1
|
Heissler SM, Chinthalapudi K. Structural and functional mechanisms of actin isoforms. FEBS J 2025; 292:468-482. [PMID: 38779987 PMCID: PMC11796330 DOI: 10.1111/febs.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Actin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins. Understanding the specific roles of actin isoforms from the structural and functional perspective is crucial for elucidating the intricacies of cytoskeletal dynamics and regulation and their implications in health and disease. Here, we review how the structure contributes to the functional mechanisms of actin isoforms with a special emphasis on the questions of how post-translational modifications and disease-linked mutations affect actin isoforms biochemistry, function, and interaction with actin-binding proteins and myosin motors.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
2
|
Ulrichs H, Shekhar S. Regulation of actin dynamics by Twinfilin. Curr Opin Cell Biol 2025; 92:102459. [PMID: 39765045 PMCID: PMC11769735 DOI: 10.1016/j.ceb.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated. While early studies suggested twinfilin caps filament barbed ends, later research demonstrated its role in nucleotide-specific barbed-end depolymerization. Further, it was initially thought to be a processive depolymerase. Recent structural and single-molecule studies have however challenged this view, indicating that twinfilin binding events result in the removal of only one or two actin subunits from the barbed end. Additionally, twinfilin directly binds capping protein (CP) and facilitates uncapping of CP-bound barbed ends. Here, we summarize twinfilin's cellular and tissue-specific localization, and examine its evolving role in regulating cellular actin dynamics in light of its known biochemical functions.
Collapse
Affiliation(s)
- Heidi Ulrichs
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Greve JN, Schwäbe FV, Taft MH, Manstein DJ. Biochemical characterization of cardiac α-actin mutations A21V and D26N implicated in hypertrophic cardiomyopathy. Cytoskeleton (Hoboken) 2024; 81:815-831. [PMID: 38459932 PMCID: PMC11615838 DOI: 10.1002/cm.21852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) affects .2% of the world's population and is inherited in an autosomal dominant manner. Mutations in cardiac α-actin are the cause in 1%-5% of all observed cases. Here, we describe the recombinant production, purification, and characterization of the HCM-linked cardiac α-actin variants p.A21V and p.D26N. Mass spectrometric analysis of the initially purified recombinant cardiac α-actin variants and wild-type protein revealed improper N-terminal processing in the Spodoptera frugiperda (Sf-9) insect cell system, compromising the labeling of the protein with fluorescent probes for biochemical studies. Therefore, we produced N-terminal deletion mutants lacking the N-terminal cysteine (ΔC2). The ΔC2 wild-type construct behaved similar to porcine cardiac α-actin purified from native Sus scrofa heart tissue and all ΔC2 constructs showed improved fluorescent labeling. Further analysis of untruncated and ΔC2 constructs showed that while neither the A21V nor the D26N mutation affects nucleotide binding, they cause a similar slowing of the rate of filament formation as well as a reduction in the thermal stability of monomeric and filamentous cardiac α-actin. In vitro motility assays and transient-kinetic studies probing the interaction of the actin variants with cardiac β-myosin revealed perturbed actomyosin interactions and a reduced motile activity for the p.D26N variant. Addition of the small molecule effector EMD 57033, which targets cardiac β-myosin, rescued the approximately 40% drop in velocity observed with the p.D26N constructs and activated the motile activity of wild-type and p.D26N to the same level of 1100 nm s-1.
Collapse
Affiliation(s)
- Johannes N. Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Frederic V. Schwäbe
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
- Division for Structural BiochemistryHannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
4
|
Link F, Jung S, Malzer X, Zierhut F, Konle A, Borges A, Batters C, Weiland M, Poellmann M, Nguyen AB, Kullmann J, Veigel C, Engstler M, Morriswood B. The actomyosin system is essential for the integrity of the endosomal system in bloodstream form Trypanosoma brucei. eLife 2024; 13:RP96953. [PMID: 39570285 PMCID: PMC11581428 DOI: 10.7554/elife.96953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Sisco Jung
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Xenia Malzer
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Felix Zierhut
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Antonia Konle
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Alyssa Borges
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christopher Batters
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Monika Weiland
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mara Poellmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - An Binh Nguyen
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Johannes Kullmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Claudia Veigel
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| |
Collapse
|
5
|
Vizcaíno-Castillo A, Kotila T, Kogan K, Yanase R, Como J, Antenucci L, Michelot A, Sunter JD, Lappalainen P. Leishmania profilin interacts with actin through an unusual structural mechanism to control cytoskeletal dynamics in parasites. J Biol Chem 2024; 300:105740. [PMID: 38340794 PMCID: PMC10907219 DOI: 10.1016/j.jbc.2024.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.
Collapse
Affiliation(s)
| | - Tommi Kotila
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ryuji Yanase
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - Juna Como
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Lina Antenucci
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alphee Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Jack D Sunter
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK.
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Reber S, Singer M, Frischknecht F. Cytoskeletal dynamics in parasites. Curr Opin Cell Biol 2024; 86:102277. [PMID: 38048658 DOI: 10.1016/j.ceb.2023.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Cytoskeletal dynamics are essential for cellular homeostasis and development for both metazoans and protozoans. The function of cytoskeletal elements in protozoans can diverge from that of metazoan cells, with microtubules being more stable and actin filaments being more dynamic. This is particularly striking in protozoan parasites that evolved to enter metazoan cells. Here, we review recent progress towards understanding cytoskeletal dynamics in protozoan parasites, with a focus on divergent properties compared to classic model organisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Lopez AJ, Andreadaki M, Vahokoski J, Deligianni E, Calder LJ, Camerini S, Freitag A, Bergmann U, Rosenthal PB, Sidén-Kiamos I, Kursula I. Structure and function of Plasmodium actin II in the parasite mosquito stages. PLoS Pathog 2023; 19:e1011174. [PMID: 36877739 PMCID: PMC10019781 DOI: 10.1371/journal.ppat.1011174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/16/2023] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 μM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.
Collapse
Affiliation(s)
- Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria Andreadaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Anika Freitag
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inga Sidén-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- * E-mail: (ISK); (IK)
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail: (ISK); (IK)
| |
Collapse
|