1
|
Ren M, Zhao B, Li C, Fei Y, Wang X, Fan L, Hu T, Zhang X. Defect-engineered indium-organic framework displays the higher CO 2 adsorption and more excellent catalytic performance on the cycloaddition of CO 2 with epoxides under mild conditions. Mol Divers 2025; 29:2017-2031. [PMID: 39141206 DOI: 10.1007/s11030-024-10956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
In order to achieve the high adsorption and catalytic performance of CO2, the direct self-assembly of robust defect-engineered MOFs is a scarcely reported and challenging proposition. Herein, a highly robust nanoporous indium(III)-organic framework of {[In2(CPPDA)(H2O)3](NO3)·2DMF·3H2O}n (NUC-107) consisting of two kinds of inorganic units of chain-shaped [In(COO)2(H2O)]n and watery binuclear [In2(COO)4(H2O)8] was generated by regulating the growth environment. It is worth mentioning that [In2(COO)4(H2O)8] is very rare in terms of its richer associated water molecules, implying that defect-enriched metal ions in the activated host framework can serve as strong Lewis acid. Compared to reported skeleton of [In4(CPPDA)2(μ3-OH)2(DMF)(H2O)2]n (NUC-66) with tetranuclear clusters of [In4(μ3-OH)2(COO)10(DMF)(H2O)2] as nodes, the void volume of NUC-107 (50.7%) is slightly lower than the one of NUC-66 (52.8%). However, each In3+ ion in NUC-107 has an average of 1.5 coordinated small molecules (H2O), which far exceeds the average of 0.75 in NUC-66 (H2O and DMF). After thermal activation, NUC-107a characterizes the merits of unsaturated In3+ sites, free pyridine moieties, solvent-free nanochannels (10.2 × 15.7 Å2). Adsorption tests prove that the host framework of NUC-107a has a higher CO2 adsorption (113.2 cm3/g at 273 K and 64.8 cm3/g at 298 K) than NUC-66 (91.2 cm3/g at 273 K and 53.0 cm3/g at 298 K). Catalytic experiments confirmed that activated NUC-107a with the aid of n-Bu4NBr was capable of efficiently catalyzing the cycloaddition of CO2 with epoxides into corresponding cyclic carbonates under the mild conditions. Under the similar conditions of 0.10 mol% MOFs, 0.5 mol% n-Bu4NBr, 0.5 MP CO2, 60 °C and 3 h, compared with NUC-66a, the conversion of SO to SC catalyzed by NUC-107a increased by 21%. Hence, this work offers a valuable perspective that the in situ creation of robust defect-engineered MOFs can be realized by regulating the growth environment.
Collapse
Affiliation(s)
- Meiyu Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiaotong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China.
| |
Collapse
|
2
|
Wang ZF, Fei Y, Qin A, Zhang S, Zhang X. Robust Fluorine-Decorated {Yb 4}-Organic Framework for C 2H 6 Capture and Efficient Catalytic Performance on CO 2-Epoxide Cycloaddition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29788-29798. [PMID: 40340319 DOI: 10.1021/acsami.5c07205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Fluorine-functionalized MOFs have excellent unusual properties such as gas adsorption and separation and catalysis, but the functionalization of existing ligands and the self-assembly of functionalized MOFs remain a challenge. Herein, we report a robust fluorine-functionalized nanochannel-based ytterbium(III)-organic framework of {(Me2NH2)[Yb4(CFPDA)2(μ2-HCO2)(μ3-OH)2(H2O)2]·4DMF·5H2O}n (NUC-122, H5CFPDA = 4,4'-(4-(4-carboxy-2-fluorophenyl)pyridine-2,6-diyl)diisophthalic acid) with [Yb4(μ3-OH)2(μ2-HCO2)(H2O)2] clusters as secondary building units (SBUs). Compared to reported anionic skeleton of [Yb4(BDCP)2(μ2-HCO2)(μ3-OH)2(H2O)2]n (NUC-38Yb), the void volume of NUC-122 (54.1%) is slightly lower than that of NUC-38Yb (56.7%), which is caused by functionalized fluorine atoms on the ligand of H5BDCP. Because of the introduction of fluorine groups, activated NUC-122a displays a higher adsorption capacity for CO2 along with the value of 117.5 cm3/g (273 K) and 63.1 cm3/g (298 K). Further, activated NUC-122a has a high ethane (C2H6) separation performance over the mixture of C2H6/C2H4 with the selectivity of 1.6, enabling the purity of recycled C2H4 to reach 99.99%. Moreover, the CO2-epoxide cycloaddition could be efficiently catalyzed by NUC-122a under comparatively mild conditions. Under optimal catalytic conditions of 0.13 mol % MOFs, 1.69 mol % n-Bu4NBr, 0.7 MPa CO2, 70 °C, and 3 h, the conversion yield of SO to SC catalyzed by NUC-122a is 26% higher than that catalyzed by NUC-38Yb. The excellent separation and catalytic performance should be attributed to the combined diverse functional groups such as Lewis acidic sites of Yb3+, Lewis basic sites of -F and Npyridine atoms, and electrophilic H-bond donors (HBD) of μ3-OH and μ2-HCO2 moieties. Hence, this work not only reports a fluorine-functionalized multifunctional material but also provides an in-depth insight into the synthetic strategy of functionalized metal-organic host frameworks.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Aimiao Qin
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shuhua Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
3
|
Wu D, Xing Z, Guo Q, Lai Z, Yi J, Meng QW, Wang S, Dai Z, Ma S, Sun Q. Engineering Bipolar Covalent Organic Framework Membranes for Selective Acid Extraction. Angew Chem Int Ed Engl 2025:e202503945. [PMID: 40295221 DOI: 10.1002/anie.202503945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
Nitric acid (HNO3) is a vital industrial chemical, and its recovery from complex waste streams is essential for sustainability and resource optimization. This study demonstrates the effectiveness of bipolar covalent organic framework (COF) membranes with tunable ionic site distributions as a solution for this challenge. The membranes are fabricated by layering anionic COF nanosheets on cationic COF layers, supported by a porous substrate. The resulting membranes exhibit significant rectifying behavior, driven by the asymmetric charge polarity and the intrinsic electric field, which enhances HNO3 transport. The transmembrane diffusion coefficient of 2.74 × 10-5 cm2 s-1 exceeds the self-diffusion rate of NO3 -, leading to increased HNO3 flux and selectivity compared to the individual anionic and cationic COF membranes. The optimized bipolar membrane configuration achieves remarkable separation factors, ranging from 22 to 242,000 for HNO₃, in comparison to other solutes such as HCl, H2SO4, H3PO4, and various metal salts in an eight-component mixed waste stream. This results in a substantial increase in HNO₃ purity, from 12.5% to 94.1% after a single membrane separation. With the broad range of COF materials and the versatility of the proposed membrane design, this work represents a significant advancement in chemical separation technologies.
