang R, Yang K, Liu Y, Cui X. Activin A plays an essential role in migration and proliferation of hepatic stellate cells via Smad3 and calcium signaling. Sci Rep 2024; 14:20419. [PMID: 39223291 PMCID: PMC11369249 DOI: 10.1038/s41598-024-71304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Activin A and hepatic stellate cells (HSCs) are involved in tissue repair and fibrosis in liver injury. This study investigated the impact of activin A on HSC activation and migration. A microfluidic D4-chip was used for examining the cell migration of mouse hepatic stellate cell line MHSteC. The analysis of differentially expressed genes revealed that activin βA (Inhba), activin receptor type 1A (Acvr1a) and type 2A (Acvr2a) mRNAs were more significantly expressed in human HSCs than in the hepatocytes. Moreover, activin A promoted MHSteC proliferation and induced MHSteC migration. Furthermore, the MHSteCs treated with activin A exhibited increased levels of migration-related proteins, N-cadherin, Vimentin, α-SMA, MMP2 and MMP9, but a decreased level of E-cadherin. Additionally, activin A treatment significantly increased the p-Smad3 levels and p-Smad3/Smad3 ratio in the MHSteCs, and the Smad3 inhibitor SIS3 attenuated activin A-induced MHSteC proliferation and migration. Simultaneously, activin A increased the calcium levels in the MHSteCs, and the migratory effects of activin A on MHSteCs were weakened by the intracellular calcium ion-chelating agent BAPTA-AM. These data indicate that activin A can promote MHSteC activation and migration through the canonical Smad3 signaling and calcium signaling.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Linjing Zhu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Fang Fang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Fenglin Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Runnan Wang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
7
|
Baghdasaryan O, Khan S, Lin JC, Lee-Kin J, Hsu CY, Hu CMJ, Tan C. Synthetic control of living cells by intracellular polymerization. Trends Biotechnol 2024; 42:241-252. [PMID: 37743158 PMCID: PMC11132853 DOI: 10.1016/j.tibtech.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
An emerging cellular engineering method creates synthetic polymer matrices inside cells. By contrast with classical genetic, enzymatic, or radioactive techniques, this materials-based approach introduces non-natural polymers inside cells, thus modifying cellular states and functionalities. Here, we cover various materials and chemistries that have been exploited to create intracellular polymer matrices. In addition, we discuss emergent cellular properties due to the intracellular polymerization, including nonreplicating but active metabolism, maintenance of membrane integrity, and resistance to environmental stressors. We also discuss past work and future opportunities for developing and applying synthetic cells that contain intracellular polymers. The materials-based approach will usher in new applications of synthetic cells for broad biotechnological applications.
Collapse
Affiliation(s)
- Ofelya Baghdasaryan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Shahid Khan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Jared Lee-Kin
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan.
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA.
| |
Collapse
|
8
|
Ghosh A, Mitra AK. Metastasis and cancer associated fibroblasts: taking it up a NOTCH. Front Cell Dev Biol 2024; 11:1277076. [PMID: 38269089 PMCID: PMC10806909 DOI: 10.3389/fcell.2023.1277076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Metastasis is the least understood aspect of cancer biology. 90% of cancer related deaths occur due extensive metastatic burden in patients. Apart from metastasizing cancer cells, the pro-tumorigenic and pro-metastatic role of the tumor stroma plays a crucial part in this complex process often leading to disease relapse and therapy resistance. Cellular signaling processes play a crucial role in the process of tumorigenesis and metastasis when aberrantly turned on, not just in the cancer cells, but also in the cells of the tumor microenvironment (TME). One of the most conserved pathways includes the Notch signaling pathway that plays a crucial role in the development and progression of many cancers. In addition to its well documented role in cancer cells, recent evidence suggests crucial involvement of Notch signaling in the stroma as well. This review aims to highlight the current findings focusing on the oncogenic role of notch signaling in cancer cells and the TME, with a specific focus on cancer associated fibroblasts (CAFs), which constitute a major part of the tumor stroma and are important for tumor progression. Recent efforts have focused on the development of anti-cancer and anti-metastatic therapies targeting TME. Understanding the importance of Notch signaling in the TME would help identify important drivers for stromal reprogramming, metastasis and importantly, drive future research in the effort to develop TME-targeted therapies utilizing Notch.
