1
|
Lee SJ, Jang JD, Choi SM. Interparticle Ligand Exchange Kinetics Revealed by Time-Resolved SANS. NANO LETTERS 2025; 25:981-986. [PMID: 39721971 DOI: 10.1021/acs.nanolett.4c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Interparticle ligand exchange can occur during the formation of nanoparticle superlattices (NPSLs), affecting the symmetry of the NPSLs. Here, we report time-resolved small-angle neutron scattering (TR-SANS) measurements of the interparticle exchange kinetics of thiolate ligands among gold nanoparticles (AuNPs) at different temperatures. To track the ligand exchange among AuNPs, two groups of AuNPs were functionalized with hydrogenated and deuterated dodecanethiol, respectively, and then mixed in a solvent mixture of toluene and deuterated toluene for shell contrast. The interparticle ligand exchange barely occurred at 25 °C even after 40 h, but 11%, 34%, and 74% occurred at 50, 60, and 70 °C, respectively. At 80 °C, the exchange saturated after 20 h. The exchange process follows first-order kinetics, and its activation energy is estimated to be 29.1 kcal/mol, supporting that ligand desorption is a rate-determining step. These findings can be used as valuable reference data, aiding in the design and understanding of NPSLs.
Collapse
Affiliation(s)
- Sang-Jo Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Sung-Min Choi
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Cong Y, Wang X, Bai H, Yao C, Liu J, Wei Y, Kang Y, Wang S, Li L. Intracellular Gold Nanocluster/Organic Semiconductor Heterostructure for Enhancing Photosynthesis. Angew Chem Int Ed Engl 2024; 63:e202406527. [PMID: 39137101 DOI: 10.1002/anie.202406527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Photosynthetic microorganisms, which rely on light-driven electron transfer, store solar energy in self-energy carriers and convert it into bioenergy. Although these microorganisms can operate light-induced charge separation with nearly 100 % quantum efficiency, their practical applications are inherently limited by the photosynthetic energy conversion efficiency. Artificial semiconductors can induce an electronic response to photoexcitation, providing additional excited electrons for natural photosynthesis to improve solar conversion efficiency. However, challenges remain in importing exogenous electrons across cell membranes. In this work, we have developed an engineered gold nanocluster/organic semiconductor heterostructure (AuNCs@OFTF) to couple the intracellular electron transport chain of living cyanobacteria. AuNCs@OFTF exhibits a prolonged excited state lifetime and effective charge separation. The internalized AuNCs@OFTF permits its photogenerated electrons to participate in the downstream of photosystem II and construct an oriented electronic highway, which enables a five-fold increase in photocurrent in living cyanobacteria. Moreover, the binding events of AuNCs@OFTF established an abiotic-biotic electronic interface at the thylakoid membrane to enhance electron flux and finally furnished nicotinamide adenine dinucleotide phosphate. Thus, AuNCs@OFTF can be exploited to spatiotemporally manipulate and enhance the solar conversion of living cyanobacteria in cells, providing an extended nanotechnology for re-engineering photosynthetic pathways.
Collapse
Affiliation(s)
- Yujie Cong
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Chongqing, Yangtze Normal University, Chongqing, 408100, P.R. China
| | - Jiaren Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yi Wei
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuetong Kang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lidong Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
3
|
Ouled Ltaief O, Ben Amor I, Hemmami H, Hamza W, Zeghoud S, Ben Amor A, Benzina M, Alnazza Alhamad A. Recent developments in cancer diagnosis and treatment using nanotechnology. Ann Med Surg (Lond) 2024; 86:4541-4554. [PMID: 39118776 PMCID: PMC11305775 DOI: 10.1097/ms9.0000000000002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 08/10/2024] Open
Abstract
The article provides an insightful overview of the pivotal role of nanotechnology in revolutionizing cancer diagnosis and treatment. It discusses the critical importance of nanoparticles in enhancing the accuracy of cancer detection through improved imaging contrast agents and the synthesis of various nanomaterials designed for oncology applications. The review broadly classifies nanoparticles used in therapeutics, including metallic, magnetic, polymeric, and many other types, with an emphasis on their functions in drug delivery systems for targeted cancer therapy. It details targeting mechanisms, including passive and intentional targeting, to maximize treatment efficacy while minimizing side effects. Furthermore, the article addresses the clinical applications of nanomaterials in cancer treatment, highlights prospects, and addresses the challenges of integrating nanotechnology into cancer treatment.