Collapse
Affiliation(s)
- Di Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhiwei Xing
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiaming Yi
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Sai Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 310015, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas, 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Chang JN, Yang K, Wang LN, Wang J, Lan YQ, Wang C. Plasmonic Ion Diode Membrane (PIDM) for Enhanced Nanofluidic Ion Transport. Angew Chem Int Ed Engl 2025:e202502591. [PMID: 40268680 DOI: 10.1002/anie.202502591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
Efficient applications of nanofluidic devices are often limited by the insufficient ion permselectivity and inherent ion concentration polarization (ICP) phenomenon. In this work, a bio-inspired plasmonic ion diode membrane (PIDM) was designed and fabricated for enhanced ion transport and osmotic energy harvesting by integrating covalent organic frameworks (COFs) and three-dimensional Au nanoparticles (3D AuNPs) into anode aluminum oxide (AAO). Under light irradiation, localized surface plasmon resonance (LSPR) excitation of 3D AuNPs can release huge plasmonic heat and produce abundant hot charge carriers (hot electrons and holes) simultaneously. The former heats the solution and generates a thermal gradient for boosting ion flux, while the latter transfers to the COFs layer, increasing charge density for promoting ion permselectivity. Importantly, it has been found that different COFs with varied pore sizes and charges have an obvious influence on energy harvesting efficiency. Under the optimum condition, a high output power density of 65.7 W m-2 in a 500-fold concentration gradient could be achieved. This work provides a practical and efficient way to boost ion transport and enhance osmotic energy conversion by utilizing the synergistic effect of plasmonics and ion diode (ID) property.
Collapse
Affiliation(s)
- Jia-Nan Chang
- State Key Laboratory of Microbial Technology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Basic Research Center for Synthetic Biology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Kun Yang
- State Key Laboratory of Microbial Technology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Basic Research Center for Synthetic Biology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li-Na Wang
- State Key Laboratory of Microbial Technology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Basic Research Center for Synthetic Biology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Wang
- State Key Laboratory of Microbial Technology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Basic Research Center for Synthetic Biology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ya-Qian Lan
- State Key Laboratory of Microbial Technology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Basic Research Center for Synthetic Biology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Chen Wang
- State Key Laboratory of Microbial Technology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Basic Research Center for Synthetic Biology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
5
|
Xu X, Zhu X, Chen J, Zhang X, Wang Z, Li F. Lithium complexing strategy based on host-guest recognition for efficient Mg 2+/Li + separation. WATER RESEARCH 2025; 274:123100. [PMID: 39787838 DOI: 10.1016/j.watres.2025.123100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Ion selective membranes with precise Mg2+/Li+ separation have attracted extensive interest in lithium extraction to circumvent the lithium supply shortage. However, realizing this target remains a significant challenge mainly due to a high concentration ratio of Mg2+/Li+ as well as the relatively close ionic hydration radius and chemical. Herein, inspired by the host-guest recognition between alkali-metal ions and crown ether (CE), a novel approach was proposed to regulate the membrane internal structure by introducing CE to strengthen the complexation between Li+ and CE. The CE modified membranes achieved the unique outcome of "Li+ rejection-Mg2+ permeation" deriving from enhanced solubility (KS) and retarded diffusivity (DS) of Li+ compared to that of Mg2+. The Mg2+/Li+ separation factors for MgSO4/Li2SO4 and MgCl2/LiCl of modified membranes (i.e., 20.1 and 17.7) are about 21.9 and 19.9 time higher than that of pristine membranes, respectively. The results from density function theory (DFT) indicated that the stronger host-guest interaction between CE and Li+ combined them closely, thereby increasing solubility and reducing diffusivity of Li+. Our findings develop a new efficient membrane-based strategy enabling the production of high-purity lithium salts from simulated brine.
Collapse
Affiliation(s)
- Xiangmin Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaowei Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinchao Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China.
| | - Zhiwei Wang
- Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China; School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Wang X, Hu T, Fan L, Qin QP, Zhang X. A Precise Preparation Strategy for 2D Nanoporous Thulium-Organic Framework: High Catalytic Performance in CO 2-Epoxide Cycloaddition and Knoevenagel Condensation. Inorg Chem 2025; 64:4461-4471. [PMID: 39985460 DOI: 10.1021/acs.inorgchem.4c05273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Efficient conversion of carbon dioxide (CO2) into high-value chemicals is viewed as one of the most promising approaches for solving the problem of an energy shortage and serious environment pollution. However, design and synthesis of confined multifunctional catalysts with in situ engineered task-specific sites and nanoporous environments remain a complex and challenging task due to a lack of in-depth understanding of their structure and reaction mechanism. Herein, we report a highly robust 2D nanoporous framework of {[Tm(HFPDC)(DMF)2]·DMF·H2O}n (NUC-120) (H4FPDC = 4,4'-(4-(4-fluorophenyl)pyridine-2,6-diyl)diisophthalic acid). The thermally activated host framework of [Tm(HFPDC)]n (NUC-120a) has the following two merits: (i) nanoporous structure, (ii) massive quantity of functional sites. Moreover, NUC-120 and activated NUC-120a display high thermal and chemical stability, which have been proved by TGA and the soaking experiments in acid-base water and most organic solvents. Catalytic experiments proved that NUC-120a, in the presence of the n-Bu4NBr cocatalyst could efficiently catalyze the coupling reaction of CO2 and epoxides under comparatively mild conditions. Furthermore, NUC-120a also displays high catalytic performance in the Knoevenagel condensation reactions of aldehydes and malononitrile, which should be because the coexisting Lewis acidic and basic sites can separately activate aldehyde and malononitrile molecules. Thereby, this work further provides insight that desired functional materials can be generated by using the existing suitable secondary building units (SBUs) and meticulously regulating the growth environments.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
7
|
He Q, Qi S, Ahmad M, Zhang T, Wang S. Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications. Int J Biol Macromol 2025; 296:139643. [PMID: 39798766 DOI: 10.1016/j.ijbiomac.2025.139643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations. Incorporation of carboxyl groups on the T-CNF surface and the sulfonic acid groups within SPC confers high cation selectivity, reaching up to 0.88, and enhances high energy conversion efficiency to 38.3 %. Furthermore, the SPC component forms three-dimensional interconnected nanopore channels that serve as extensive ion transport pathways, allowing the hybrid membranes to exhibit high transmembrane ion flux. This structural design enhances ion conductivity, reaching up to 0.8 S/cm at low KCl concentrations (≤0.01 M). With their high ion selectivity and rapid ion transport capabilities, SPC/T-CNF hybrid membranes achieve high-performance osmotic energy conversion, delivering an output power density of 1.08 W/m2 under conditions simulating the interface of seawater and river water, while maintaining stability over 25 days. This economical and easily fabricated porous nanofluidic hybrid membrane featuring nano-porous carbon paves the way for advanced energy-harvesting devices.
