1
|
Becht DC, Selvam K, Lachance C, Côté V, Li K, Nguyen MC, Pareek A, Shi X, Wen H, Blanco MA, Côté J, Kutateladze TG. A multivalent engagement of ENL with MOZ. Nat Struct Mol Biol 2025; 32:709-718. [PMID: 39794553 DOI: 10.1038/s41594-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/19/2024] [Indexed: 01/13/2025]
Abstract
The epigenetic cofactor ENL (eleven-nineteen-leukemia) and the acetyltransferase MOZ (monocytic leukemia zinc finger) have vital roles in transcriptional regulation and are implicated in aggressive forms of leukemia. Here, we describe the mechanistic basis for the intertwined association of ENL and MOZ. Genomic analysis shows that ENL and MOZ co-occupy active promoters and that MOZ recruits ENL to its gene targets. Structural studies reveal a multivalent assembly of ENL at the intrinsically disordered region (IDR) of MOZ. While the extraterminal (ET) domain of ENL recognizes the canonical ET-binding motif in IDR, the YEATS domains of ENL and homologous AF9 bind to a set of acetylation sites in the MOZ IDR that are generated by the acetyltransferase CBP (CREB-binding protein). Our findings suggest a multifaceted acetylation-dependent and independent coupling of ENL, MOZ and CBP/p300, which may contribute to leukemogenic activities of the ENL-MOZ assembly and chromosomal translocations of ENL, MOZ and CBP/p300.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karthik Selvam
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Valérie Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Akshay Pareek
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - M Andres Blanco
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
2
|
Louder RK, Park G, Ye Z, Cha JS, Gardner AM, Lei Q, Ranjan A, Höllmüller E, Stengel F, Pugh BF, Wu C. Molecular basis of global promoter sensing and nucleosome capture by the SWR1 chromatin remodeler. Cell 2024; 187:6849-6864.e18. [PMID: 39357520 PMCID: PMC11606799 DOI: 10.1016/j.cell.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
The SWR1 chromatin remodeling complex is recruited to +1 nucleosomes downstream of transcription start sites of eukaryotic promoters, where it exchanges histone H2A for the specialized variant H2A.Z. Here, we use cryoelectron microscopy (cryo-EM) to resolve the structural basis of the SWR1 interaction with free DNA, revealing a distinct open conformation of the Swr1 ATPase that enables sliding from accessible DNA to nucleosomes. A complete structural model of the SWR1-nucleosome complex illustrates critical roles for Swc2 and Swc3 subunits in oriented nucleosome engagement by SWR1. Moreover, an extended DNA-binding α helix within the Swc3 subunit enables sensing of nucleosome linker length and is essential for SWR1-promoter-specific recruitment and activity. The previously unresolved N-SWR1 subcomplex forms a flexible extended structure, enabling multivalent recognition of acetylated histone tails by reader domains to further direct SWR1 toward the +1 nucleosome. Altogether, our findings provide a generalizable mechanism for promoter-specific targeting of chromatin and transcription complexes.
Collapse
Affiliation(s)
- Robert K Louder
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Giho Park
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziyang Ye
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Justin S Cha
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anne M Gardner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Qin Lei
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eva Höllmüller
- Department of Chemistry, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Nguyen MC, Rostamian H, Raman A, Wei P, Becht DC, Erbse AH, Klein BJ, Gilbert TM, Zhang G, Blanco MA, Strahl BD, Taverna SD, Kutateladze TG. Molecular insight into interactions between the Taf14, Yng1 and Sas3 subunits of the NuA3 complex. Nat Commun 2024; 15:5335. [PMID: 38914563 PMCID: PMC11196586 DOI: 10.1038/s41467-024-49730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Hosein Rostamian
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ana Raman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pengcheng Wei
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Annette H Erbse
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Tonya M Gilbert
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - M Andres Blanco
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Becht DC, Mohid SA, Lee JE, Zandian M, Benz C, Biswas S, Sinha VK, Ivarsson Y, Ge K, Zhang Y, Kutateladze TG. MLL4 binds TET3. Structure 2024; 32:706-714.e3. [PMID: 38579707 PMCID: PMC11162309 DOI: 10.1016/j.str.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Human mixed lineage leukemia 4 (MLL4), also known as KMT2D, regulates cell type specific transcriptional programs through enhancer activation. Along with the catalytic methyltransferase domain, MLL4 contains seven less characterized plant homeodomain (PHD) fingers. Here, we report that the sixth PHD finger of MLL4 (MLL4PHD6) binds to the hydrophobic motif of ten-eleven translocation 3 (TET3), a dioxygenase that converts methylated cytosine into oxidized derivatives. The solution NMR structure of the TET3-MLL4PHD6 complex and binding assays show that, like histone H4 tail, TET3 occupies the hydrophobic site of MLL4PHD6, and that this interaction is conserved in the seventh PHD finger of homologous MLL3 (MLL3PHD7). Analysis of genomic localization of endogenous MLL4 and ectopically expressed TET3 in mouse embryonic stem cells reveals a high degree overlap on active enhancers and suggests a potential functional relationship of MLL4 and TET3.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sk Abdul Mohid
