1
|
Khosravanizadeh A, Dmitrieff S. Dynamic clamping induces rotation-to-beating transition of pinned filaments in gliding assays. J R Soc Interface 2025; 22:20240859. [PMID: 40329836 PMCID: PMC12056559 DOI: 10.1098/rsif.2024.0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
We used numerical simulations to investigate how properties of motor proteins control the dynamical behaviour of driven flexible filaments. A filament on top of a patch of anchored motor proteins is pinned at one end, a setup referred to as a spiral gliding assay. There exists a variety of motor proteins with different properties. We found that when these properties are changed, this system generally can show three different regimes: (i) fluctuation, where the filament undergoes random fluctuations because the motors are unable to bend it, (ii) rotation, in which the filament bends and then moves continuously in one direction, and (iii) beating, where the filament rotation direction changes over time. We found that the transition between fluctuation and rotation occurs when motors exert a force sufficient to buckle the filament. The threshold force coincides with the second buckling mode of a filament undergoing a continuously distributed load. Moreover, we showed that when motors near the pinning point work close to their stall force, they cause dynamic clamping, leading to the beating regime. Rather than being imposed by experimental conditions, this clamping is transient and results from the coupling between filament mechanics and the collective behaviour of motors.
Collapse
Affiliation(s)
| | - Serge Dmitrieff
- Institut Jacques Monod, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Romet-Lemonne G, Leduc C, Jégou A, Wioland H. Mechanics of Single Cytoskeletal Filaments. Annu Rev Biophys 2025; 54:303-327. [PMID: 39929532 DOI: 10.1146/annurev-biophys-030722-120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The cytoskeleton comprises networks of different biopolymers, which serve various cellular functions. To accomplish these tasks, their mechanical properties are of particular importance. Understanding them requires detailed knowledge of the mechanical properties of the individual filaments that make up these networks, in particular, microtubules, actin filaments, and intermediate filaments. Far from being homogeneous beams, cytoskeletal filaments have complex mechanical properties, which are directly related to the specific structural arrangement of their subunits. They are also versatile, as the filaments' mechanics and biochemistry are tightly coupled, and their properties can vary with the cellular context. In this review, we summarize decades of research on cytoskeletal filament mechanics, highlighting their most salient features and discussing recent insights from this active field of research.
Collapse
Affiliation(s)
| | - Cécile Leduc
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| | - Antoine Jégou
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| | - Hugo Wioland
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| |
Collapse
|
3
|
Su Y, Yin X. The Molecular Mechanism of Macrophages in Response to Mechanical Stress. Ann Biomed Eng 2025; 53:318-330. [PMID: 39354279 DOI: 10.1007/s10439-024-03616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Macrophages, a type of functionally diversified immune cell involved in the progression of many physiologies and pathologies, could be mechanically activated. The physical properties of biomaterials including stiffness and topography have been recognized as exerting a considerable influence on macrophage behaviors, such as adhesion, migration, proliferation, and polarization. Recent articles and reviews on the physical and mechanical cues that regulate the macrophage's behavior are available; however, the underlying mechanism still deserves further investigation. Here, we summarized the molecular mechanism of macrophage behavior through three parts, as follows: (1) mechanosensing on the cell membrane, (2) mechanotransmission by the cytoskeleton, (3) mechanotransduction in the nucleus. Finally, the present challenges in understanding the mechanism were also noted. In this review, we clarified the associated mechanism of the macrophage mechanotransduction pathway which could provide mechanistic insights into the development of treatment for diseases like bone-related diseases as molecular targets become possible.