Collapse
Affiliation(s)
- Olfa Ouled Ltaief
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Wiem Hamza
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Mourad Benzina
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syria
- Department of Technology of organic synthesis, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
4
|
Ren Y, An P, Luo S, Zhao L, Cai Y, Li Z. Study for Photo-Induced Enhanced Raman Spectroscopy with Laser-Induced Periodic Surface Structures on Lithium Niobate on Insulator. J Phys Chem Lett 2024; 15:6458-6466. [PMID: 38869141 DOI: 10.1021/acs.jpclett.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Femtosecond laser irradiation (FLI) of laser-induced periodic surface structures (LIPSSs) has proven to be an efficient and robust strategy for surface modification in nanoscale. Lithium niobate on insulator (LNOI) retains the excellent optoelectric properties of bulk lithium niobate and features intrinsic roughness and defects, exhibiting promising potential in the applications of surface-enhanced Raman spectroscopy (SERS) and photo-induced enhancement Raman spectroscopy (PIERS). Herein, we proposed a novel LNOI-LIPSSs-AgNPs substrate that exhibited an increased SERS enhancement by a factor of 3.7 relative to that without LIPSSs. More remarkably, with UV pre-irradiation, a PIERS amplification up to 8.1 times in comparison to SERS was achieved. Detailed and comprehensive analyses of the enhancement mechanisms prove the synergy between the electromagnetic mechanism and chemical mechanism. Additionally, the PIERS substrate exhibits advantages of high-fabrication efficiency, long-term stability, excellent detection universality, and multicyclic self-cleaning ability, which may trigger new applications in various branches of analytical science.
Collapse
Affiliation(s)
- Yingying Ren
- Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong, China
| | - Peng An
- Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong, China
| | - Shenglin Luo
- Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong, China
| | - Lina Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong, China
| | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong, China
| | - Zhen Li
- Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong, China
| |
Collapse
|
5
|
Long Q, Zhao X, Gao L, Liu M, Pan F, Gao X, Zhan C, Chen Y, Wang J, Qian J. Effects of Surface IR783 Density on the In Vivo Behavior and Imaging Performance of Liposomes. Pharmaceutics 2024; 16:744. [PMID: 38931866 PMCID: PMC11206891 DOI: 10.3390/pharmaceutics16060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Nanoparticles conjugated with fluorescent probes have versatile applications, serving not only for targeted fluorescent imaging but also for evaluating the in vivo profiles of designed nanoparticles. However, the relationship between fluorophore density and nanoparticle behavior remains unexplored. Methods: The IR783-modified liposomes (IR783-sLip) were prepared through a modified ethanol injection and extrusion method. The cellular uptake efficiency of IR783-sLip was characterized by flow cytometry and fluorescence microscope imaging. The effects of IR783 density on liposomal in vivo behavior were investigated by pharmacokinetic studies, biodistribution studies, and in vivo imaging. The constitution of protein corona was analyzed by the Western blot assay. Results: Dense IR783 modification improved cellular uptake of liposomes in vitro but hindered their blood retention and tumor imaging performance in vivo. We found a correlation between IR783 density and protein corona absorption, particularly IgM, which significantly impacted the liposome performance. Meanwhile, we observed that increasing IR783 density did not consistently improve the effectiveness of tumor imaging. Conclusions: Increasing the density of modified IR783 on liposomes is not always beneficial for tumor near-infrared (NIR) imaging yield. It is not advisable to prematurely evaluate novel nanomaterials through fluorescence dye conjugation without carefully optimizing the density of the modifications.
