1
|
Mancini GF, Blasi E, Marchetta E, Morena M, Borgi M, Campolongo P. The impact of stress on fear memory retention: A meta-analysis of rodent fear conditioning studies. Neurosci Biobehav Rev 2025; 175:106221. [PMID: 40409442 DOI: 10.1016/j.neubiorev.2025.106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 05/17/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Pavlovian fear conditioning is a widely used behavioural task for studying fear memory in rodents. During conditioning, rodents learn to associate a conditioned stimulus (e.g., context or tone; contextual or auditory fear conditioning, CFC or AFC, respectively) with an aversive one (e.g., footshock), resulting in a conditioned fear response. Fear memory retention is assessed thorough freezing behaviour, a species-specific defensive reaction, observed during exposure to the conditioned stimulus alone. Fear memory is influenced by sex and stress, with stress exposure prior to conditioning potentially inducing maladaptive fear responses. This meta-analysis examines how pre-conditioning stress exposure modulates memory retention in rodents. Across N = 94 studies included, we analyzed freezing behaviour based on several factors: type of paradigm (CFC vs AFC), species (rat vs mouse), sex (male vs female), stress type (physical vs pharmacological vs psychological vs combination of two or more stressors type), stress duration (acute or chronic), stress timing (prenatal vs early postnatal vs adolescence vs adulthood). The results indicate that stress significantly enhances contextual conditioned freezing behaviour. Stress-induced effects in CFC models vary across species but are not sex-specific. Additionally, these effects are influenced by stress-related factors. These findings highlight the importance of considering multiple variables when studying stress and fear memory processes, offering valuable insights for improving clinical approaches to fear memory-related diseases (e.g., post-traumatic stress disorder).
Collapse
Affiliation(s)
- Giulia Federica Mancini
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Eleonora Blasi
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Enrico Marchetta
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Maria Morena
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy; Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Marta Borgi
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy; Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy.
| |
Collapse
|
2
|
Andero R. Stress-induced changes in the molecular processes underlying fear memories: implications for PTSD and relevant animal models. Mol Psychiatry 2025; 30:2219-2227. [PMID: 39890919 PMCID: PMC12014489 DOI: 10.1038/s41380-025-02910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Most of the fear literature on humans and animals tests healthy individuals. However, fear memories can differ between healthy individuals and those previously exposed to traumatic stress, such as a car accident, sexual abuse, military combat and personal assault. Traumatic stress can lead to post-traumatic stress disorder (PTSD) which presents alterations in fear memories, such as an impairment of fear extinction and extinction recall. PTSD-like animal models are exposed to a single highly stressful experience in the laboratory, such as stress immobilization or single-prolonged stress. Some days later, animals exposed to a PTSD-like model can be tested in fear procedures that help uncover molecular mechanisms of fear memories. In this review, there are discussed the molecular mechanisms in stress-induced fear memories of patients with PTSD and PTSD-like animal models. The focus is on the effects of estradiol and cortisol/corticosterone hormones and of different genes, such as FKBP prolyl isomerase 5 gene (FKBP5) - FK506 binding protein 51 (FKBP51), pituitary adenylate cyclase-activating peptide (PACAP) - pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R), endocannabinoid (eCB) system and the tropomyosin receptor kinase B (TrkB) - brain-derived neurotrophic factor (BDNF). The conclusion is that greater emphasis should be placed on investigating the molecular mechanisms of fear memories in PTSD, through direct testing of patients with PTSD or the use of relevant PTSD-like models.
Collapse
Affiliation(s)
- Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
3
|
Cui J, Wang XR, Yu J, Zhang BR, Shi YF, So KF, Zhang L, Wei JA. Neuropeptide-mediated activation of astrocytes improves stress resilience in mice by modulating cortical neural synapses. Acta Pharmacol Sin 2025; 46:867-879. [PMID: 39643639 PMCID: PMC11950203 DOI: 10.1038/s41401-024-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/28/2024] [Indexed: 12/09/2024]
Abstract
Astrocytes are known to modulate synaptogenesis or neuronal activities, thus participating in mental functions. It has been shown that astrocytes are involved in the antidepressant mechanism. In this study we investigated the potential hormonal mediator governing the astrocyte-neuron interplay for stress-coping behaviors. Mice were subjected to chronic restraint stress (CRS) for 14 days, and then brain tissue was harvested for analyses. We found that the expression of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1 was significantly decreased in astrocytes of the prelimbic (PrL) cortex. By conducting a combination of genetics, in vivo imaging and behavioral assays we demonstrated that PAC1 in cortical astrocytes was necessary for maintaining normal resilience of mice against chronic environmental stress like restraint stress. Furthermore, we showed the enhancement of de novo cortical spine formation and synaptic activity under PACAP-mediated astrocytic activation possibly via the ATP release. The molecular mechanisms suggested that the vesicle homeostasis mediated by PACAP-PAC1 axis in astrocytes was involved in regulating synaptic functions. This study identifies a previously unrecognized route by which neuropeptide modulates cortical functions via local regulation of astrocytes.