Collapse
Affiliation(s)
- Yuntong Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Oosterheert W, Boiero Sanders M, Bieling P, Raunser S. Structural insights into actin filament turnover. Trends Cell Biol 2025:S0962-8924(24)00277-0. [PMID: 39848862 DOI: 10.1016/j.tcb.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025]
Abstract
The dynamic turnover of actin filaments drives the morphogenesis and migration of all eukaryotic cells. This review summarizes recent insights into the molecular mechanisms of actin polymerization and disassembly obtained through high-resolution structures of actin filament assemblies. We first describe how, upon polymerization, actin subunits age within the filament through changes in their associated adenine nucleotide. We then focus on the molecular basis of actin filament growth at the barbed end and how this process is modulated by core regulators such as profilin, formin, and capping protein (CP). Finally, the mechanisms underlying actin filament pointed-end depolymerization through disassembly factors cofilin/cyclase-associated protein (CAP) or DNase I are discussed. These findings contribute to a structural understanding of how actin filament dynamics are regulated in a complex cellular environment.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
| |
Collapse
|
5
|
Martinez-Sanchez A, Lamm L, Jasnin M, Phelippeau H. Simulating the Cellular Context in Synthetic Datasets for Cryo-Electron Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3742-3754. [PMID: 38717878 DOI: 10.1109/tmi.2024.3398401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cryo-electron tomography (cryo-ET) allows to visualize the cellular context at macromolecular level. To date, the impossibility of obtaining a reliable ground truth is limiting the application of deep learning-based image processing algorithms in this field. As a consequence, there is a growing demand of realistic synthetic datasets for training deep learning algorithms. In addition, besides assisting the acquisition and interpretation of experimental data, synthetic tomograms are used as reference models for cellular organization analysis from cellular tomograms. Current simulators in cryo-ET focus on reproducing distortions from image acquisition and tomogram reconstruction, however, they can not generate many of the low order features present in cellular tomograms. Here we propose several geometric and organization models to simulate low order cellular structures imaged by cryo-ET. Specifically, clusters of any known cytosolic or membrane-bound macromolecules, membranes with different geometries as well as different filamentous structures such as microtubules or actin-like networks. Moreover, we use parametrizable stochastic models to generate a high diversity of geometries and organizations to simulate representative and generalized datasets, including very crowded environments like those observed in native cells. These models have been implemented in a multiplatform open-source Python package, including scripts to generate cryo-tomograms with adjustable sizes and resolutions. In addition, these scripts provide also distortion-free density maps besides the ground truth in different file formats for efficient access and advanced visualization. We show that such a realistic synthetic dataset can be readily used to train generalizable deep learning algorithms.
Collapse
|
6
|
Carl AG, Reynolds MJ, Gurel PS, Phua DY, Sun X, Mei L, Hamilton K, Takagi Y, Noble AJ, Sellers JR, Alushin GM. Myosin forces elicit an F-actin structural landscape that mediates mechanosensitive protein recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608188. [PMID: 39185238 PMCID: PMC11343212 DOI: 10.1101/2024.08.15.608188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cells mechanically interface with their surroundings through cytoskeleton-linked adhesions, allowing them to sense physical cues that instruct development and drive diseases such as cancer. Contractile forces generated by myosin motor proteins mediate these mechanical signal transduction processes through unclear protein structural mechanisms. Here, we show that myosin forces elicit structural changes in actin filaments (F-actin) that modulate binding by the mechanosensitive adhesion protein α-catenin. Using correlative cryo-fluorescence microscopy and cryo-electron tomography, we identify F-actin featuring domains of nanoscale oscillating curvature at cytoskeleton-adhesion interfaces enriched in zyxin, a marker of actin-myosin generated traction forces. We next introduce a reconstitution system for visualizing F-actin in the presence of myosin forces with cryo-electron microscopy, which reveals morphologically similar superhelical F-actin spirals. In simulations, transient forces mimicking tugging and release of filaments by motors produce spirals, supporting a mechanistic link to myosin's ATPase mechanochemical cycle. Three-dimensional reconstruction of spirals uncovers extensive asymmetric remodeling of F-actin's helical lattice. This is recognized by α-catenin, which cooperatively binds along individual strands, preferentially engaging interfaces featuring extended inter-subunit distances while simultaneously suppressing rotational deviations to regularize the lattice. Collectively, we find that myosin forces can deform F-actin, generating a conformational landscape that is detected and reciprocally modulated by a mechanosensitive protein, providing a direct structural glimpse at active force transduction through the cytoskeleton.