Collapse
Affiliation(s)
- Qianqian Long
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Xinmin Zhao
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Lili Gao
- Department of Pathology, Pudong New Area People’s Hospital, Shanghai 201299, China;
| | - Mengyuan Liu
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Feng Pan
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Xihui Gao
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.G.); (C.Z.)
| | - Changyou Zhan
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.G.); (C.Z.)
| | - Yang Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Jialei Wang
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Jun Qian
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| |
Collapse
|
6
|
Yang N, Kang Y, Cong Y, Wang X, Yao C, Wang S, Li L. Controllable Gold Nanocluster-Emulsion Interface for Direct Cell Penetration and Photothermal Killing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208349. [PMID: 36271742 DOI: 10.1002/adma.202208349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In the view of their ability to be uptaken by cells, colloidal particles can exert diverse physiological effects and are promising vehicles for the intracellular delivery of biologically active substances. Given that the modulation of biomaterial interfaces greatly facilitates the prediction and control of the corresponding cellular responses, the interfacial behavior of hydrophobic dye-modified gold (Au) nanoclusters (Au NCs) is rationally designed to develop Au NC-containing emulsions and control their biointerfacial interactions with cell membranes. The observed biological performance is indicative of a physical penetration mechanism. The amphiphilic Au NCs decrease the interfacial energy of two immiscible liquids and hinder droplet coalescence to facilitate the formation of emulsions thermodynamically stabilized by dipole-dipole and hydrophobic interactions. Moreover, the amphiphilic Au NCs are localized on the emulsion droplet surface and form segregated interfacial microdomains that adapt to the membrane structure and facilitate the traverse of the emulsions across the cell membrane via direct penetration. Fast penetration coupled with excellent photophysical performance endows the emulsions with multifluorescence tracing and efficient photothermal killing capabilities. The successful change of the interaction mode between NCs and biological objects and the provision of a universal formulation to modulate biointerfacial interactions are expected to inspire new bioapplications.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yujie Cong
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Chongqing, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
7
|
Lu Y, Zhang X, Zhao L, Liu H, Yan M, Zhang X, Mochizuki K, Yang S. Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications. Nat Commun 2023; 14:5860. [PMID: 37730799 PMCID: PMC10511444 DOI: 10.1038/s41467-023-41563-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The templating method holds great promise for fabricating surface nanopatterns. To enhance the manufacturing capabilities of complex surface nanopatterns, it is important to explore new modes of the templates beyond their conventional masking and molding modes. Here, we employed the metal-organic framework (MOF) microparticles assembled monolayer films as templates for metal electrodeposition and revealed a previously unidentified guiding growth mode enabling the precise growth of metallic films exclusively underneath the MOF microparticles. The guiding growth mode was induced by the fast ion transportation within the nanochannels of the MOF templates. The MOF template could be repeatedly used, allowing for the creation of identical metallic surface nanopatterns for multiple times on different substrates. The MOF template-guided electrochemical growth mode provided a robust route towards cost-effective fabrication of complex metallic surface nanopatterns with promising applications in metamaterials, plasmonics, and surface-enhanced Raman spectroscopy (SERS) sensing fields.
Collapse
Affiliation(s)
- Youyou Lu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liyan Zhao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hong Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Mi Yan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kenji Mochizuki
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Shikuan Yang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Baotou Research Institute of Rare Earths, Baotou, 014030, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
8
|
Xue Y, Zhao Z, Huang W, Qiu Z, Li X, Zhao Y, Wang C, Cui R, Shen S, Tian H, Fang L, Zhou R, Zhu B. Highly active nanoparticle enhanced rapid adsorption-killing mechanism to combat multidrug-resistant bacteria. J Mater Chem B 2023; 11:7750-7765. [PMID: 37475586 DOI: 10.1039/d3tb01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Contact-killing surfaces with the ability to rapidly adsorb and kill microorganisms are desperately needed since the rapid outbreak of multidrug-resistant (MDR) bacteria poses a serious threat to human health. Therefore, a series of amphiphilic nanoengineered polyquaterniums (ANPQs) were synthesized, and immobilizing ANPQs onto equipment surfaces provided a simple method for preventing microbial infections. The strong charge-positive property of ANPQ offered the possibility of rapid adsorption and efficient killing, such that all bacteria are adsorbed after 10 seconds of contact with ANPQ-treated fabrics, and more than 99.99% of pathogens are killed within 30 seconds. Surprisingly, the adsorption-killing mechanism made it difficult for bacteria to develop resistance to ANPQ coating, even after long-term repeated treatment. Importantly, in a Methicillin-resistant Staphylococcus aureus infection model, ANPQ-treated fabrics exhibited a potent anti-infectious performance while remaining nontoxic. It is envisaged that the strategy of using ANPQ coating undoubtedly provides a promising candidate for fighting MDR strains.