Collapse
Affiliation(s)
- Argha Ghosh
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Wang D, Nakayama M, Hong CP, Oshima H, Oshima M. Gain-of-Function p53 Mutation Acts as a Genetic Switch for TGFβ Signaling-Induced Epithelial-to-Mesenchymal Transition in Intestinal Tumors. Cancer Res 2024; 84:56-68. [PMID: 37851521 PMCID: PMC10758690 DOI: 10.1158/0008-5472.can-23-1490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Signaling by TGFβ family cytokines plays a tumor-suppressive role by inducing cell differentiation, while it promotes malignant progression through epithelial-to-mesenchymal transition (EMT). Identification of the mechanisms regulating the switch from tumor suppression to tumor promotion could identify strategies for cancer prevention and treatment. To identify the key genetic alterations that determine the outcome of TGFβ signaling, we used mouse intestinal tumor-derived organoids carrying multiple driver mutations in various combinations to examine the relationship between genotypes and responses to the TGFβ family cytokine activin A. KrasG12D mutation protected organoid cells from activin A-induced growth suppression by inhibiting p21 and p27 expression. Furthermore, Trp53R270H gain-of-function (GOF) mutation together with loss of wild-type Trp53 by loss of heterozygosity (LOH) promoted activin A-induced partial EMT with formation of multiple protrusions on the organoid surface, which was associated with increased metastatic incidence. Histologic analysis confirmed that tumor cells at the protrusions showed loss of apical-basal polarity and glandular structure. RNA sequencing analysis indicated that expression of Hmga2, encoding a cofactor of the SMAD complex that induces EMT transcription factors, was significantly upregulated in organoids with Trp53 GOF/LOH alterations. Importantly, loss of HMGA2 suppressed expression of Twist1 and blocked activin A-induced partial EMT and metastasis in Trp53 GOF/LOH organoids. These results indicate that TP53 GOF/LOH is a key genetic state that primes for TGFβ family-induced partial EMT and malignant progression of colorectal cancer. Activin signaling may be an effective therapeutic target for colorectal cancer harboring TP53 GOF mutations. SIGNIFICANCE KRAS and TP53 mutations shift activin-mediated signaling to overcome growth inhibition and promote partial EMT, identifying a subset of patients with colorectal cancer that could benefit from inhibition of TGFβ signaling.
Collapse
Affiliation(s)
- Dong Wang
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Mizuho Nakayama
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | - Hiroko Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Lin CL, Fang ZS, Hsu CY, Liu YH, Lin JC, Yao BY, Li FA, Yen SCB, Chang YC, Hu CMJ. Rapid plasma membrane isolation via intracellular polymerization-mediated biomolecular confinement. Acta Biomater 2024; 173:325-335. [PMID: 38000526 DOI: 10.1016/j.actbio.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Plasma membrane isolation is a foundational process in membrane proteomic research, cellular vesicle studies, and biomimetic nanocarrier development, yet separation processes for this outermost layer are cumbersome and susceptible to impurities and low yield. Herein, we demonstrate that cellular cytosol can be chemically polymerized for decoupling and isolation of plasma membrane within minutes. A rapid, non-disruptive in situ polymerization technique is developed with cell membrane-permeable polyethyleneglycol-diacrylate (PEG-DA) and a blue-light-sensitive photoinitiator, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). The photopolymerization chemistry allows for precise control of intracellular polymerization and tunable confinement of cytosolic molecules. Upon cytosol solidification, plasma membrane proteins and vesicles are rapidly derived and purified as nucleic acids and intracellular proteins as small as 15 kDa are stably entrapped for removal. The polymerization chemistry and membrane derivation technique are broadly applicable to primary and fragile cell types, enabling facile membrane vesicle extraction from shorted-lived neutrophils and human primary CD8 T cells. The study demonstrates tunable intracellular polymerization via optimized live cell chemistry, offers a robust membrane isolation methodology with broad biomedical utility, and reveals insights on molecular crowding and confinement in polymerized cells. STATEMENT OF SIGNIFICANCE: Isolating the minute fraction of plasma membrane proteins and vesicles requires extended density gradient ultracentrifugation processes, which are susceptible to low yield and impurities. The present work demonstrates that the membrane isolation process can be vastly accelerated via a rapid, non-disruptive intracellular polymerization approach that decouples cellular cytosols from the plasma membrane. Following intracellular polymerization, high-yield plasma membrane proteins and vesicles can be derived from lysis buffer and sonication treatment, respectively. And the intracellular content entrapped within the polymerized hydrogel is readily removed within minutes. The technique has broad utility in membrane proteomic research, cellular vesicle studies, and biomimetic materials development, and the work offers insights on intracellular hydrogel-mediated molecular confinement.
