1
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. Human Papillomavirus Type 16 Stimulates WAVE1- and WAVE2-Dependent Actin Protrusions for Endocytic Entry. Viruses 2025; 17:542. [PMID: 40284985 PMCID: PMC12031361 DOI: 10.3390/v17040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Human papillomavirus type 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of actin protrusions that occur at the cellular surface upon HPV addition to cells, and that this stimulation is a key step prior to endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both internalize HPV16 at a significantly reduced rate. Microscopic analysis of fluorescently labeled cells revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface within a timeframe that precedes endocytosis. Within that same timeframe, we also found that HPV16-treated cells express cellular dorsal surface filopodia, which does not occur in cells lacking WAVE1 and WAVE2. Taken together, this study provides evidence that WAVE1 and WAVE2 mediate a key step prior to HPV entry into cells that involves actin reorganization in the form of cellular dorsal surface protrusions.
Collapse
Affiliation(s)
- Daniel J. Fernandez
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie Cheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ruben Prins
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sarah F. Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Wu XS, Zhang Z, Jin Y, Mushtaheed A, Wu LG. Actin maintains synaptic transmission by restraining vesicle release probability. iScience 2025; 28:112000. [PMID: 40109375 PMCID: PMC11919605 DOI: 10.1016/j.isci.2025.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/22/2024] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Despite decades of pharmacological studies, how the ubiquitous cytoskeletal actin regulates synaptic transmission remains poorly understood. We addressed this issue with a tissue-specific knockout of actin β-isoform or γ-isoform, combined with recordings of postsynaptic EPSCs, presynaptic capacitance jumps or fluorescent synaptophysin-pHluorin changes, and electron microscopy in large calyx-type and small conventional hippocampal synapses. We found that actin restrains basal synaptic transmission during single action potential firings by lowering the readily releasable vesicle's release probability. Such an inhibition of basal synaptic transmission is turned into facilitation during repetitive firings by slowing down depletion of the readily releasable vesicle pool and, thus, short-term synaptic depression, leading to more effective synaptic transmission for a longer time. These mechanisms, together with the previous finding that actin promotes vesicle replenishment to the readily releasable pool, may control synaptic transmission and short-term synaptic plasticity at many synapses, contributing to neurological disorders caused by actin cytoskeleton impairment.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Zhen Zhang
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
- Office of Genetic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Yinghui Jin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Afreen Mushtaheed
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Ouyang Z, Wang Q, Li X, Dai Q, Tang M, Shao L, Gou W, Yu Z, Chen Y, Zheng B, Chen L, Ping C, Bi X, Xiao B, Yu X, Liu C, Chen L, Fan J, Huang X, Zhang Y. Elucidating subcellular architecture and dynamics at isotropic 100-nm resolution with 4Pi-SIM. Nat Methods 2025; 22:335-347. [PMID: 39715887 PMCID: PMC11810797 DOI: 10.1038/s41592-024-02515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/15/2024] [Indexed: 12/25/2024]
Abstract
Three-dimensional structured illumination microscopy (3D-SIM) provides excellent optical sectioning and doubles the resolution in all dimensions compared with wide-field microscopy. However, its much lower axial resolution results in blurred fine details in that direction and overall image distortion. Here we present 4Pi-SIM, a substantial revamp of I5S that synergizes 3D-SIM with interferometric microscopy to achieve isotropic optical resolution through interference in both the illumination and detection wavefronts. We evaluate the performance of 4Pi-SIM by imaging various subcellular structures across different cell types with high fidelity. Furthermore, we demonstrate its capability by conducting time-lapse volumetric imaging over hundreds of time points, achieving a 3D resolution of approximately 100 nm. Additionally, we illustrate its ability to simultaneously image in two colors and capture the rapid interactions between closely positioned organelles in three dimensions. These results underscore the great potential of 4Pi-SIM for elucidating subcellular architecture and revealing dynamic behaviors at the nanoscale.