Collapse
Affiliation(s)
- Yunyun Xue
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
- Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China.
| | - Zihao Zhao
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
- Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China.
| | - Wenbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China.
| | - Zelin Qiu
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China.
| | - Yu Zhao
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
| | - Chuyao Wang
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
| | - Ronglu Cui
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
| | - Shuyang Shen
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
| | - Hua Tian
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
| | - Lifeng Fang
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China.
- Guangzhou Laboratory, Guangzhou 510182, China
| | - Baoku Zhu
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou, 310027, China.
- Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China.
| |
Collapse
|
9
|
Fang G, Hasi W, Sha X, Cao G, Han S, Wu J, Lin X, Bao Z. Interfacial Self-Assembly of Surfactant-Free Au Nanoparticles as a Clean Surface-Enhanced Raman Scattering Substrate for Quantitative Detection of As 5+ in Combination with Convolutional Neural Networks. J Phys Chem Lett 2023; 14:7290-7298. [PMID: 37560985 DOI: 10.1021/acs.jpclett.3c01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive tool in the field of environmental testing. However, the detection and accurate quantification of weakly adsorbed molecules (such as heavy metal ions) remain a challenge. Herein, we combine clean SERS substrates capable of capturing heavy metal ions with convolutional neural network (CNN) algorithm models for quantitative detection of heavy metal ions in solution. The SERS substrate consists of surfactant-free Au nanoparticles (NPs) and l-cysteine molecules. As plasmonic nanobuilt blocks, surfactant-free Au NPs without physical or chemical barriers are more accessible to target molecules. The amino and carboxyl groups in the l-cysteine molecule can chelate As5+ ions. The CNN algorithm model is applied to quantify and predict the concentration of As5+ ions in samples. The results demonstrated that this strategy allows for fast and accurate prediction of As5+ ion concentrations, and the determination coefficient between the predicted and actual values is as high as 0.991.
Collapse
Affiliation(s)
- Guoqiang Fang
- National Key Laboratory of Science and Technology on Tuneable Laser, Harbin Institute of Technology, Harbin, 150080, China
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tuneable Laser, Harbin Institute of Technology, Harbin, 150080, China
| | - Xuanyu Sha
- National Key Laboratory of Science and Technology on Tuneable Laser, Harbin Institute of Technology, Harbin, 150080, China
| | - Guangxu Cao
- Research Center for Space Control and Inertial Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Siqingaowa Han
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028043, China
| | - Jinlei Wu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Zhouzhou Bao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
10
|
Qu L, Han J, Huang Y, Yang G, Liu W, Long Z, Gu Y, Zhang Q, Gao M, Dong X. Peroxidase-like Nanozymes for Point-of-Care SERS Sensing and Wound Healing. ACS APPLIED BIO MATERIALS 2023; 6:1272-1282. [PMID: 36854189 DOI: 10.1021/acsabm.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The emergence of nanozymes provides a potential method for combating multidrug-resistant bacteria resulted from the abuse of antibiotics. However, in nanozyme-catalyzed systems, few studies have addressed the actual hydrogen peroxide (H2O2) level involved in sterilization. Herein, we designed a high-efficiency peroxidase-mimicking nanozyme with surface-enhanced Raman scattering (SERS) property by assembling gold nanoparticles on single-layer Cu2+-C3N4 (AuNP-Cu2+-C3N4). The nanozyme effectively converts the low-active Raman reporter 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form with H2O2, resulting in SERS signal changes, thereby achieving highly sensitive quantification of H2O2 with limit of detection as low as 0.60 μM. More importantly, the nanozyme can specifically catalyze H2O2 into antibacterial hydroxyl radicals. In vitro and in vivo evaluations demonstrate the remarkable antibacterial efficacy of the nanozyme/H2O2 combination against Staphylococcus aureus (up to 99.9%), which could promote wound healing in mice and allow point-of-care monitoring the amount of H2O2 participated in effective sterilization. This study not only displays great potential in combining multiple functionalities of nanomaterials for versatile bioassays but also provides a promising approach to design nanozymes for biomedical and catalytic applications.