Collapse
Affiliation(s)
- Chi-Long Lin
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Yu-Han Liu
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Shin-Chwen Bruce Yen
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Taipei 11529, Taiwan
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan; Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan.
| |
Collapse
|
11
|
Chang J, Xin C, Wang Y, Wang Y. Dihydroartemisinin inhibits liver cancer cell migration and invasion by reducing ATP synthase production through CaMKK2/NCLX. Oncol Lett 2023; 26:540. [PMID: 38020296 PMCID: PMC10660190 DOI: 10.3892/ol.2023.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and mitochondrial sodium/calcium exchanger protein (NCLX) are key regulatory factors in calcium homeostasis. Finding natural drugs that target regulators of calcium homeostasis is critical. Dihydroartemisinin (DHA) is considered to have anticancer effects. The present study aimed to investigate the mechanism of DHA in regulating liver cancer migration and invasion. The present study used HepG2 and HuH-7 cells and overexpressed CaMKK2 and knocked down CaMKK2 and NCLX. The antiproliferative activity of DHA on liver cancer cells was assessed through colony formation and EdU assays. Cell apoptosis was detected through YO-PRO-1/PI staining. The levels of reactive oxygen species (ROS) were measured using a ROS detection kit (DCFH-DA fluorescent probe). Cell migratory and invasive abilities were examined using wound healing and Transwell assays. The ATP production of liver cancer cells was detected using ATP fluorescent probes. Cell microfilaments were monitored for changes using Actin-Tracker Green-488. The effects of DHA on the expression of CaMKK2, NCLX, sodium/potassium-transporting ATPase subunit α-1 (ATP1A1) and ATP synthase subunit d, mitochondrial (ATP5H) were determined by western blotting and reverse transcription-quantitative PCR. The results revealed that DHA significantly inhibited proliferation, reduced ROS levels and promoted apoptosis in liver cancer cells. CaMKK2 overexpression significantly enhanced the invasive and migratory ability of liver cancer cells, whereas DHA inhibited the pro-migratory effects of CaMKK2 overexpression. DHA significantly reduced the mitochondrial ATP production and altered the arrangement of microfilaments in liver cancer cells. In addition, DHA significantly decreased the expression of CaMKK2, NCLX, ATP1A1 and ATP5H. Furthermore, by knockdown experiments of NCLX the results demonstrated that CaMKK2 downregulated the expression of ATP1A1 and ATP5H in liver cancer cells through NCLX. In conclusion, DHA may reduce ATP synthase production via the CaMKK2/NCLX signaling pathway to inhibit the invasive phenotype of liver cancer cells. It is essential to further investigate the effectiveness of DHA in the anticancer mechanism of liver cancer cells.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Chengyi Xin
- Department of Pharmacy, Bayannur Hospital, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Yong Wang
- Department of Neurosurgery, Hainan West Central Hospital, Danzhou, Hainan 571700, P.R. China
| | - Ying Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
12
|
Hu C, Huang C, Hsu M, Chien H, Wu P, Chen Y, Jeng Y, Tang S, Chung M, Shen C, Chang M, Chang Y, Tien Y, Lee W. Oncogenic KRAS, Mucin 4, and Activin A-Mediated Fibroblast Activation Cooperate for PanIN Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301240. [PMID: 37964407 PMCID: PMC10754145 DOI: 10.1002/advs.202301240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/22/2023] [Indexed: 11/16/2023]
Abstract
Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic-clear 3D histology is used to analyze entire pancreases of 2-week-old Pdx1-Cre; LSL-KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN-associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+ -driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches.