Collapse
Affiliation(s)
- Ayala G. Carl
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Pinar S. Gurel
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Donovan Y.Z. Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Alex J. Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - James R. Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Jawahar A, Vermeil J, Heuvingh J, du Roure O, Piel M. The third dimension of the actin cortex. Curr Opin Cell Biol 2024; 89:102381. [PMID: 38905917 DOI: 10.1016/j.ceb.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.
Collapse
Affiliation(s)
- Anumita Jawahar
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Joseph Vermeil
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| |
Collapse
|
8
|
Schneider J, Jasnin M. Molecular architecture of the actin cytoskeleton: From single cells to whole organisms using cryo-electron tomography. Curr Opin Cell Biol 2024; 88:102356. [PMID: 38608425 DOI: 10.1016/j.ceb.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Cryo-electron tomography (cryo-ET) has begun to provide intricate views of cellular architecture at unprecedented resolutions. Considerable efforts are being made to further optimize and automate the cryo-ET workflow, from sample preparation to data acquisition and analysis, to enable visual proteomics inside of cells. Here, we will discuss the latest advances in cryo-ET that go hand in hand with their application to the actin cytoskeleton. The development of deep learning tools for automated annotation of tomographic reconstructions and the serial lift-out sample preparation procedure will soon make it possible to perform high-resolution structural biology in a whole new range of samples, from multicellular organisms to organoids and tissues.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
9
|
Gamblin C, Chavrier P. [Formation, organization and function of invadosomes in cell motility and tumor invasion]. Med Sci (Paris) 2024; 40:515-524. [PMID: 38986096 DOI: 10.1051/medsci/2024080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Invadosome is an umbrella term used to describe a family of cellular structures including podosomes and invadopodia. They serve as contact zones between the cell plasma membrane and extracellular matrix, contributing to matrix remodeling by locally enriched proteolytic enzymes. Invadosomes, which are actin-dependent, are implicated in cellular processes promoting adhesion, migration, and invasion. Invadosomes, which exist in various cell types, play crucial roles in physiological phenomena such as vascularization and bone resorption. Invadosomes are also implicated in pathological processes such as matrix tissue remodeling during metastatic tumor cell invasion. This review summarizes basic information and recent advances about mechanisms underlying podosome and invadopodia formation, their organization and function.
Collapse
Affiliation(s)
- Cécile Gamblin
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France - Sorbonne Université, Paris, France
| | - Philippe Chavrier
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| |
Collapse
|
10
|
McCafferty CL, Klumpe S, Amaro RE, Kukulski W, Collinson L, Engel BD. Integrating cellular electron microscopy with multimodal data to explore biology across space and time. Cell 2024; 187:563-584. [PMID: 38306982 DOI: 10.1016/j.cell.2024.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.
Collapse
Affiliation(s)
| | - Sven Klumpe
- Research Group CryoEM Technology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
11
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
12
|
Gong Z, van den Dries K, Migueles-Ramírez RA, Wiseman PW, Cambi A, Shenoy VB. Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes. Nat Commun 2023; 14:2902. [PMID: 37217555 PMCID: PMC10202956 DOI: 10.1038/s41467-023-38598-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Immune cells, such as macrophages and dendritic cells, can utilize podosomes, mechanosensitive actin-rich protrusions, to generate forces, migrate, and patrol for foreign antigens. Individual podosomes probe their microenvironment through periodic protrusion and retraction cycles (height oscillations), while oscillations of multiple podosomes in a cluster are coordinated in a wave-like fashion. However, the mechanisms governing both the individual oscillations and the collective wave-like dynamics remain unclear. Here, by integrating actin polymerization, myosin contractility, actin diffusion, and mechanosensitive signaling, we develop a chemo-mechanical model for podosome dynamics in clusters. Our model reveals that podosomes show oscillatory growth when actin polymerization-driven protrusion and signaling-associated myosin contraction occur at similar rates, while the diffusion of actin monomers drives wave-like coordination of podosome oscillations. Our theoretical predictions are validated by different pharmacological treatments and the impact of microenvironment stiffness on chemo-mechanical waves. Our proposed framework can shed light on the role of podosomes in immune cell mechanosensing within the context of wound healing and cancer immunotherapy.