Collapse
Affiliation(s)
- Zijing Ouyang
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, International Cancer Institute, Peking University, Beijing, China
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qian Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Xiaoyu Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qiuyang Dai
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Muyuan Tang
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Lin Shao
- Department of Neuroscience and Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Wen Gou
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zijing Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Yanqin Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Bei Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Linlin Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Conghui Ping
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiuli Bi
- Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Bin Xiao
- Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Changliang Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Liangyi Chen
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| | - Junchao Fan
- Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China.
| | - Xiaoshuai Huang
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, International Cancer Institute, Peking University, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Yongdeng Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| |
Collapse
|
4
|
Jin M, Iwamoto Y, Shirazinejad C, Drubin DG. Intersectin1 promotes clathrin-mediated endocytosis by organizing and stabilizing endocytic protein interaction networks. Cell Rep 2024; 43:114989. [PMID: 39580802 PMCID: PMC11728081 DOI: 10.1016/j.celrep.2024.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
During clathrin-mediated endocytosis (CME), dozens of proteins are recruited to nascent CME sites on the plasma membrane, and their spatial and temporal coordination is crucial for efficient CME. Here, we show that the scaffold protein intersectin1 (ITSN1) promotes CME by organizing and stabilizing endocytic protein interaction networks. Live-cell imaging of genome-edited cells revealed that endogenously labeled ITSN1 is recruited during CME site stabilization and growth and that ITSN1 knockdown impairs endocytic protein recruitment during this stage. Targeting ITSN1 to the mitochondrial surface was sufficient to assemble puncta consisting of the EPS15 and FCHO2 initiation proteins, the AP2 and epsin1 (EPN1) adaptor proteins, and the dynamin2 (DNM2) vesicle scission GTPase. ITSN1 can form puncta and recruit DNM2 independent of EPS15/FCHO2 or EPN1. Our findings redefine ITSN1's primary endocytic role as organizing and stabilizing CME protein interaction networks rather than initiation, providing deeper insights into the multi-step and multi-zone organization of CME site assembly.
Collapse
Affiliation(s)
- Meiyan Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cyna Shirazinejad
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Link F, Jung S, Malzer X, Zierhut F, Konle A, Borges A, Batters C, Weiland M, Poellmann M, Nguyen AB, Kullmann J, Veigel C, Engstler M, Morriswood B. The actomyosin system is essential for the integrity of the endosomal system in bloodstream form Trypanosoma brucei. eLife 2024; 13:RP96953. [PMID: 39570285 PMCID: PMC11581428 DOI: 10.7554/elife.96953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Sisco Jung
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Xenia Malzer
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Felix Zierhut
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Antonia Konle
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Alyssa Borges
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christopher Batters
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Monika Weiland
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mara Poellmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - An Binh Nguyen
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Johannes Kullmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Claudia Veigel
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| |
Collapse
|
6
|
Heydecker M, Shitara A, Chen D, Tran DT, Masedunskas A, Tora MS, Ebrahim S, Appaduray MA, Galeano Niño JL, Bhardwaj A, Narayan K, Hardeman EC, Gunning PW, Weigert R. Coordination of force-generating actin-based modules stabilizes and remodels membranes in vivo. J Cell Biol 2024; 223:e202401091. [PMID: 39172125 PMCID: PMC11344176 DOI: 10.1083/jcb.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.
Collapse
Affiliation(s)
- Marco Heydecker
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Akiko Shitara
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology, Asahi University School of Dentistry, Gifu, Japan
| | - Desu Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duy T. Tran
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrius Masedunskas
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Muhibullah S. Tora
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seham Ebrahim
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark A. Appaduray
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Jorge Luis Galeano Niño
- EMBL Australia, Single Molecule Science node, University of New South Wales Sydney, Sydney, Australia
| | - Abhishek Bhardwaj
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Edna C. Hardeman
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Peter W. Gunning
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. WAVE1 and WAVE2 facilitate human papillomavirus-driven actin polymerization during cellular entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620484. [PMID: 39553927 PMCID: PMC11565777 DOI: 10.1101/2024.10.28.620484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human PapillomavirusType 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of the actin polymerization that facilitates HPV endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both, internalize HPV16 at a significantly reduced rate. Analysis of fluorescently labeled cells exposed to HPV16 and acquired by confocal fluorescence microscopy revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface. We also found that HPV16 stimulates WAVE1 and WAVE2-mediated cellular dorsal surface filopodia formation during the viral endocytic process. Taken together, this study provides evidence that the HPV endocytic process needed for infection is controlled by actin reorganization into filopodial protrusions and that this process is mediated by WAVE1 and WAVE2.