Collapse
Affiliation(s)
- Chun‐Mei Hu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Chien‐Chang Huang
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Min‐Fen Hsu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Hung‐Jen Chien
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Pei‐Jung Wu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yi‐Ing Chen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yung‐Ming Jeng
- Department of PathologyNational Taiwan University HospitalTaipei10041Taiwan
- Graduate Institute of Pathology, College of MedicineNational Taiwan UniversityTaipei10041Taiwan
| | - Shiue‐Cheng Tang
- Department of Medical ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Mei‐Hsin Chung
- Department of PathologyNational Taiwan University Hospital−Hsinchu BranchHsinchu30331Taiwan
| | - Chia‐Ning Shen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Ming‐Chu Chang
- Department of Internal MedicineNational Taiwan University HospitalTaipei10041Taiwan
| | - Yu‐Ting Chang
- Department of Internal MedicineNational Taiwan University HospitalTaipei10041Taiwan
| | - Yu‐Wen Tien
- Department of SurgeryNational Taiwan University HospitalTaipei10041Taiwan
| | - Wen‐Hwa Lee
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Drug Development CenterChina Medical UniversityTaichung40402Taiwan
- Department of Biological ChemistryUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
13
|
Waki Y, Morine Y, Noma T, Takasu C, Teraoku H, Yamada S, Saito Y, Ikemoto T, Shimada M. Association between high expression of intratumoral fibroblast activation protein and survival in patients with intrahepatic cholangiocarcinoma. BMC Gastroenterol 2023; 23:415. [PMID: 38017374 PMCID: PMC10683315 DOI: 10.1186/s12876-023-03012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) have been reported to exhibit protumorigenic effects. Among the well-known CAF markers such as smooth muscle actin (SMA) and fibroblast activation protein (FAP), high expression of SMA in the peritumoral stroma has been reported to be a prognostic factor in various cancers. However, the effect of high FAP expression in intrahepatic cholangiocarcinoma (IHCC) has not been fully clarified. We evaluated the expression of CAF markers, focusing on FAP expression in the peripheral and intratumoral regions, to clarify the association with survival in patients with IHCC. METHODS The study cohort comprised 37 patients who underwent curative resection for IHCC. The FAP expressions were evaluated in the peripheral and intratumoral regions of the resected tissues. Clinicopathological factors and survival outcomes were investigated between patients with high versus low FAP expression. Uni- and multivariate analyses were performed to identify the prognostic factors for overall survival and relapse-free survival. RESULTS The median area percentages of FAP expression in the peripheral and intratumoral regions were 15.5% and 17.8%, respectively. High FAP expression in the intratumoral region was significantly associated with worse overall survival and disease-free survival than low FAP expression in the intratumoral region. Multivariate analysis identified high intratumoral FAP expression as a risk factor for worse overall survival (hazard ratio, 2.450; p = 0.049) and relapse-free survival (hazard ratio, 2.743; p = 0.034). CONCLUSIONS High intratumoral FAP expression was associated with worse survival, suggesting that intratumoral FAP expression represents malignant progression in patients with IHCC.