Collapse
Affiliation(s)
- Qianxi He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shuang Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Lin W, Cao L, Liu X, Alimi LO, Wang J, Moosa BA, Lai Z, Khashab NM. A Smart Polycage Membrane with Responsive Osmotic Energy Conversion Based on Synchronously Switchable Microporosity and Chargeability. J Am Chem Soc 2024; 146:34528-34535. [PMID: 39533477 DOI: 10.1021/jacs.4c11709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Membranes with specific pore sizes are widely used in molecular separation, ion transport, and energy conversion. However, the molecular understanding of structure-property performance in membrane science has been an urgent and long-standing problem. A promising but challenging solution lies in the fine-tuning of the membrane microstructure and properties to control membrane performance. Here, we designed an exofunctionalized triskelion cage to construct smart polycage membranes with concurrently responsive pore apertures and charge property. The synthetic polyaza cage is decorated with exoextended aldehyde groups for membrane fabrication and multiple amine sites for postmodification. The engineered polycage membranes thereby are endowed with pH-responsive porosity and chargeability, which serve as excellent candidates to explore the influence of the pore size and charge properties on membrane performance. In this regard, we successfully demonstrated the responsive osmotic energy conversion of the polycage membrane with a power density increase of over fourfold. This result indicates that the chargeability here outcompetes microporosity in energy conversion performance, which is further supported by molecular simulations. Therefore, this smart polycage membrane not only offers a feasible strategy to regulate the membrane microstructure and charge property reversibly but also balances pore size and chargeability to control the membrane performance at the molecular level.
Collapse
Affiliation(s)
- Weibin Lin
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jinrong Wang
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Basem A Moosa
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Xian W, Xu X, Ge Y, Xing Z, Lai Z, Meng QW, Dai Z, Wang S, Chen R, Huang N, Ma S, Sun Q. Efficient Light-Driven Ion Pumping for Deep Desalination via the Vertical Gradient Protonation of Covalent Organic Framework Membranes. J Am Chem Soc 2024; 146:33973-33982. [PMID: 39607814 DOI: 10.1021/jacs.4c12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Traditional desalination methods face criticism due to high energy requirements and inadequate trace ion removal, whereas natural light-driven ion pumps offer superior efficiency. Current synthetic systems are constrained by short exciton lifetimes, which limit their ability to generate sufficient electric fields for effective ion pumping. We introduce an innovative approach utilizing covalent-organic framework membranes that enhance light absorption and reduce charge recombination through vertical gradient protonation of imine linkages during acid-catalyzed liquid-liquid interfacial polymerization. This technique creates intralayer and interlayer heterojunctions, facilitating interlayer hybridization and establishing a robust built-in electric field under illumination. These improvements enable the membranes to achieve remarkable ion transport across extreme concentration gradients (2000:1), with a transport rate of approximately 3.2 × 1012 ions per second per square centimeter and reduce ion concentrations to parts per billion. This performance significantly surpasses that of conventional reverse osmosis systems, representing a major advancement in solar-powered desalination technology by substantially reducing energy consumption and secondary waste.
Collapse
Affiliation(s)
- Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yongxin Ge
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Xing
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Sai Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 310015, China
| | - Ruotian Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Fei Y, Abazari R, Ren M, Wang X, Zhang X. Defect Engineering in a Nanoporous Thulium-Organic Framework in Catalyzing Knoevenagel Condensation and Chemical CO 2 Fixation. Inorg Chem 2024; 63:18914-18923. [PMID: 39311507 DOI: 10.1021/acs.inorgchem.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Defect engineering is an extremely effective strategy for modifying metal-organic frameworks (MOFs), which can break through the application limitations of traditional MOFs and enhance their functionality. Herein, we report a highly robust nanoporous thulium(III)-organic framework, {[Tm2(BDCP)(H2O)5](NO3)·3DMF·2H2O}n (NUC-105), with [Tm(COO)2(H2O)]n chains and [Tm2(COO)4(H2O)8] dinuclears as metal nodes and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (BDCP) linkers. In NUC-105, each of the four chains of [Tm(COO)2]n and the two rows of [Tm2(COO)4(H2O)8] units is unified by the organic skeleton, resulting in a rectangular nanochannel with dimensions of 15.35 Å × 11.29 Å, which leads to a void volume of 50%. It is worth mentioning that the [Tm2(COO)4(H2O)8] cluster is very rare in terms of its higher level of associated water molecules, implying that the activated host framework can serve as a strong Lewis acid. NUC-105a exhibited great heterogeneous catalytic performance for CO2 cycloaddition with epoxides under the reaction conditions (0.60 mol % NUC-105a, 5.0 mol % n-Bu4NBr, 65 °C, 5 h), ensuring exclusive selectivity and high conversion rates. In addition, NUC-105a's strong catalytic impact on the Knoevenagel condensation of aldehydes and malononitrile can be attributed to the collaboration between the drastically unsaturated Lewis acidic Tm3+ centers and Lewis basic pyridine groups.