Collapse
Affiliation(s)
- Jing Cui
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Ran Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jie Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Bo-Rui Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ya-Fei Shi
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Li Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Ji-An Wei
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res 2025; 12:13. [PMID: 40108680 PMCID: PMC11924829 DOI: 10.1186/s40779-025-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair. Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated, the intimate relationship between the central nervous system and bone remains less understood, yet it has emerged as a hot topic in the bone field. In this review, we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism, either intact or after injury. First, we explored mechanistic studies linking specific brain nuclei with bone homeostasis, including the ventromedial hypothalamus, arcuate nucleus, paraventricular hypothalamic nucleus, amygdala, and locus coeruleus. We then focused on the characteristics of bone innervation and nerve subtypes, such as sensory, sympathetic, and parasympathetic nerves. Moreover, we summarized the molecular features and regulatory functions of these nerves. Finally, we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration. Therefore, considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process, ultimately benefiting future clinical translation.
Collapse
Affiliation(s)
- Tong-Zhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zhe-Yu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Yue-Jun Lin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zi-Yi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Sha Tin, 999077, Hong Kong, China.
| |
Collapse
|
5
|
Adams SW, Neylan TC, May V, Hammack SE, Ressler K, Inslicht SS. PACAP associated with precise PTSD and fear extinction response in women. Psychoneuroendocrinology 2025; 173:107375. [PMID: 39892206 DOI: 10.1016/j.psyneuen.2025.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Behavioral, biological, and physiological reactions following posttraumatic stress disorder (PTSD) are heterogeneous, particularly between sexes. Pituitary adenylate cyclase-activating polypeptide (PACAP38) is identified as a viable sex-specific marker of PTSD and fear conditioning impairments in women. However, no studies have examined the association between PACAP38 and fear extinction in humans to inform treatment mechanisms, and the association between PACAP38 and PTSD is variable, requiring further investigation. Participants (n = 123) included representative proportions of women (48.8 %), those with ≥subthreshold PTSD (39.8 %), veterans (33.3 %), and participants of color (59.5 %). Main outcomes and measures included PTSD symptoms (CAPS-IV), peripheral serum PACAP38, differential skin conductance response during a fear conditioning paradigm. The Middle-Out Approach was applied to integrate behavioral, biological, and physiological indicators and identify precise clinical phenotypes using latent class analysis. The current study provides behavioral, biological, and physiological evidence of a homogeneous subgroup (13.8 %), composed largely of women, for whom peripheral PACAP38 levels were over twofold higher than other participants (ηp2=.52-.56) and associated with a unique constellation of Intrusive-Hypervigilant PTSD symptoms and impairments in fear extinction retention. Results suggest specificity in the association between PACAP38, PTSD symptoms, and fear extinction retention that can inform practical targets for clinical assessment and intervention, and create viable avenues for future research.
Collapse
Affiliation(s)
- Shane W Adams
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA; Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA, USA; VA San Francisco Medical Center, San Francisco, CA, USA.
| | - Thomas C Neylan
- VA San Francisco Medical Center, San Francisco, CA, USA; Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Victor May
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Sayamwong E Hammack
- Department of Psychological Sciences, University of Vermont, Burlington, VT, USA
| | - Kerry Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sabra S Inslicht
- VA San Francisco Medical Center, San Francisco, CA, USA; Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Ebner K, Fontebasso V, Ferro F, Singewald N, Hannibal J. PACAP regulates neuroendocrine and behavioral stress responses via CRF-containing neurons of the rat hypothalamic paraventricular nucleus. Neuropsychopharmacology 2025; 50:519-530. [PMID: 39472527 PMCID: PMC11735793 DOI: 10.1038/s41386-024-02016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 01/18/2025]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide widely distributed in the brain including the hypothalamic paraventricular nucleus (PVN) implying a regulatory role in stress function. Recent evidence indicates that one of the main targets of PACAP within the PVN are corticotropin-releasing factor (CRF) neurons, which are key regulators of the hypothalamic-pituitary-adrenal (HPA) axis. However, the neural correlates that mediate PACAP effects on stress function are not fully understood. In the present study, we characterized the neuronal mechanism by which PACAP regulates neuroendocrine and behavioral stress responses in rats. We found that intracerebroventricular administration of PACAP increased the swim stress-induced c-Fos expression in distinct brain areas of the stress and anxiety circuitry including the parvocellular part of the PVN and changed behavioral stress coping during forced swimming to a more passive coping style (i.e., indicated by increased floating and reduced struggling behavior). Subsequently, PACAP administration directly into the PVN mimicked these behavioral effects and potentiated the plasma ACTH response to forced swim stress suggesting an excitatory role of PACAP on HPA stress axis reactivity. In addition, immunohistochemical analysis revealed a considerable portion of stress-activated CRF neurons in the medial parvocellular part of the PVN that co-localized PAC1 receptors suggesting that PACAP-induced effects on stress function are likely mediated directly by activation of CRF neurons in the PVN. Thus, these findings suggest that the PVN may represent one of the key areas where PACAP regulates the neuroendocrine and behavioral stress response.