Collapse
Affiliation(s)
- Yuhei Waki
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Takayuki Noma
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Chie Takasu
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroki Teraoku
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinichiro Yamada
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yu Saito
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
14
|
Bouchard G, Zhang W, Li I, Ilerten I, Bhattacharya A, Li Y, Trope W, Shrager JB, Kuo C, Tian L, Giaccia AJ, Plevritis SK. The colocatome as a spatial -omic reveals shared microenvironment features between tumour-stroma assembloids and human lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557278. [PMID: 37745466 PMCID: PMC10515823 DOI: 10.1101/2023.09.11.557278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Computational frameworks to quantify and compare microenvironment spatial features of in-vitro patient-derived models and clinical specimens are needed. Here, we acquired and analysed multiplexed immunofluorescence images of human lung adenocarcinoma (LUAD) alongside tumour-stroma assembloids constructed with organoids and fibroblasts harvested from the leading edge (Tumour-Adjacent Fibroblasts;TAFs) or core (Tumour Core Fibroblasts;TCFs) of human LUAD. We introduce the concept of the "colocatome" as a spatial -omic dimension to catalogue all proximate and distant colocalisations between malignant and fibroblast subpopulations in both the assembloids and clinical specimens. The colocatome expands upon the colocalisation quotient (CLQ) through a nomalisation strategy that involves permutation analysis and thereby allows comparisons of CLQs under different conditions. Using colocatome analysis, we report that both TAFs and TCFs protected cancer cells from targeted oncogene treatment by uniquely reorganising the tumour-stroma cytoarchitecture, rather than by promoting cellular heterogeneity or selection. Moreover, we show that the assembloids' colocatome recapitulates the tumour-stroma cytoarchitecture defining the tumour microenvironment of LUAD clinical samples and thereby can serve as a functional spatial readout to guide translational discoveries.
Collapse
Affiliation(s)
- Gina Bouchard
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Irene Li
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Ilayda Ilerten
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Asmita Bhattacharya
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yuanyuan Li
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Winston Trope
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Joseph B Shrager
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Calvin Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford, CA 94305, USA
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Yang J, Liu Y, Liu S. The role of epithelial-mesenchymal transition and autophagy in pancreatic ductal adenocarcinoma invasion. Cell Death Dis 2023; 14:506. [PMID: 37550301 PMCID: PMC10406904 DOI: 10.1038/s41419-023-06032-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Of all pancreatic cancer (PC) cases, approximately 90% are pancreatic ductal adenocarcinoma (PDAC), which progress rapidly due to its high degree of invasiveness and high metastatic potential. Epithelial-mesenchymal transition (EMT) is a prerequisite for cancer cell invasion and spread, and it is mediated by the specific cellular behaviors and the tumor microenvironment. Autophagy has long been a target of cancer therapy, and it has been considered to play a dual and contradictory role, particularly regarding EMT-mediated PDAC invasion. This review discusses the characteristics and the biological role of EMT and autophagy from a cellular perspective, explaining invasion as a survival behavior of PDAC, with the aim of providing novel insights into targeting EMT and autophagy to overcome PDAC invasion.
Collapse
Affiliation(s)
- Jian Yang
- Central Laboratory, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China
| | - Ying Liu
- Department of Medical Oncology, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China
| | - Shi Liu
- Central Laboratory, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China.
| |
Collapse
|
16
|
Histone Modifications Represent a Key Epigenetic Feature of Epithelial-to-Mesenchyme Transition in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24054820. [PMID: 36902253 PMCID: PMC10003015 DOI: 10.3390/ijms24054820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant diseases due to its high invasiveness, early metastatic properties, rapid disease progression, and typically late diagnosis. Notably, the capacity for pancreatic cancer cells to undergo epithelial-mesenchymal transition (EMT) is key to their tumorigenic and metastatic potential, and is a feature that can explain the therapeutic resistance of such cancers to treatment. Epigenetic modifications are a central molecular feature of EMT, for which histone modifications are most prevalent. The modification of histones is a dynamic process typically carried out by pairs of reverse catalytic enzymes, and the functions of these enzymes are increasingly relevant to our improved understanding of cancer. In this review, we discuss the mechanisms through which histone-modifying enzymes regulate EMT in pancreatic cancer.