Collapse
Affiliation(s)
- Yang Fei
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Reza Abazari
- Department of Inorganic Chemistry, Faculty of Science, University of Maragheh, Maragheh 83111-55181, Iran
| | - Meiyu Ren
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xiaotong Wang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xiutang Zhang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
| |
Collapse
|
11
|
Meng QW, Li J, Lai Z, Xian W, Wang S, Chen F, Dai Z, Zhang L, Yin H, Ma S, Sun Q. Optimizing selectivity via membrane molecular packing manipulation for simultaneous cation and anion screening. SCIENCE ADVANCES 2024; 10:eado8658. [PMID: 39321297 PMCID: PMC11423885 DOI: 10.1126/sciadv.ado8658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Advancing membranes with enhanced solute-solute selectivity is essential for expanding membrane technology applications, yet it presents a notable challenge. Drawing inspiration from the unparalleled selectivity of biological systems, which benefit from the sophisticated spatial organization of functionalities, we posit that manipulating the arrangement of the membrane's building blocks, an aspect previously given limited attention, can address this challenge. We demonstrate that optimizing the face-to-face orientation of building blocks during the assembly of covalent-organic-framework (COF) membranes improves ion-π interactions with multivalent ions. This optimization leads to extraordinary selectivity in differentiating between monovalent cations and anions from their multivalent counterparts, achieving selectivity factors of 214 for K+/Al3+ and 451 for NO3-/PO43-. Leveraging this attribute, the COF membrane facilitates the direct extraction of NaCl from seawater with a purity of 99.57%. These findings offer an alternative approach for designing highly selective membrane materials, offering promising prospects for advancing membrane-based technologies.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianguo Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fang Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hong Yin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Yin S, Li J, Lai Z, Meng QW, Xian W, Dai Z, Wang S, Zhang L, Xiong Y, Ma S, Sun Q. Giant gateable thermoelectric conversion by tuning the ion linkage interactions in covalent organic framework membranes. Nat Commun 2024; 15:8137. [PMID: 39289381 PMCID: PMC11408633 DOI: 10.1038/s41467-024-52487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Efficient energy conversion using ions as carriers necessitates membranes that sustain high permselectivity in high salinity conditions, which presents a significant challenge. This study addresses the issue by manipulating the linkages in covalent-organic-framework membranes, altering the distribution of electrostatic potentials and thereby influencing the short-range interactions between ions and membranes. We show that a charge-neutral covalent-organic-framework membrane with β-ketoenamine linkages achieves record permselectivity in high salinity environments. Additionally, the membrane retains its permselectivity under temperature gradients, providing a method for converting low-grade waste heat into electrical energy. Experiments reveal that with a 3 M KCl solution and a 50 K temperature difference, the membrane generates an output power density of 5.70 W m-2. Furthermore, guided by a short-range ionic screening mechanism, the membrane exhibits adaptable permselectivity, allowing reversible and controllable operations by finely adjusting charge polarity and magnitude on the membrane's channel surfaces via ion adsorption. Notably, treatment with K3PO4 solutions significantly enhances permselectivity, resulting in a giant output power density of 20.22 W m-2, a 3.6-fold increase over the untreated membrane, setting a benchmark for converting low-grade heat into electrical energy.
Collapse
Affiliation(s)
- Shijie Yin
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianguo Li
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, China.
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St Denton, Denton, TX, 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
13
|
Han R, Zeng F, Xia Q, Pang X, Wu X. Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments. Carbohydr Polym 2024; 340:122271. [PMID: 38858021 DOI: 10.1016/j.carbpol.2024.122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m-3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m-1), even when subjected to -40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields.
Collapse
Affiliation(s)
- Ruiheng Han
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fan Zeng
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qingqing Xia
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangchao Pang
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xianzhang Wu
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Lin Q, Ding X, Hou Y, Ali W, Li Z, Han X, Meng Z, Sun Y, Liu Y. Adsorption and separation technologies based on supramolecular macrocycles for water treatment. ECO-ENVIRONMENT & HEALTH 2024; 3:381-391. [PMID: 39281072 PMCID: PMC11401079 DOI: 10.1016/j.eehl.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 09/18/2024]
Abstract
The escalating challenges in water treatment, exacerbated by climate change, have catalyzed the emergence of innovative solutions. Novel adsorption separation and membrane filtration methodologies, achieved through molecular structure manipulation, are gaining traction in the environmental and energy sectors. Separation technologies, integral to both the chemical industry and everyday life, encompass concentration and purification processes. Macrocycles, recognized as porous materials, have been prevalent in water treatment due to their inherent benefits: stability, adaptability, and facile modification. These structures typically exhibit high selectivity and reversibility for specific ions or molecules, enhancing their efficacy in water purification processes. The progression of purification methods utilizing macrocyclic frameworks holds promise for improved adsorption separations, membrane filtrations, resource utilization, and broader water treatment applications. This review encapsulates the latest breakthroughs in macrocyclic host-guest chemistry, with a focus on adsorptive and membrane separations. The aim is to spotlight strategies for optimizing macrocycle designs and their subsequent implementation in environmental and energy endeavors, including desalination, elemental extraction, seawater energy harnessing, and sustainable extraction. Hopefully, this review can guide the design and functionality of macrocycles, offering a significantly promising pathway for pollutant removal and resource utilization.
Collapse
Affiliation(s)
- Qian Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Xiaolong Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yuansheng Hou
- QingHai Salt Lake Industry Co. Ltd., Golmud 816099, China
| | - Wajahat Ali
- Department of Chemistry, University of Baltistan, Skardu 16100, Pakistan
| | - Zichen Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhen Meng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| |
Collapse
|
15
|
Takada K, Ito M, Fukui N, Nishihara H. Modulation between capacitor and conductor for a redox-active 2D bis(terpyridine)cobalt(II) nanosheet via anion-exchange. Commun Chem 2024; 7:186. [PMID: 39174642 PMCID: PMC11341730 DOI: 10.1038/s42004-024-01274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Ionic polymers are intriguing materials whose functionality arises from the synergy between ionic polymer backbones and counterions. A key method for enhancing their functionality is the post-synthetic ion-exchange reaction, which is instrumental in improving the chemical and physical properties of polymer backbones and introducing of the functionalities of the counterions. Electronic interaction between host polymer backbone and guest ions plays pivotal roles in property modulation. The current study highlights the modulation of responses to external electric field in cationic bis(terpyridine)cobalt(II) polymer nanofilms through anion-exchange reactions. Initially, as-prepared chloride-containing polymers exhibited supercapacitor behaviour. Introducing anionic metalladithiolenes into the polymers altered the behaviour to either conductive or insulative, depending on the valence of the metalladithiolenes. This modulation was accomplished by fine tuning of charge-transfer interactions between the bis(terpyridine)cobalt(II) complex moieties and redox-active anions. Our findings open up new avenue for ionic polymers, showcasing their potential as versatile platform in materials science.