Collapse
Affiliation(s)
- D J Fernandez
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Stephanie Cheng
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Ruben Prins
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Xu M, Rutkowski DM, Rebowski G, Boczkowska M, Pollard LW, Dominguez R, Vavylonis D, Ostap EM. Myosin-I synergizes with Arp2/3 complex to enhance the pushing forces of branched actin networks. SCIENCE ADVANCES 2024; 10:eado5788. [PMID: 39270022 PMCID: PMC11397503 DOI: 10.1126/sciadv.ado5788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Class I myosins (myosin-Is) colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by the Arp2/3 complex on the surface of beads coated with myosin-I and nucleation-promoting factor. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Myosin-I triggered symmetry breaking and comet tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations, suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.
Collapse
Affiliation(s)
- Mengqi Xu
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Grzegorz Rebowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luther W. Pollard
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - E. Michael Ostap
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
11
|
Ai Y, Guo C, Garcia-Contreras M, Sánchez B. LS, Saftics A, Shodubi O, Raghunandan S, Xu J, Tsai SJ, Dong Y, Li R, Jovanovic-Talisman T, Gould SJ. Endocytosis blocks the vesicular secretion of exosome marker proteins. SCIENCE ADVANCES 2024; 10:eadi9156. [PMID: 38718108 PMCID: PMC11078179 DOI: 10.1126/sciadv.adi9156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.
Collapse
Affiliation(s)
- Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marta Garcia-Contreras
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura S. Sánchez B.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andras Saftics
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Oluwapelumi Shodubi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shankar Raghunandan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhao Xu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shang Jui Tsai
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Jin M, Iwamoto Y, Shirazinejad C, Drubin DG. Intersectin1 promotes clathrin-mediated endocytosis by organizing and stabilizing endocytic protein interaction networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590579. [PMID: 38712149 PMCID: PMC11071352 DOI: 10.1101/2024.04.22.590579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
During clathrin-mediated endocytosis (CME), dozens of proteins are recruited to nascent CME sites on the plasma membrane. Coordination of endocytic protein recruitment in time and space is important for efficient CME. Here, we show that the multivalent scaffold protein intersectin1 (ITSN1) promotes CME by organizing and stabilizing endocytic protein interaction networks. By live-cell imaging of genome-edited cells, we observed that endogenously labeled ITSN1 is recruited to CME sites shortly after they begin to assemble. Knocking down ITSN1 impaired endocytic protein recruitment during the stabilization stage of CME site assembly. Artificially locating ITSN1 to the mitochondria surface was sufficient to assemble puncta consisting of CME initiation proteins, including EPS15, FCHO, adaptor proteins, the AP2 complex and epsin1 (EPN1), and the vesicle scission GTPase dynamin2 (DNM2). ITSN1 can form puncta and recruit DNM2 independently of EPS15/FCHO or EPN1. Our work redefines ITSN1's primary endocytic role as organizing and stabilizing the CME protein interaction networks rather than a previously suggested role in initiation and provides new insights into the multi-step and multi-zone organization of CME site assembly.
Collapse
Affiliation(s)
- Meiyan Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Current Address: Department of Biology, University of Florida, Gainesville, Fl 32611, USA
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Cyna Shirazinejad
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Lead author
| |
Collapse
|
13
|
Xu M, Rutkowski DM, Rebowski G, Boczkowska M, Pollard LW, Dominguez R, Vavylonis D, Ostap EM. Myosin-I Synergizes with Arp2/3 Complex to Enhance Pushing Forces of Branched Actin Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579714. [PMID: 38405741 PMCID: PMC10888859 DOI: 10.1101/2024.02.09.579714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Myosin-Is colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by Arp2/3 complex on the surface of beads coated with myosin-I and the WCA domain of N-WASP. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Remarkably, myosin-I triggered symmetry breaking and comet-tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.
Collapse
Affiliation(s)
- Mengqi Xu
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Grzegorz Rebowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Malgorzata Boczkowska
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Luther W Pollard
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Roberto Dominguez
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - E Michael Ostap
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
14
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
15
|
Heydecker M, Shitara A, Chen D, Tran D, Masedunskas A, Tora M, Ebrahim S, Appaduray MA, Galeano Niño JL, Bhardwaj A, Narayan K, Hardeman EC, Gunning PW, Weigert R. Spatial and Temporal Coordination of Force-generating Actin-based Modules Drives Membrane Remodeling In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569944. [PMID: 38168275 PMCID: PMC10760165 DOI: 10.1101/2023.12.04.569944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that: a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane; and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.