Collapse
|
17
|
Wu Y, Clark KC, Niranjan B, Chüeh AC, Horvath LG, Taylor RA, Daly RJ. Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts. Mol Oncol 2023; 17:469-486. [PMID: 36608258 PMCID: PMC9980303 DOI: 10.1002/1878-0261.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Reciprocal interactions between prostate cancer cells and carcinoma-associated fibroblasts (CAFs) mediate cancer development and progression; however, our understanding of the signalling pathways mediating these cellular interactions remains incomplete. To address this, we defined secretome changes upon co-culture of prostate epithelial or cancer cells with fibroblasts that mimic bi-directional communication in tumours. Using antibody arrays, we profiled conditioned media from mono- and co-cultures of prostate fibroblasts, epithelial and cancer cells, identifying secreted proteins that are upregulated in co-culture compared to mono-culture. Six of these (CXCL10, CXCL16, CXCL6, FST, PDGFAA, IL-17B) were functionally screened by siRNA knockdown in prostate cancer cell/fibroblast co-cultures, revealing a key role for follistatin (FST), a secreted glycoprotein that binds and bioneutralises specific members of the TGF-β superfamily, including activin A. Expression of FST by both cell types was required for the fibroblasts to enhance prostate cancer cell proliferation and migration, whereas FST knockdown in co-culture grafts decreased tumour growth in mouse xenografts. This study highlights the complexity of prostate cancer cell-fibroblast communication, demonstrates that co-culture secretomes cannot be predicted from individual cultures, and identifies FST as a tumour-microenvironment-derived secreted factor that represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Yunjian Wu
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Kimberley C. Clark
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Birunthi Niranjan
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoriaAustralia
| | - Anderly C. Chüeh
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Lisa G. Horvath
- Garvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- University of SydneyNew South WalesAustralia
- Chris O'Brien LifehouseSydneyNew South WalesAustralia
| | - Renea A. Taylor
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
- Cancer Research Division, Peter MacCallum Cancer CentreThe University of MelbourneVictoriaAustralia
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
18
|
Fleischer JR, Schmitt AM, Haas G, Xu X, Zeisberg EM, Bohnenberger H, Küffer S, Teuwen LA, Karras PJ, Beißbarth T, Bleckmann A, Planque M, Fendt SM, Vermeulen P, Ghadimi M, Kalucka J, De Oliveira T, Conradi LC. Molecular differences of angiogenic versus vessel co-opting colorectal cancer liver metastases at single-cell resolution. Mol Cancer 2023; 22:17. [PMID: 36691028 PMCID: PMC9872436 DOI: 10.1186/s12943-023-01713-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/31/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Colorectal cancer liver metastases (CRCLM) are associated with a poor prognosis, reflected by a five-year survival rate of 14%. Anti-angiogenic therapy through anti-VEGF antibody administration is one of the limited therapies available. However, only a subgroup of metastases uses sprouting angiogenesis to secure their nutrients and oxygen supply, while others rely on vessel co-option (VCO). The distinct mode of vascularization is reflected by specific histopathological growth patterns (HGPs), which have proven prognostic and predictive significance. Nevertheless, their molecular mechanisms are poorly understood. METHODS We evaluated CRCLM from 225 patients regarding their HGP and clinical data. Moreover, we performed spatial (21,804 spots) and single-cell (22,419 cells) RNA sequencing analyses to explore molecular differences in detail, further validated in vitro through immunohistochemical analysis and patient-derived organoid cultures. RESULTS We detected specific metabolic alterations and a signature of WNT signalling activation in metastatic cancer cells related to the VCO phenotype. Importantly, in the corresponding healthy liver of CRCLM displaying sprouting angiogenesis, we identified a predominantly expressed capillary subtype of endothelial cells, which could be further explored as a possible predictor for HGP relying on sprouting angiogenesis. CONCLUSION These findings may prove to be novel therapeutic targets to the treatment of CRCLM, in special the ones relying on VCO.