Collapse
Affiliation(s)
- Kenji Takada
- Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Miyu Ito
- Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Naoya Fukui
- Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroshi Nishihara
- Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
- Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
16
|
Liu K, Epsztein R, Lin S, Qu J, Sun M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS NANO 2024; 18:21633-21650. [PMID: 39114876 DOI: 10.1021/acsnano.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Collapse
Affiliation(s)
- Kairui Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Xian W, Wu D, Lai Z, Wang S, Sun Q. Advancing Ion Separation: Covalent-Organic-Framework Membranes for Sustainable Energy and Water Applications. Acc Chem Res 2024; 57:1973-1984. [PMID: 38950424 DOI: 10.1021/acs.accounts.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
ConspectusMembranes are pivotal in a myriad of energy production processes and modern separation techniques. They are essential in devices for energy generation, facilities for extracting energy elements, and plants for wastewater treatment, each of which hinges on effective ion separation. While biological ion channels show exceptional permeability and selectivity, designing synthetic membranes with defined pore architecture and chemistry on the (sub)nanometer scale has been challenging. Consequently, a typical trade-off emerges: highly permeable membranes often sacrifice selectivity and vice versa. To tackle this dilemma, a comprehensive understanding and modeling of synthetic membranes across various scales is imperative. This lays the foundation for establishing design criteria for advanced membrane materials. Key attributes for such materials encompass appropriately sized pores, a narrow pore size distribution, and finely tuned interactions between desired permeants and the membrane. The advent of covalent-organic-framework (COF) membranes offers promising solutions to the challenges faced by conventional membranes in selective ion separation within the water-energy nexus. COFs are molecular Legos, facilitating the precise integration of small organic structs into extended, porous, crystalline architectures through covalent linkage. This unique molecular architecture allows for precise control over pore sizes, shapes, and distributions within the membrane. Additionally, COFs offer the flexibility to modify their pore spaces with distinct functionalities. This adaptability not only enhances their permeability but also facilitates tailored interactions with specific ions. As a result, COF membranes are positioned as prime candidates to achieve both superior permeability and selectivity in ion separation processes.In this Account, we delineate our endeavors aimed at leveraging the distinctive attributes of COFs to augment ion separation processes, tackling fundamental inquiries while identifying avenues for further exploration. Our strategies for fabricating COF membranes with enhanced ion selectivity encompass the following: (1) crafting (sub)nanoscale ion channels to enhance permselectivity, thereby amplifying energy production; (2) implementing a multivariate (MTV) synthesis method to control charge density within nanochannels, optimizing ion transport efficiency; (3) modifying the pore environment within confined mass transfer channels to establish distinct pathways for ion transport. For each strategy, we expound on its chemical foundations and offer illustrative examples that underscore fundamental principles. Our efforts have culminated in the creation of groundbreaking membrane materials that surpass traditional counterparts, propelling advancements in sustainable energy conversion, waste heat utilization, energy element extraction, and pollutant removal. These innovations are poised to redefine energy systems and industrial wastewater management practices. In conclusion, we outline future research directions and highlight key challenges that need addressing to enhance the ion/molecular recognition capabilities and practical applications of COF membranes. Looking forward, we anticipate ongoing advancements in functionalization and fabrication techniques, leading to enhanced selectivity and permeability, ultimately rivaling the capabilities of biological membranes.
Collapse
Affiliation(s)
- Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
18
|
Tsutsui M, Hsu WL, Garoli D, Leong IW, Yokota K, Daiguji H, Kawai T. Gate-All-Around Nanopore Osmotic Power Generators. ACS NANO 2024; 18:15046-15054. [PMID: 38804145 DOI: 10.1021/acsnano.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nanofluidic channels in a membrane represent a promising avenue for harnessing blue energy from salinity gradients, relying on permselectivity as a pivotal characteristic crucial for inducing electricity through diffusive ion transport. Surface charge emerges as a central player in the osmotic energy conversion process, emphasizing the critical significance of a judicious selection of membrane materials to achieve optimal ion permeability and selectivity within specific channel dimensions. Alternatively, here we report a field-effect approach for in situ manipulation of the ion selectivity in a nanopore. Application of voltage to a surround-gate electrode allows precise adjustment of the surface charge density at the pore wall. Leveraging the gating control, we demonstrate permselectivity turnover to enhanced cation selective transport in multipore membranes, resulting in a 6-fold increase in the energy conversion efficiency with a power density of 15 W/m2 under a salinity gradient. These findings not only advance our fundamental understanding of ion transport in nanochannels but also provide a scalable and efficient strategy for nanoporous membrane osmotic power generation.
Collapse
Affiliation(s)
- Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 5267-0047, Japan
| | - Wei-Lun Hsu
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Denis Garoli
- Optoelectronics Research Line, Instituto Italiano di Tecnologia, Morego 30, I-16163 Genova, Italy
| | - Iat Wai Leong
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 5267-0047, Japan
| | - Kazumichi Yokota
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 5267-0047, Japan
| |
Collapse
|
19
|
Huang D, Zou K, Wu Y, Li K, Zhang Z, Liu T, Chen W, Yan Z, Zhou S, Kong XY, Jiang L, Wen L. TRPM4-Inspired Polymeric Nanochannels with Preferential Cation Transport for High-Efficiency Salinity-Gradient Energy Conversion. J Am Chem Soc 2024. [PMID: 38842082 DOI: 10.1021/jacs.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cation-π interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl- selectivity via ionic and cation-π interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl- selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m-2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kehan Zou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianchi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| |
Collapse
|
20
|
Xian W, Zhu C, Lai Z, Zuo X, Meng QW, Zheng L, Wang S, Dai Z, Chen F, Ma S, Sun Q. Enhancing Sustainable Energy Conversion Efficiency by Incorporating Photoelectric Responsiveness into Multiporous Ionic Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310791. [PMID: 38214692 DOI: 10.1002/smll.202310791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Indexed: 01/13/2024]
Abstract
The evolution of porous membranes has revitalized their potential application in sustainable osmotic-energy conversion. However, the performance of multiporous membranes deviates significantly from the linear extrapolation of single-pore membranes, primarily due to the occurrence of ion-concentration polarization (ICP). This study proposes a robust strategy to overcome this challenge by incorporating photoelectric responsiveness into permselective membranes. By introducing light-induced electric fields within the membrane, the transport of ions is accelerated, leading to a reduction in the diffusion boundary layer and effectively mitigating the detrimental effects of ICP. The developed photoelectric-responsive covalent-organic-framework membranes exhibit an impressive output power density of 69.6 W m-2 under illumination, surpassing the commercial viability threshold by ≈14-fold. This research uncovers a previously unexplored benefit of integrating optical electric conversion with reverse electrodialysis, thereby enhancing energy conversion efficiency.