Collapse
Affiliation(s)
- Ze Gong
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Koen van den Dries
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rodrigo A Migueles-Ramírez
- Departments of Chemistry and Physics, McGill University, Montreal, QC, H3A 0B8, Canada
- Quantitative Life Sciences, McGill University, Montreal, QC, H3A 3R1, Canada
- Department of Biology, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Paul W Wiseman
- Departments of Chemistry and Physics, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Alessandra Cambi
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Nunes Vicente F, Chen T, Rossier O, Giannone G. Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends Cell Biol 2023; 33:204-220. [PMID: 36055943 DOI: 10.1016/j.tcb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Detection and conversion of mechanical forces into biochemical signals is known as mechanotransduction. From cells to tissues, mechanotransduction regulates migration, proliferation, and differentiation in processes such as immune responses, development, and cancer progression. Mechanosensitive structures such as integrin adhesions, the actin cortex, ion channels, caveolae, and the nucleus sense and transmit forces. In vitro approaches showed that mechanosensing is based on force-dependent protein deformations and reorganizations. However, the mechanisms in cells remained unclear since cell imaging techniques lacked molecular resolution. Thanks to recent developments in super-resolution microscopy (SRM) and molecular force sensors, it is possible to obtain molecular insight of mechanosensing in live cells. We discuss how understanding of molecular mechanotransduction was revolutionized by these innovative approaches, focusing on integrin adhesions, actin structures, and the plasma membrane.
Collapse
Affiliation(s)
- Filipe Nunes Vicente
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tianchi Chen
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
14
|
Deciphering actin remodelling in immune cells through the prism of actin-related inborn errors of immunity. Eur J Cell Biol 2023; 102:151283. [PMID: 36525824 DOI: 10.1016/j.ejcb.2022.151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Actin cytoskeleton remodelling drives cell motility, cell to cell contacts, as well as membrane and organelle dynamics. Those cellular activities operate at a particularly high pace in immune cells since these cells migrate through various tissues, interact with multiple cellular partners, ingest microorganisms and secrete effector molecules. The central and multifaceted role of actin cytoskeleton remodelling in sustaining immune cell tasks in humans is highlighted by rare inborn errors of immunity due to mutations in genes encoding proximal and distal actin regulators. In line with the specificity of some of the actin-based processes at work in immune cells, the expression of some of the affected genes, such as WAS, ARPC1B and HEM1 is restricted to the hematopoietic compartment. Exploration of these natural deficiencies highlights the fact that the molecular control of actin remodelling is tuned distinctly in the various subsets of myeloid and lymphoid immune cells and sustains different networks associated with a vast array of specialized tasks. Furthermore, defects in individual actin remodelling proteins are usually associated with partial cellular impairments highlighting the plasticity of actin cytoskeleton remodelling. This review covers the roles of disease-associated actin regulators in promoting the actin-based processes of immune cells. It focuses on the specific molecular function of those regulators across various immune cell subsets and in response to different stimuli. Given the fact that numerous immune-related actin defects have only been characterized recently, we further discuss the challenges lying ahead to decipher the underlying patho-mechanisms.