Collapse
Affiliation(s)
- Johannes Robert Fleischer
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Alexandra Maria Schmitt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Gwendolyn Haas
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | - Elisabeth Maria Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straβe40, 37075, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straβe40, 37075, Göttingen, Germany
| | - Laure-Anne Teuwen
- Department of Oncology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Philipp Johannes Karras
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Department of General- and Visceral Surgery, Raphaelsklinik Münster, Loerstraße 23, 48143, Münster, Germany
| | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center Göttingen, Goldschmidtstraße 1, 37077, Göttingen, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149, Münster, Germany
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Peter Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, University of Antwerp, Antwerp, Belgium
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany.
| |
Collapse
|
19
|
Lv G, Zhang L, Gao L, Cui J, Liu Z, Sun B, Wang G, Tang Q. The application of single-cell sequencing in pancreatic neoplasm: analysis, diagnosis and treatment. Br J Cancer 2023; 128:206-218. [PMID: 36307645 PMCID: PMC9902442 DOI: 10.1038/s41416-022-02023-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/08/2023] Open
Abstract
Pancreatic neoplasms, including pancreatic ductal adenocarcinoma (PDAC), intraductal papillary mucinous neoplasm (IPMN) and pancreatic cystic neoplasms (PCNs), are the most puzzling diseases. Numerous studies have not brought significant improvements in prognosis and diagnosis, especially in PDAC. One important reason is that previous studies only focused on differences between patients and healthy individuals but ignored intratumoral heterogeneity. In recent years, single-cell sequencing techniques, represented by single-cell RNA sequencing (scRNA-seq), have emerged by which researchers can analyse each cell in tumours instead of their average levels. Herein, we summarise the new current knowledge of single-cell sequencing in pancreatic neoplasms with respect to techniques, tumour heterogeneities and treatments.
Collapse
Affiliation(s)
- Gaoyuan Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, Heilongjiang Province, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, Heilongjiang Province, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, Heilongjiang Province, China
| | - Jitao Cui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, Heilongjiang Province, China
| | - Ziying Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, Heilongjiang Province, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, Heilongjiang Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, Heilongjiang Province, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Qiushi Tang
- Chinese Journal of Practical Surgery, Chinese Medical University, Shenyang, China.
| |
Collapse
|
20
|
Li SC, Jia ZK, Yang JJ, Ning XH. Telomere-related gene risk model for prognosis and drug treatment efficiency prediction in kidney cancer. Front Immunol 2022; 13:975057. [PMID: 36189312 PMCID: PMC9523360 DOI: 10.3389/fimmu.2022.975057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney cancer is one of the most common urological cancers worldwide, and kidney renal clear cell cancer (KIRC) is the major histologic subtype. Our previous study found that von-Hippel Lindau (VHL) gene mutation, the dominant reason for sporadic KIRC and hereditary kidney cancer-VHL syndrome, could affect VHL disease-related cancers development by inducing telomere shortening. However, the prognosis role of telomere-related genes in kidney cancer has not been well discussed. In this study, we obtained the telomere-related genes (TRGs) from TelNet. We obtained the clinical information and TRGs expression status of kidney cancer patients in The Cancer Genome Atlas (TCGA) database, The International Cancer Genome Consortium (ICGC) database, and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Totally 353 TRGs were differential between tumor and normal tissues in the TCGA-KIRC dataset. The total TCGA cohort was divided into discovery and validation TCGA cohorts and then using univariate cox regression, lasso regression, and multivariate cox regression method to conduct data analysis sequentially, ten TRGs (ISG15, RFC2, TRIM15, NEK6, PRKCQ, ATP1A1, ELOVL3, TUBB2B, PLCL1, NR1H3) risk model had been constructed finally. The kidney patients in the high TRGs risk group represented a worse outcome in the discovery TCGA cohort (p<0.001), and the result was validated by these four cohorts (validation TCGA cohort, total TCGA cohort, ICGC cohort, and CPTAC cohort). In addition, the TRGs risk score is an independent risk factor for kidney cancer in all these five cohorts. And the high TRGs risk group correlated with worse immune subtypes and higher tumor mutation burden in cancer tissues. In addition, the high TRGs risk group might benefit from receiving immune checkpoint inhibitors and targeted therapy agents. Moreover, the proteins NEK6, RF2, and ISG15 were upregulated in tumors both at the RNA and protein levels, while PLCL1 and PRKCQ were downregulated. The other five genes may display the contrary expression status at the RNA and protein levels. In conclusion, we have constructed a telomere-related genes risk model for predicting the outcomes of kidney cancer patients, and the model may be helpful in selecting treatment agents for kidney cancer patients.
Collapse
|