Collapse
Affiliation(s)
- Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry, St Denton, TX, 76201, USA
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiuhui Zuo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310028, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310028, China
| | - Fang Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry, St Denton, TX, 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
21
|
Zhu C, Xu L, Liu Y, Liu J, Wang J, Sun H, Lan YQ, Wang C. Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion. Nat Commun 2024; 15:4213. [PMID: 38760369 PMCID: PMC11101624 DOI: 10.1038/s41467-024-48613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
Nanofluidic membranes have demonstrated great potential in harvesting osmotic energy. However, the output power densities are usually hampered by insufficient membrane permselectivity. Herein, we design a polyoxometalates (POMs)-based nanofluidic plasmonic electron sponge membrane (PESM) for highly efficient osmotic energy conversion. Under light irradiation, hot electrons are generated on Au NPs surface and then transferred and stored in POMs electron sponges, while hot holes are consumed by water. The stored hot electrons in POMs increase the charge density and hydrophilicity of PESM, resulting in significantly improved permselectivity for high-performance osmotic energy conversion. In addition, the unique ionic current rectification (ICR) property of the prepared nanofluidic PESM inhibits ion concentration polarization effectively, which could further improve its permselectivity. Under light with 500-fold NaCl gradient, the maximum output power density of the prepared PESM reaches 70.4 W m-2, which is further enhanced even to 102.1 W m-2 by changing the ligand to P5W30. This work highlights the crucial roles of plasmonic electron sponge for tailoring the surface charge, modulating ion transport dynamics, and improving the performance of nanofluidic osmotic energy conversion.
Collapse
Affiliation(s)
- Chengcheng Zhu
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li Xu
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yazi Liu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ya-Qian Lan
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Chen Wang
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
22
|
Zhou S, Mei Y, Yang W, Jiang C, Guo H, Feng SP, Tang CY. Energy harvesting from acid mine drainage using a highly proton/ion-selective thin polyamide film. WATER RESEARCH 2024; 255:121530. [PMID: 38564897 DOI: 10.1016/j.watres.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
A huge chemical potential difference exists between the acid mine drainage (AMD) and the alkaline neutralization solution, which is wasted in the traditional AMD neutralization process. This study reports, for the first time, the harvest of this chemical potential energy through a controlled neutralization of AMD using H+-conductive films. Polyamide films with controllable thickness achieved much higher H+ conductance than a commercially available cation exchange membrane (CEM). Meanwhile, the optimal polyamide film had an excellent H+/Ca2+ selectivity of 63.7, over two orders of magnitude higher than that of the CEM (0.3). The combined advantages of fast proton transport and high proton/ion selectivity greatly enhanced the power generation of the AMD battery. The power density was 3.1 W m-2, which is over one order of magnitude higher than that of the commercial CEM (0.2 W m-2). Our study provides a new sustainable solution to address the environmental issues of AMD while simultaneously enabling clean energy production.
Collapse
Affiliation(s)
- Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China
| | - Ying Mei
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China.
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chenxiao Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230052, PR China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China; Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China; Department of Advanced Design and Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China.
| |
Collapse
|
23
|
Liu X, Li X, Chu X, Zhang B, Zhang J, Hambsch M, Mannsfeld SCB, Borrelli M, Löffler M, Pohl D, Liu Y, Zhang Z, Feng X. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310791. [PMID: 38299804 DOI: 10.1002/adma.202310791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Blue energy between seawater and river water is attracting increasing interest, as one of the sustainable and renewable energy resources that can be harvested from water. Within the reverse electrodialysis applied in blue energy conversion, novel membranes with nanoscale confinement that function as selective ion transport mediums are currently in high demand for realizing higher power density. The primary challenge lies in constructing well-defined nanochannels that allow for low-energy barrier transport. This work proposes a concept for nanofluidic channels with a simultaneous dual electrostatic effect that can enhance both ion selectivity and flux. To actualize this, this work has synthesized propidium iodide-based two-dimensional polymer (PI-2DP) membranes possessing both skeleton charge and intrinsic space charge, which are spatially aligned along the ion transport pathway. The dual charge design of PI-2DP significantly enhances the electrostatic interaction between the translocating anions and the cationic polymer framework, and a high anion selectivity coefficient (≈0.8) is reached. When mixing standard artificial seawater and river water, this work achieves a considerable power density of 48.4 W m-2, outperforming most state-of-the-art nanofluidic membranes. Moreover, when applied between the Mediterranean Sea and the Elbe River, an output power density of 42.2 W m-2 is achieved by the PI-2DP. This nanofluidic membrane design with dual-layer charges will inspire more innovative development of ion-selective channels for blue energy conversion that will contribute to global energy consumption.
Collapse
Affiliation(s)
- Xiaohui Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xiaodong Li
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Xingyuan Chu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Bowen Zhang
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) Maria-Reiche-Strasse 2, 01109, Dresden, Germany
| | - Jiaxu Zhang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering Technische Universität Dresden, 01062, Dresden, Germany
| | - Mino Borrelli
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yuanwu Liu
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069, Dresden, Germany
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
24
|
Fang M, Yan Z, Ying Y, Hu CK, Xi X, Zhang G, Zhang X, Chen XC, Tang Z, Li L. Boosting Osmotic Energy Harvesting from Organic Solutions by Ultrathin Covalent Organic Framework Membranes. NANO LETTERS 2024; 24:4618-4624. [PMID: 38588453 DOI: 10.1021/acs.nanolett.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Extracting osmotic energy from waste organic solutions via reverse electrodialysis represents a promising approach to reuse such industrial wastes and helps to mitigate the ever-growing energy needs. Herein, a molecularly thin membrane of covalent organic frameworks is engineered via interfacial polymerization to investigate its ion transport behavior in organic solutions. Interestingly, a significant deviation from linearity between ion conductance and reciprocal viscosity is observed, attributed to the nanoscale confinement effect on intermolecular interactions. This finding suggests a potential strategy to modulate the influence of apprarent viscosity on transmembrane transport. The osmotic energy harvesting of the ultrathin membrane in organic systems was studied, achieving an unprecedented output power density of over 84.5 W m-2 at a 1000-fold salinity gradient with a benign conversion efficiency and excellent stability. These findings provide a meaningful stepping stone for future studies seeking to fully leverage the potentials of organic systems in energy harvesting applications.