Collapse
|
15
|
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, Ye JX, Li X, Yuan FL. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev 2023; 85:101842. [PMID: 36621647 DOI: 10.1016/j.arr.2023.101842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption. As a unique bone resorptive cell type, mature bone-resorbing osteoclasts exhibit dynamic actin-based cytoskeletal structures called podosomes that participate in cell-matrix adhesions specialized in the degradation of mineralized bone matrix. Podosomes share many of the same molecular constitutions as focal adhesions, but they have a unique structural organization, with a central core abundant in F-actin and encircled by scaffolding proteins, kinases and integrins. Here, we conclude recent advancements in our knowledge of the architecture and the functions of podosomes. We also discuss the regulatory pathways in osteoclast podosomes, providing a reference for future research on the podosomes of osteoclasts and considering podosomes as a therapeutic target for inhibiting bone resorption.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yue-Yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Kai-Wen Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Fan Tian
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xia Li
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| | - Feng-Lai Yuan
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
16
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochem Soc Trans 2023; 51:87-99. [PMID: 36695514 PMCID: PMC9987995 DOI: 10.1042/bst20220221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.
Collapse
|
18
|
Du Y, Zhang S, Cheng D, Liu Y, Sun M, Zhao Q, Cui M, Zhao X. The full model of micropipette aspiration of cells: A mesoscopic simulation. Acta Biomater 2023; 157:297-309. [PMID: 36543279 DOI: 10.1016/j.actbio.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Studies on the interaction between cells and micromanipulation tools are necessary to optimize the procedures and improve the developmental potential of cells. The molecular dynamics simulation is not possible for such a large-scale simulation, and the spring-damped viscoelastic models and the constitutive equations of the continuum are usually adopted to model the cells as a whole without consideration of the different properties presented by the heterogeneous subcellular components. In this study, we utilized coarse-grained modeling to develop a subcellular model of suspension cell dynamics and a model of a holding micropipette for the fixation of a suspension cell, and designed a large-scale, accurate mesoscopic simulation environment for specific cell micromanipulation. We established a triangular mesh cell membrane and a uniformly distributed, non-intersecting cytoskeleton network and added polymerization/depolymerization processes to connect the cytoskeleton chains with the membrane and cross-linking proteins. In the cell aspiration model, we adopted the profile of the reversed Poiseuille flow to calibrate the viscosity of the fluid and set the bounce-back condition and the appropriate solid-fluid force coefficient to realize non-slip flow at the boundary. The rheological properties of the cells during micropipette aspiration were further analyzed in the simulation by varying parameters such as the inner diameter of the micropipette, negative pressure, and maximum bond length. The model well reproduced the experimentally observed cell deformation phenomenon at low and high pressures. The dynamic response of the cell elongation observed from the simulation was consistent with that obtained from the analysis of the experimental data collected from a custom-designed micromanipulation system. STATEMENT OF SIGNIFICANCE: In this study, we extended the coarse-grained modeling of cells by developing a relatively large-scale micromanipulation environment consisting of a subcellular cell dynamics model and a fluid flow model for cell aspiration. We simulated cytoskeleton filaments that were uniformly distributed in space via applying Harmonic energy to model cytoskeleton with a high level of fidelity. The shortcoming of the soft repulsion in the solid-fluid interaction in the current simulation technique was solved by implementing the bounce-back boundary and the condition that the total force imposed by the wall particles on the fluid particles was equal to the pressure of the fluid. This work paved the way for understanding the mechanical properties of cells and improving the biological efficacy of micromanipulation.