Collapse
Affiliation(s)
- Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yi Huang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Zhouyang Long
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qingming Zhang
- Department of Pharmacy, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
11
|
Liu W, Tang JW, Mou JY, Lyu JW, Di YW, Liao YL, Luo YF, Li ZK, Wu X, Wang L. Rapid discrimination of Shigella spp. and Escherichia coli via label-free surface enhanced Raman spectroscopy coupled with machine learning algorithms. Front Microbiol 2023; 14:1101357. [PMID: 36970678 PMCID: PMC10030586 DOI: 10.3389/fmicb.2023.1101357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Shigella and enterotoxigenic Escherichia coli (ETEC) are major bacterial pathogens of diarrheal disease that is the second leading cause of childhood mortality globally. Currently, it is well known that Shigella spp., and E. coli are very closely related with many common characteristics. Evolutionarily speaking, Shigella spp., are positioned within the phylogenetic tree of E. coli. Therefore, discrimination of Shigella spp., from E. coli is very difficult. Many methods have been developed with the aim of differentiating the two species, which include but not limited to biochemical tests, nucleic acids amplification, and mass spectrometry, etc. However, these methods suffer from high false positive rates and complicated operation procedures, which requires the development of novel methods for accurate and rapid identification of Shigella spp., and E. coli. As a low-cost and non-invasive method, surface enhanced Raman spectroscopy (SERS) is currently under intensive study for its diagnostic potential in bacterial pathogens, which is worthy of further investigation for its application in bacterial discrimination. In this study, we focused on clinically isolated E. coli strains and Shigella species (spp.), that is, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, based on which SERS spectra were generated and characteristic peaks for Shigella spp., and E. coli were identified, revealing unique molecular components in the two bacterial groups. Further comparative analysis of machine learning algorithms showed that, the Convolutional Neural Network (CNN) achieved the best performance and robustness in bacterial discrimination capacity when compared with Random Forest (RF) and Support Vector Machine (SVM) algorithms. Taken together, this study confirmed that SERS paired with machine learning could achieve high accuracy in discriminating Shigella spp., from E. coli, which facilitated its application potential for diarrheal prevention and control in clinical settings.
Collapse
Affiliation(s)
- Wei Liu
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia-Wei Tang
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing-Yi Mou
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing-Wen Lyu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Wei Di
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ya-Long Liao
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Fei Luo
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zheng-Kang Li
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zheng-Kang Li,
| | - Xiang Wu
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xiang Wu,
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Liang Wang,
| |
Collapse
|
12
|
Lv E, Wang J, Li J, Zhao X, Yu J, Xu S, Li Z, Man B, Xue M, Xu J, Zhang C. Nanowire-in-bowl-shaped piezoelectric cavity structure for SERS directional detection of nanoplastics less than 50 nm. OPTICS EXPRESS 2023; 31:5297-5313. [PMID: 36823814 DOI: 10.1364/oe.480898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The accurate detection of nanoplastics is crucial due to their harmful effects on the environment and human beings. However, there is a lack of detection methods for nanoplastics smaller than 50 nm. In this research, we successfully constructed an Ag/CuO nanowire (NW)/BaTiO3@Polyvinylidene fluoride (PVDF) Bowl-shaped substrate with a nanowire-in-Bowl-shaped piezoelectric cavity structure that can modulate surface-enhanced Raman scattering (SERS) by the piezoelectric effect by the virtue of the tip effect of the CuO NW and light focusing effect of the Bowl-shaped cavity. Due to its unique nanowire-in-Bowl-shaped structure and piezoelectrically modifiable ability, nanoplastics less than 50 nm were successfully detected and quantitatively analyzed. We believe that the Ag/CuO NW/BaTiO3@PVDF Bowl-shaped substrate can provide an efficient, accurate, and feasible way to achieve qualitative and quantitative detection of nanoplastics.