Collapse
Affiliation(s)
- Munan Fang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Ying
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chun-Kui Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaoyi Xi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangjie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaopeng Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xia-Chao Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Hu X, Zhou S, Zhang X, Zeng H, Guo Y, Xu Y, Liang Q, Wang J, Jiang L, Kong B. Superassembled MXene-carboxymethyl chitosan nanochannels for the highly sensitive recognition and detection of copper ions. Analyst 2024; 149:1464-1472. [PMID: 38284827 DOI: 10.1039/d3an02190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yaxin Guo
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yeqing Xu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, P. R. China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
| |
Collapse
|
26
|
Jia X, Zhang M, Zhang Y, Fu Y, Sheng N, Chen S, Wang H, Du Y. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting. NANO LETTERS 2024; 24:2218-2225. [PMID: 38277614 DOI: 10.1021/acs.nanolett.3c04343] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Significant untapped energy exists within low-grade heat sources and salinity gradients. Traditional nanofluidic membranes exhibit inherent limitations, including low ion selectivity, high internal resistance, reliance on nonrenewable resources, and instability in aqueous solutions, invariably constraining their practical application. Here, an innovative composite membrane-based nanofluidic system is reported, involving the strategy of integrating tailor-modified bacterial nanofibers with boron nitride nanosheets, enabling high surface charge densities while maintaining a delicate balance between ion selectivity and permeability, ultimately facilitating effective thermo-osmotic energy harvesting. The device exhibits an impressive output power density of 10 W m-2 with artificial seawater and river water at a 50 K temperature gradient. Furthermore, it demonstrates robust power density stability under prolonged exposure to salinity gradients or even at elevated temperatures. This work opens new avenues for the development of nanofluidic systems utilizing composite materials and presents promising solutions for low-grade heat recovery and osmotic energy harvesting.
Collapse
Affiliation(s)
- Xiwei Jia
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Minghao Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yating Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yuyang Fu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Nan Sheng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Shipbuilding Technology Research Institute, Shanghai 200032, P. R. China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yong Du
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
27
|
Duan R, Zhou J, Ma X, Hao J, Zhao D, Teng C, Zhou Y, Jiang L. High Strength MXene/PBONF Heterogeneous Membrane with Excellent Ion Selectivity for Efficient Osmotic Energy Conversion. NANO LETTERS 2023. [PMID: 38032845 DOI: 10.1021/acs.nanolett.3c03343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Layered MXene nanofluidic membranes still face the problems of low mechanical property, poor ion selectivity, and low output power density. In this work, we successfully constructed heterostructured membranes with the combination of the layered channels of the MXene layer on the top and the nanoscale poly(p-phenylene-benzodioxazole) nanofiber (PBONF) layer on the bottom through a stepwise filtration method. The as-prepared MXene/PBONF-50 heterogeneous membrane exhibits high mechanical properties (strength of 221.6 MPa, strain of 3.2%), high ion selectivity of 0.87, and an excellent output power density of 15.7 W/m2 at 50-fold concentration gradient. Excitingly, the heterogeneous membrane presents a high power density of 6.8 W/m2 at a larger testing area of 0.79 mm2 and long-term stability. This heterogeneous membrane construction provides a viable strategy for the enhancement of mechanical properties and osmotic energy conversion of 2D materials.
Collapse
Affiliation(s)
- Runyu Duan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiale Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoyan Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junran Hao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Danying Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chao Teng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province 256606, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
28
|
Zhang X, Wang X, Li C, Hu T, Fan L. Nanoporous {Co 3}-Organic framework for efficiently seperating gases and catalyzing cycloaddition of epoxides with CO 2 and Knoevenagel condensation. J Colloid Interface Sci 2023; 656:127-136. [PMID: 37988780 DOI: 10.1016/j.jcis.2023.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enhancing the catalysis of metal-organic frameworks (MOFs) by regulating inherent Lewis acid-base sites to realize the efficient seperation and chemical fixation of inert carbon dioxide (CO2) is crucial but challenging. Herein, the solvothermal self-assembly of Co2+, 5'-(4-carboxy-2-nitrophenyl)-2,2',2'',4',6'-pentanitro-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid (H3TNBTB) and 4'-phenyl-4,2':6',4''-terpyridine (PTP) generated a highly robust cobalt-organic framework of {[Co3(TNBTB)2(PTP)]·7DMF·6H2O}n (NUC-82). In NUC-82, the tri-core clusters of {Co3} with linear shape are bridged by TNBTB3- to form two-dimensional structure in ac plane, which is further linked by PTP to generate a three-dimensional framework with two kinds of solvent-accessible channels: rhombic-like (ca. 11.57 × 10.76 Å) along a axis and rectangular-like (ca. 7.32 × 11.56 Å) along b axis. Furthermore, it is worth emphasizing that the confined pore environments are characterized by plentiful Lewis acid-base sites of tricobalt clusters, grafted nitro groups and free pyridinyl, high specific surface area and solvent-free nano-caged windows. Activated NUC-82a owns the ultra-high ethylene (C2H2) separation performance over the mixture of C2H2/CH4 and CO2/CH4 with the selectivity of 223.1 and 44.7. Thanks to the great Lewis-acid sites as well as the large pore volume, activated NUC-82a displays the high catalytic performace on the cycloaddition of CO2 with epoxides under wield condtions such as amibient pressure. Furthermore, because of the rich Lewis base sites, NUC-82a can efficiently catalyze Knoevenagel condensation of aldehydes and malononitrile. In the above organic reactions, NUC-82a not only shows the high catalytic activity, but also exhibits the high selectivity, satifactory recyclability and easy-to-separate heterogeneity, confirming that NUC-82a is a promising catalyst. Hence, this work provides in-depth insight into the construction of multifunctional MOFs by modifying the traditional ligands with as many Lewis acid-base active sites as possible.