Collapse
|
16
|
Guo S, Hoeprich GJ, Magliozzi JO, Gelles J, Goode BL. Dynamic remodeling of actin networks by cyclase-associated protein and CAP-Abp1 complexes. Curr Biol 2023; 33:4484-4495.e5. [PMID: 37797614 PMCID: PMC10860761 DOI: 10.1016/j.cub.2023.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
How actin filaments are spatially organized and remodeled into diverse higher-order networks in vivo is still not well understood. Here, we report an unexpected F-actin "coalescence" activity driven by cyclase-associated protein (CAP) and enhanced by its interactions with actin-binding protein 1 (Abp1). We directly observe S. cerevisiae CAP and Abp1 rapidly transforming branched or linear actin networks by bundling and sliding filaments past each other, maximizing filament overlap, and promoting compaction into bundles. This activity does not require ATP and is conserved, as similar behaviors are observed for the mammalian homologs of CAP and Abp1. Coalescence depends on the CAP oligomerization domain but not the helical folded domain (HFD) that mediates its functions in F-actin severing and depolymerization. Coalescence by CAP-Abp1 further depends on interactions between CAP and Abp1 and interactions between Abp1 and F-actin. Our results are consistent with a mechanism in which the formation of energetically favorable sliding CAP and CAP-Abp1 crosslinks drives F-actin bundle compaction. Roles for CAP and CAP-Abp1 in actin remodeling in vivo are supported by strong phenotypes arising from deletion of the CAP oligomerization domain and by genetic interactions between sac6Δ and an srv2-301 mutant that does not bind Abp1. Together, these observations identify a new actin filament remodeling function for CAP, which is further enhanced by its direct interactions with Abp1.
Collapse
Affiliation(s)
- Siyang Guo
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Gregory J Hoeprich
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Joseph O Magliozzi
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Bruce L Goode
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
17
|
Baschieri F, Illand A, Barbazan J, Zajac O, Henon C, Loew D, Dingli F, Vignjevic DM, Lévêque-Fort S, Montagnac G. Fibroblasts generate topographical cues that steer cancer cell migration. SCIENCE ADVANCES 2023; 9:eade2120. [PMID: 37585527 PMCID: PMC10431708 DOI: 10.1126/sciadv.ade2120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Fibroblasts play a fundamental role in tumor development. Among other functions, they regulate cancer cells' migration through rearranging the extracellular matrix, secreting soluble factors, and establishing direct physical contacts with cancer cells. Here, we report that migrating fibroblasts deposit on the substrate a network of tubular structures that serves as a guidance cue for cancer cell migration. Such membranous tubular network, hereafter called tracks, is stably anchored to the substrate in a β5-integrin-dependent manner. We found that cancer cells specifically adhere to tracks by using clathrin-coated structures that pinch and engulf tracks. Tracks thus represent a spatial memory of fibroblast migration paths that is read and erased by cancer cells directionally migrating along them. We propose that fibroblast tracks represent a topography-based intercellular communication system capable of steering cancer cell migration.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Abigail Illand
- Université Paris Saclay, CNRS, Institut des sciences moléculaires d’Orsay, UMR8214, Orsay, France
| | - Jorge Barbazan
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Olivier Zajac
- Institut Curie, UMR144, PSL Research University, Centre Universitaire, Paris, France
| | - Clémence Henon
- Inserm U981, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | | | - Sandrine Lévêque-Fort
- Université Paris Saclay, CNRS, Institut des sciences moléculaires d’Orsay, UMR8214, Orsay, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
18
|
Yu Y, Yoshimura SH. Self-assembly of CIP4 drives actin-mediated asymmetric pit-closing in clathrin-mediated endocytosis. Nat Commun 2023; 14:4602. [PMID: 37528083 PMCID: PMC10393992 DOI: 10.1038/s41467-023-40390-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
Clathrin-mediated endocytosis is pivotal to signal transduction pathways between the extracellular environment and the intracellular space. Evidence from live-cell imaging and super-resolution microscopy of mammalian cells suggests an asymmetric distribution of actin fibres near the clathrin-coated pit, which induces asymmetric pit-closing rather than radial constriction. However, detailed molecular mechanisms of this 'asymmetricity' remain elusive. Herein, we used high-speed atomic force microscopy to demonstrate that CIP4, a multi-domain protein with a classic F-BAR domain and intrinsically disordered regions, is necessary for asymmetric pit-closing. Strong self-assembly of CIP4 via intrinsically disordered regions, together with stereospecific interactions with the curved membrane and actin-regulating proteins, generates a small actin-rich environment near the pit, which deforms the membrane and closes the pit. Our results provide mechanistic insights into how disordered and structured domain collaboration promotes spatio-temporal actin polymerisation near the plasma membrane.