Collapse
|
13
|
Zhang F, Wang X, Zhang T, Zhang Z, Gao X, Li Y. Rapid Detection of SARS-CoV-2 Spike RBD Protein in Body Fluid: Based on Special Calcium Ion-Mediated Gold Nanoparticles Modified by Bromide Ions. J Phys Chem Lett 2023; 14:88-94. [PMID: 36573843 PMCID: PMC9843627 DOI: 10.1021/acs.jpclett.2c03069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The receptor-binding domain of the SARS-CoV-2 spike mediates the key to binding the virus to the host receptor, but capturing the molecular signal of this spike RBD remains a formidable challenge. Here, we report a new surface-enhanced Raman spectroscopy (SERS) approach, which used gold nanoparticles prepared by low-speed constant-temperature centrifugation by bromine and calcium ions in two cleaning steps as the enhanced substrate to rapidly and accurately detect spike RBD large protein molecules in body fluids. The detection signal was extremely stable, and the orientation of the spike RBD on the enhanced substrate surface was also determined. This approach was specific in distinguishing different SARS-CoV-2 variants of spike RBD, including Delta, Beta, Gamma, and Omicron. Additionally, the enhanced substrate can identify biologically active or inactive spike RBD. This two-step cleaning enhanced substrate opens up opportunities not only for early diagnostics of SARS-CoV-2 virus but also for developing targeted drugs against viruses.
Collapse
Affiliation(s)
- Fenghai Zhang
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
| | - Xiaotong Wang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Ting Zhang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Zhe Zhang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Xin Gao
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
| | - Yang Li
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| |
Collapse
|
14
|
Ni Z, Wan M, Tang G, Sun L. Synthesis of CuO and PAA-Regulated Silver-Carried CuO Nanosheet Composites and Their Antibacterial Properties. Polymers (Basel) 2022; 14:polym14245422. [PMID: 36559789 PMCID: PMC9787518 DOI: 10.3390/polym14245422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
With the aid of a facile and green aqueous solution approach, a variety of copper oxide (CuO) with different shapes and polyacrylic-acid (PAA)-regulated silver-carried CuO (CuO@Ag) nanosheet composites have been successfully produced. The point of this article was to propose a common synergy using Ag-carried CuO nanosheet composites for their potential antibacterial efficiency against three types of bacteria such as E. coli, P. aeruginosa, and S. aureus. By using various technical means such as XRD, SEM, and TEM, the morphology and composition of CuO and CuO@Ag were characterized. It was shown that both CuO and CuO@Ag have a laminar structure and exhibit good crystallization, and that the copper source and reaction duration have a sizable impact on the morphology and size distribution of the product. In the process of synthesizing CuO@Ag, the appropriate amount of polyacrylic acid (PAA) can inhibit the agglomeration of Ag NPs and regulate the size of Ag at about ten nanometers. In addition, broth dilution, optical density (OD 600), and electron microscopy analysis were used to assess the antimicrobial activity of CuO@Ag against the above three types of bacteria. CuO@Ag exhibits excellent synergistic and antibacterial action, particularly against S. aureus. The antimicrobial mechanism of the CuO@Ag nanosheet composites can be attributed to the destruction of the bacterial cell membrane and the consequent leakage of the cytoplasm by the release of Ag+ and Cu2+. The breakdown of the bacterial cell membrane and subsequent leakage of cytoplasm caused by Ag+ and Cu2+ released from antimicrobial agents may be the cause of the CuO@Ag nanosheet composites' antibacterial action. This study shows that CuO@Ag nanosheet composites have good antibacterial properties, which also provides the basis and ideas for the application research of other silver nanocomposites.