Collapse
Affiliation(s)
- Yue Du
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, China
| | - Shuai Zhang
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, China
| | - Dai Cheng
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China
| | - Yaowei Liu
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, China
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, China
| | - Qili Zhao
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, China
| | - Maosheng Cui
- Institute of Animal Science and Veterinary of Tianjin, Tianjin, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, China.
| |
Collapse
|
19
|
Wang C, Wojtynek M, Medalia O. Structural investigation of eukaryotic cells: From the periphery to the interior by cryo-electron tomography. Adv Biol Regul 2023; 87:100923. [PMID: 36280452 DOI: 10.1016/j.jbior.2022.100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Cryo-electron tomography (cryo-ET) combines a close-to-life preservation of the cell with high-resolution three-dimensional (3D) imaging. This allows to study the molecular architecture of the cellular landscape and provides unprecedented views on biological processes and structures. In this review we mainly focus on the application of cryo-ET to visualize and structurally characterize eukaryotic cells - from the periphery to the cellular interior. We discuss strategies that can be employed to investigate the structure of challenging targets in their cellular environment as well as the application of complimentary approaches in conjunction with cryo-ET.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Wojtynek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Reynolds MJ, Hachicho C, Carl AG, Gong R, Alushin GM. Bending forces and nucleotide state jointly regulate F-actin structure. Nature 2022; 611:380-386. [PMID: 36289330 PMCID: PMC9646526 DOI: 10.1038/s41586-022-05366-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular force generation1-3. In turn, force4,5 and actin filament (F-actin) nucleotide state6 regulate actin dynamics by tuning F-actin's engagement of actin-binding proteins through mechanisms that are unclear. Here we show that the nucleotide state of actin modulates F-actin structural transitions evoked by bending forces. Cryo-electron microscopy structures of ADP-F-actin and ADP-Pi-F-actin with sufficient resolution to visualize bound solvent reveal intersubunit interfaces bridged by water molecules that could mediate filament lattice flexibility. Despite extensive ordered solvent differences in the nucleotide cleft, these structures feature nearly identical lattices and essentially indistinguishable protein backbone conformations that are unlikely to be discriminable by actin-binding proteins. We next introduce a machine-learning-enabled pipeline for reconstructing bent filaments, enabling us to visualize both continuous structural variability and side-chain-level detail. Bent F-actin structures reveal rearrangements at intersubunit interfaces characterized by substantial alterations of helical twist and deformations in individual protomers, transitions that are distinct in ADP-F-actin and ADP-Pi-F-actin. This suggests that phosphate rigidifies actin subunits to alter the bending structural landscape of F-actin. As bending forces evoke nucleotide-state dependent conformational transitions of sufficient magnitude to be detected by actin-binding proteins, we propose that actin nucleotide state can serve as a co-regulator of F-actin mechanical regulation.
Collapse
Affiliation(s)
- Matthew J Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Carla Hachicho
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Ayala G Carl
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
21
|
Herron JC, Hu S, Watanabe T, Nogueira AT, Liu B, Kern ME, Aaron J, Taylor A, Pablo M, Chew TL, Elston TC, Hahn KM. Actin nano-architecture of phagocytic podosomes. Nat Commun 2022; 13:4363. [PMID: 35896550 PMCID: PMC9329332 DOI: 10.1038/s41467-022-32038-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Podosomes are actin-enriched adhesion structures important for multiple cellular processes, including migration, bone remodeling, and phagocytosis. Here, we characterize the structure and organization of phagocytic podosomes using interferometric photoactivated localization microscopy, a super-resolution microscopy technique capable of 15-20 nm resolution, together with structured illumination microscopy and localization-based super-resolution microscopy. Phagocytic podosomes are observed during frustrated phagocytosis, a model in which cells attempt to engulf micropatterned IgG antibodies. For circular patterns, this results in regular arrays of podosomes with well-defined geometry. Using persistent homology, we develop a pipeline for semi-automatic identification and measurement of podosome features. These studies reveal an hourglass shape of the podosome actin core, a protruding knob at the bottom of the core, and two actin networks extending from the core. Additionally, the distributions of paxillin, talin, myosin II, α-actinin, cortactin, and microtubules relative to actin are characterized.
Collapse
Affiliation(s)
- J Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shiqiong Hu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takashi Watanabe
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Ana T Nogueira
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bei Liu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan E Kern
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Aaron Taylor
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Timothy C Elston
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Klaus M Hahn
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|