Collapse
Affiliation(s)
- Xiutang Zhang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Xiaotong Wang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Chong Li
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Tuoping Hu
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Liming Fan
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
29
|
Fan C, Zhang L, Kong Y, Pang X, Gao Z, Wang S, Xing N, Wu H, Jiang Z. Solid-state synthesis of intrinsically proton-conducting covalent organic framework membrane. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
30
|
Zhou S, Hu Y, Xin W, Fu L, Lin X, Yang L, Hou S, Kong XY, Jiang L, Wen L. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208640. [PMID: 36457170 DOI: 10.1002/adma.202208640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Charge-governed ion transport is the vital property of nanofluidic channels for salinity-gradient energy harvesting and other electrochemical energy conversion technologies. 2D nanofluidic channels constructed by nanosheets exhibit great superiority in ion selectivity, but a high ion transport rate remains challenging due to the insufficiency of intrinsic surface charge density in nanoconfinement. Herein, extrinsic surface charge into nanofluidic channels composed of surfactant-assisted sulfonated covalent organic nanosheets (SCONs), which enable tunable ion transport behaviors, is demonstrated. The polar moiety of surfactant is embedded in SCONs to adjust in-plane surface charges, and the aggregation of nonpolar moiety results in the sol-to-gel transformation of SCON solution for membrane fabrication. The combination endows SCON/surfactant membranes with considerable water-resistance, and the designable extrinsic charges promise fast ion transport and high ion selectivity. Additionally, the SCON/surfactant membrane, serving as a power generator, exhibits huge potential in harvesting salinity-gradient energy where corresponding output power density can reach up to 9.08 W m-2 under a 50-fold salinity gradient (0.5 m NaCl|0.01 m NaCl). The approach to extrinsic surface charge provides new and promising insight into regulating ion transport behaviors.
Collapse
Affiliation(s)
- Shengyang Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhao Hu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwen Xin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Fu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangbin Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linsen Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuhua Hou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Cao L, Chen IC, Li Z, Liu X, Mubashir M, Nuaimi RA, Lai Z. Switchable Na + and K + selectivity in an amino acid functionalized 2D covalent organic framework membrane. Nat Commun 2022; 13:7894. [PMID: 36550112 PMCID: PMC9780323 DOI: 10.1038/s41467-022-35594-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Biological cell membranes can efficiently switch Na+/K+ selectivity in response to external stimuli, but achieving analogous functions in a single artificial membrane is challenging. Here, we report highly crystalline covalent organic framework (COF) membranes with well-defined nanochannels and coordinative sites (i. e., amino acid) that act as ion-selective switches to manipulate Na+ and K+ transport. The ion selectivity of the COF membrane is dynamic and can be switched between K+-selective and Na+-selective in a single membrane by applying a pH stimulus. The experimental results combined with molecular dynamics simulations reveal that the switchable Na+/K+ selectivity originates from the differentiated coordination interactions between ions and amino acids. Benefiting from the switchable Na+/K+ selectivity, we further demonstrate the membrane potential switches by varying electrolyte pH, miming the membrane polarity reversal during neural signal transduction in vivo, suggesting the great potential of these membranes for in vitro biomimetic applications.
Collapse
Affiliation(s)
- Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - I-Chun Chen
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Zhen Li
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Muhammad Mubashir
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Reham Al Nuaimi
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Cao L, Chen IC, Liu X, Li Z, Zhou Z, Lai Z. An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion. ACS NANO 2022; 16:18910-18920. [PMID: 36283039 DOI: 10.1021/acsnano.2c07813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heterogeneous membranes that exhibit an ionic diode effect are promising candidates for osmotic energy conversion. However, existing heterogeneous membranes lack molecular-level designed ion channels, thereby limiting their power densities. Here, we demonstrate ionic diode covalent organic framework (COF) membranes with well-defined ion channels, asymmetric geometry and surface charge polarity as high-performance osmotic power generators. The COF diode membranes are comprised of heterojunctions combining a positively charged ultrathin COF layer and a negatively charged COF layer supported by a porous COF nanofiber scaffold, exhibiting an ionic diode effect that effectuates fast unidirectional ion diffusion and anion selectivity. Density functional theory calculations reveal that the differentiated interactions between anions and COF channels contributed to superior I- transport over other anions. Consequently, the COF diode membranes achieved high output power densities of 19.2 and 210.1 W m-2 under a 50-fold NaCl and NaI gradient, respectively, outperforming state-of-the-art heterogeneous membranes. This work suggests the great potential of COF diode membranes for anion transport and energy-related applications.
Collapse
Affiliation(s)
- Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - I-Chun Chen
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Zhen Li
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Zongyao Zhou
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Qian Y, Liu D, Yang G, Chen J, Ma Y, Wang L, Wang X, Lei W. Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion. CHEMSUSCHEM 2022; 15:e202200933. [PMID: 35853838 PMCID: PMC9804272 DOI: 10.1002/cssc.202200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Inadequate mass transportation of semipermeable membranes causes poor osmotic energy conversion from salinity-gradient. Here, the lamellar graphene oxide membranes (GOMs) constructed with numerous fusiform-like nanochannels, that are pre-filled with negatively charged polyanion electrolytes, to both enhance the ion permeability and ion selectivity of the membrane for energy harvest from the salinty gradient, were developed. The as-prepared membrane achieved the maximum output power density of ∼4.94 W m-2 under a 50 fold salinity gradient, which is 3.5 fold higher than that of pristine GOM. The enhancement could be ascribed to the synergistic impact of the expanded nanochannels and the enhanced space charge density. Via feeding with the artificial salinity water and monovalent cation electrolytes, the system could realise the power output up to 14.7 W m-2 and 34.1 W m-2 , respectively. Overall, this material design strategy could provide an alternative concept to effectively enhance ion transport of other two-dimensional (2D) membranes for specific purposes.
Collapse
Affiliation(s)
- Yijun Qian
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVictoria3220Australia
| | - Dan Liu
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVictoria3220Australia
| | - Guoliang Yang
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVictoria3220Australia
| | - Jinqiu Chen
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVictoria3220Australia
| | - Yuxi Ma
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVictoria3220Australia
| | - Lifeng Wang
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVictoria3220Australia
| | - Xungai Wang
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVictoria3220Australia
| | - Weiwei Lei
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVictoria3220Australia
| |
Collapse
|