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vikrant Kumar Sinha
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Yi Zhang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Cheng IH, Pi WC, Hsu CH, Guo Y, Lai JL, Wang GG, Chung BC, Roeder RG, Chen WY. TAF2, within the TFIID complex, regulates the expression of a subset of protein-coding genes. Cell Death Discov 2024; 10:244. [PMID: 38773077 PMCID: PMC11109217 DOI: 10.1038/s41420-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
TFIID, one of the general transcription factor (GTF), regulates transcriptional initiation of protein-coding genes through direct binding to promoter elements and subsequent recruitment of other GTFs and RNA polymerase II. Although generally required for most protein-coding genes, accumulated studies have also demonstrated promoter-specific functions for several TFIID subunits in gene activation. Here, we report that TBP-associated factor 2 (TAF2) specifically regulates TFIID binding to a small subset of protein-coding genes and is essential for cell growth of multiple cancer lines. Co-immunoprecipitation assays revealed that TAF2 may be sub-stoichiometrically associated with the TFIID complex, thus indicating a minor fraction of TAF2-containing TFIID in cells. Consistently, integrated genome-wide profiles show that TAF2 binds to and regulates only a small subset of protein-coding genes. Furthermore, through the use of an inducible TAF2 degradation system, our results reveal a reduction of TBP/TFIID binding to several ribosomal genes upon selective ablation of TAF2. In addition, depletion of TAF2, as well as the TAF2-regulated ribosomal protein genes RPL30 and RPL39, decreases ribosome assembly and global protein translation. Collectively, this study suggests that TAF2 within the TFIID complex is of functional importance for TBP/TFIID binding to and expression of a small subset of protein-coding genes, thus establishing a previously unappreciated promoter-selective function for TAF2.
Collapse
Affiliation(s)
- I-Hsin Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hao Hsu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Jun-Lin Lai
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Gang G Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Bon-Chu Chung
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Nguyen MC, Wang D, Klein BJ, Chen Y, Kutateladze TG. Differences and similarities in recognition of co-factors by Taf14. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194961. [PMID: 37482120 PMCID: PMC11539623 DOI: 10.1016/j.bbagrm.2023.194961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Taf14 is a subunit of multiple fundamental complexes implicated in transcriptional regulation and DNA damage repair in yeast cells. Here, we investigate the association of Taf14 with the consensus sequence present in other subunits of these complexes and describe the mechanistic features that affect this association. We demonstrate that the precise molecular mechanisms and biological outcomes underlying the Taf14 interactions depend on the accessibility of binding interfaces, the ability to recognize other ligands, and a degree of sensitivity to temperature and chemical and osmotic stresses. Our findings aid in a better understanding of how the distribution of Taf14 among the complexes is mediated.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Duo Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Han H, Lv F, Liu Z, Chen T, Xue T, Liang W, Liu M. BcTaf14 regulates growth and development, virulence, and stress responses in the phytopathogenic fungus Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2023; 24:849-865. [PMID: 37026690 PMCID: PMC10346378 DOI: 10.1111/mpp.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
TATA box-binding protein (TBP)-associated factor 14 (Taf14), a transcription-associated factor containing a conserved YEATS domain and an extra-terminal (ET) domain, is a multifunctional protein in Saccharomyces cerevisiae. However, the role of Taf14 in filamentous phytopathogenic fungi is not well understood. In this study, the homologue of ScTaf14 in Botrytis cinerea (named BcTaf14), a destructive phytopathogen causing grey mould, was investigated. The BcTaf14 deletion strain (ΔBcTaf14) showed pleiotropic defects, including slow growth, abnormal colony morphology, reduced conidiation, abnormal conidial morphology, reduced virulence, and altered responses to various stresses. The ΔBcTaf14 strain also exhibited differential expression of numerous genes compared to the wild-type strain. BcTaf14 could interact with the crotonylated H3K9 peptide, and mutation of two key sites (G80 and W81) in the YEATS domain disrupted this interaction. The mutation of G80 and W81 affected the regulatory effect of BcTaf14 on mycelial growth and virulence but did not affect the production and morphology of conidia. The absence of the ET domain at the C-terminus rendered BcTaf14 unable to localize to the nucleus, and the defects of ΔBcTaf14 were not recovered to wild-type levels when BcTaf14 without the ET domain was expressed. Our results provide insight into the regulatory roles of BcTaf14 and its two conserved domains in B. cinerea and will be helpful for understanding the function of the Taf14 protein in plant-pathogenic fungi.