Collapse
Affiliation(s)
- Zhihui Ni
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
- Correspondence: (Z.N.); (L.S.)
| | - Menghui Wan
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Gongming Tang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
- Correspondence: (Z.N.); (L.S.)
| |
Collapse
|
15
|
Liu G, Mu Z, Guo J, Shan K, Shang X, Yu J, Liang X. Surface-enhanced Raman scattering as a potential strategy for wearable flexible sensing and point-of-care testing non-invasive medical diagnosis. Front Chem 2022; 10:1060322. [PMID: 36405318 PMCID: PMC9669362 DOI: 10.3389/fchem.2022.1060322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
As a powerful and effective analytical tool, surface-enhanced Raman scattering (SERS) has attracted considerable research interest in the fields of wearable flexible sensing and non-invasive point-of-care testing (POCT) medical diagnosis. In this mini-review, we briefly summarize the design strategy, the development progress of wearable SERS sensors and its applications in this field. We present SERS substrate analysis of material design requirements for wearable sensors and highlight the benefits of novel plasmonic particle-in-cavity (PIC)-based nanostructures for flexible SERS sensors, as well as the unique interfacial adhesion effect and excellent mechanical properties of natural silk fibroin (SF) derived from natural cocoons, indicating promising futures for applications in the field of flexible electronic, optical, and electrical sensors. Additionally, SERS wearable sensors have shown great potential in the fields of different disease markers as well as in the diagnosis testing for COVID-19. Finally, the current challenges in this field are pointed out, as well as the promising prospects of combining SERS wearable sensors with other portable health monitoring systems for POCT medical diagnosis in the future.
Collapse
Affiliation(s)
- Guoran Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhimei Mu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jing Guo
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ke Shan
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoyi Shang
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jing Yu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, China
| | - Xiu Liang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Bai J, Zhang M, Wang X, Zhang J, Yang Z, Fan L, An Y, Guan R. Combination of Micelle Collapse and CuNi Surface Dissolution for Electrodeposition of Magnetic Freestanding Chitosan Film. NANOMATERIALS 2022; 12:nano12152629. [PMID: 35957059 PMCID: PMC9370670 DOI: 10.3390/nano12152629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Magnetic chitosan hydrogel has aroused immense attention in recent years due to their biomedical significance and magnetic responsiveness. Here, A new electrodeposition method is reported for the fabrication of a novel CuNi-based magnetic chitosan freestanding film (MCFF) in an acidic chitosan plating bath containing SDS-modified CuNi NPs. Contrary to chitosan’s anodic and cathodic deposition, which typically involves electrochemical oxidation, the synthetic process is triggered by coordination of chitosan with Cu and Ni ions in situ generated by the controlled surface dissolution of the suspended NPs with the acidic plating bath. The NPs provide not only the ions required for chitosan growth but also become entrapped during electrodeposition, thereby endowing the composite with magnetic properties. The obtained MCFF offers a wide range of features, including good mechanical strength, magnetic properties, homogeneity, and morphological transparency. Besides the fundamental interest of the synthesis itself, sufficient mechanical strength ensures that the hydrogel can be used by either peeling it off of the electrode or by directly building a complex hydrogel electrode. Its fast and easy magnetic steering, separation and recovery, large surface area, lack of secondary pollution, and strong chelating capability could lead to it finding applications as an electrochemical detector or adsorbent.
Collapse
Affiliation(s)
- Jingyuan Bai
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Meilin Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Xuejiao Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Jin Zhang
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China;
- Correspondence: (J.Z.); (R.G.)
| | - Zhou Yang
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
| | - Longyi Fan
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
| | - Yanan An
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Renguo Guan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
- Correspondence: (J.Z.); (R.G.)
| |
Collapse
|