Collapse
Affiliation(s)
- Yiming Yu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
19
|
Ai Y, Guo C, Garcia-Contreras M, Sanchez LS, Saftics A, Shodubi O, Raghunandan S, Xu J, Tsai SJ, Dong Y, Li R, Jovanovic-Talisman T, Gould S. Syntenin and CD63 Promote Exosome Biogenesis from the Plasma Membrane by Blocking Cargo Endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542409. [PMID: 37292617 PMCID: PMC10245948 DOI: 10.1101/2023.05.26.542409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exosomes are small extracellular vesicles important in health and disease. Syntenin is thought to drive the biogenesis of CD63 exosomes by recruiting Alix and the ESCRT machinery to endosomes, initiating an endosome-mediated pathway of exosome biogenesis. Contrary to this model, we show here that syntenin drives the biogenesis of CD63 exosomes by blocking CD63 endocytosis, thereby allowing CD63 to accumulate at the plasma membrane, the primary site of exosome biogenesis. Consistent with these results, we find that inhibitors of endocytosis induce the exosomal secretion of CD63, that endocytosis inhibits the vesicular secretion of exosome cargo proteins, and that high-level expression of CD63 itself also inhibits endocytosis. These and other results indicate that exosomes bud primarily from the plasma membrane, that endocytosis inhibits their loading into exosomes, that syntenin and CD63 are expression-dependent regulators of exosome biogenesis, and that syntenin drives the biogenesis of CD63 exosomes even in Alix knockout cells.
Collapse
|
20
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
21
|
Gupta S, Santangelo CD, Patteson AE, Schwarz JM. How cells wrap around virus-like particles using extracellular filamentous protein structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526272. [PMID: 36778225 PMCID: PMC9915516 DOI: 10.1101/2023.01.30.526272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nanoparticles, such as viruses, can enter cells via endocytosis. During endocytosis, the cell surface wraps around the nanoparticle to effectively eat it. Prior focus has been on how nanoparticle size and shape impacts endocytosis. However, inspired by the noted presence of extracellular vimentin affecting viral and bacteria uptake, as well as the structure of coronaviruses, we construct a computational model in which both the cell-like construct and the virus-like construct contain filamentous protein structures protruding from their surfaces. We then study the impact of these additional degrees of freedom on viral wrapping. We find that cells with an optimal density of filamentous extracellular components (ECCs) are more likely to be infected as they uptake the virus faster and use relatively less cell surface area per individual virus. At the optimal density, the cell surface folds around the virus, and folds are faster and more efficient at wrapping the virus than crumple-like wrapping. We also find that cell surface bending rigidity helps generate folds, as bending rigidity enhances force transmission across the surface. However, changing other mechanical parameters, such as the stretching stiffness of filamentous ECCs or virus spikes, can drive crumple-like formation of the cell surface. We conclude with the implications of our study on the evolutionary pressures of virus-like particles, with a particular focus on the cellular microenvironment that may include filamentous ECCs.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
| | | | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|
22
|
Akatay AA, Wu T, Djakbarova U, Thompson C, Cocucci E, Zandi R, Rudnick J, Kural C. Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension. Front Mol Biosci 2022; 9:959737. [PMID: 36213118 PMCID: PMC9532848 DOI: 10.3389/fmolb.2022.959737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.
Collapse
Affiliation(s)
- Ahmet Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Umidahan Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Cristopher Thompson
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA, United States
| | - Joseph Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, CA, United States
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Comert Kural,
| |
Collapse
|