Collapse
Affiliation(s)
- Hongjia Han
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdao266109China
| | - Fangjiao Lv
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdao266109China
| | - Zhishan Liu
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdao266109China
| | - Tongge Chen
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdao266109China
| | - Tianzi Xue
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdao266109China
| | - Wenxing Liang
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdao266109China
| | - Mengjie Liu
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdao266109China
| |
Collapse
|
8
|
Jacinto MP, Heidenreich D, Müller S, Greenberg MM. Covalent Modification of Bromodomain Proteins by Peptides Containing a DNA Damage-Induced, Histone Post-Translational Modification. Chembiochem 2022; 23:e202200373. [PMID: 36173930 PMCID: PMC9675715 DOI: 10.1002/cbic.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/28/2022] [Indexed: 02/03/2023]
Abstract
An electrophilic 5-methylene-2-pyrrolone modification (KMP ) is produced at lysine residues of histone proteins in nucleosome core particles upon reaction with a commonly formed DNA lesion (C4-AP). The nonenzymatic KMP modification is also generated in the histones of HeLa cells treated with the antitumor agent, bleomycin that oxidizes DNA and forms C4-AP. This nonenzymatic covalent histone modification has the same charge as the N-acetyllysine (KAc ) modification but is more electrophilic. In this study we show that KMP -containing histone peptides are recognized by, and covalently modify bromodomain proteins that are KAc readers. Distinct selectivity preferences for covalent bromodomain modification are observed following incubation with KMP -containing peptides of different sequence. MS/MS analysis of 3 covalently modified bromodomain proteins confirmed that Cys adduction was selective. The modified Cys was not always proximal to the KAc binding site, indicating that KMP -containing peptide interaction with bromodomain protein is distinct from the former. Analysis of protein adduction yields as a function of bromodomain pH at which the protein charge is zero (pI) or cysteine solvent accessible surface area are also consistent with non-promiscuous interaction between the proteins and electrophilic peptides. These data suggest that intracellular formation of KMP could affect cellular function and viability by modifying proteins that regulate genetic expression.
Collapse
Affiliation(s)
- Marco Paolo Jacinto
- Chemistry, Johns Hopkins University, 3400 N. Charles St., 21218, Baltimore, MD, USA
| | - David Heidenreich
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Marc M Greenberg
- Chemistry, Johns Hopkins University, 3400 N. Charles St., 21218, Baltimore, MD, USA
| |
Collapse
|
9
|
Peil K, Värv S, Ilves I, Kristjuhan K, Jürgens H, Kristjuhan A. Transcriptional regulator Taf14 binds DNA and is required for the function of transcription factor TFIID in the absence of histone H2A.Z. J Biol Chem 2022; 298:102369. [PMID: 35970389 PMCID: PMC9478928 DOI: 10.1016/j.jbc.2022.102369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The transcriptional regulator Taf14 is a component of multiple protein complexes involved in transcription initiation and chromatin remodeling in yeast cells. Although Taf14 is not required for cell viability, it becomes essential in conditions where the formation of the transcription preinitiation complex is hampered. The specific role of Taf14 in mediating transcription initiation and preinitiation complex formation is unclear. Here, we explored its role in the general transcription factor IID by mapping Taf14 genetic and proteomic interactions and found that it was needed for the function of the complex if Htz1, the yeast homolog of histone H2A.Z, was absent from chromatin. Dissecting the functional domains of Taf14 revealed that the linker region between the YEATS and ET domains was required for cell viability in the absence of Htz1 protein. We further show that the linker region of Taf14 interacts with DNA. We propose that providing additional DNA binding capacity might be a general role of Taf14 in the recruitment of protein complexes to DNA and chromatin.
Collapse
Affiliation(s)
- Kadri Peil
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Signe Värv
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Henel Jürgens
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia.
| |
Collapse
|