Collapse
Affiliation(s)
- Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Veronica Fontebasso
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Federico Ferro
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Velasco ER, Nabás JF, Torrents-Rodas D, Arias B, Torrubia R, Fullana MA, Andero R. The PAC1 receptor risk genotype does not influence fear acquisition, extinction, or generalization in women with no trauma/low trauma. Biol Psychol 2025; 194:108981. [PMID: 39733787 DOI: 10.1016/j.biopsycho.2024.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Women are known to have twice as much lifetime prevalence of post-traumatic stress disorder (PTSD) as men do. It has been reported that the risk genotype (CC) of a single nucleotide polymorphism (SNP) (rs2267735) in the pituitary adenylate cyclase-activating polypeptide (PACAP-PAC1R) system is associated with PTSD risk and altered fear conditioning and fear extinction in women. Surprisingly, no previous work has studied the effect of this SNP on fear conditioning, extinction, or generalization in non-traumatized/low trauma load women. Here, two separate groups of women underwent either a two-day fear conditioning and fear extinction paradigm, or a one-day fear conditioning and fear generalization paradigm. Results showed no significant differences between genotypes in conditioned stimulus discrimination, during fear acquisition, extinction, or generalization. These findings suggest that the previously reported fear processing impairments in traumatized CC women are not a consequence of this genotype alone, but likely dependent on the interaction between this genetic risk and the exposure to traumatic stressors.
Collapse
Affiliation(s)
- Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaime F Nabás
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - David Torrents-Rodas
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| | - Bárbara Arias
- Secció de Zoologia i Antropologia Biològica (Dpt. Biologia Evolutiva, Ecologia i Ciències Ambientals), Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Torrubia
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Imaging of Mood, and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Raül Andero
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
8
|
Fabregat-Safont D, Alechaga É, Haro N, Gomez-Gomez À, Velasco ER, Nabás JF, Andero R, Pozo OJ. Towards the non-invasive determination of estradiol levels: Development and validation of an LC-MS/MS assay for quantification of salivary estradiol at sub-pg/mL level. Anal Chim Acta 2024; 1331:343313. [PMID: 39532410 DOI: 10.1016/j.aca.2024.343313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Estradiol (E2) is a female sex hormone involved in several biological processes. Although E2 levels are commonly measured in blood samples, the use of non-invasive techniques (e.g. determination of salivary E2) would allow for the collection of repeated samples and the inclusion of a greater number of participants. Immunoassay-based techniques to measure salivary E2 failed to accurately mirror the variations observed in the plasmatic concentrations of E2 during the menstrual cycle probably due to the high sensitivity required (in the sub-pg/mL range). Therefore, sensitive and rugged analytical methods for the determination of salivary E2 are required. For this, we developed and validated an analytical methodology for the accurate determination of salivary E2. RESULTS The method is based on chemical derivatization with 1,2-dimethyl-1H-imidazole-5-sulphonyl chloride and liquid chromatography-tandem mass spectrometry analysis by summing highly-specific SRM transitions. This strategy allowed for increasing the sensitivity of the method. The validation of the method showed an accurate and precise quantification of E2 in 1 mL of saliva even at 250 fg/mL (97 % accuracy and 15 % RSD intra-day, and 104 % accuracy and 18 % RSD inter-day). In order to evaluate its efficacy, we analysed saliva samples from 5 healthy female volunteers collected during a whole menstrual cycle. Our analyses showed that the variations in the concentration of E2 in the measured samples mirrored those expected during a complete menstrual cycle. Additionally, we validated the suitability of our method for determining salivary E2 levels during pregnancy. SIGNIFICANCE To the best of our knowledge, this is the first method that allows to precisely and accurately measuring E2 in saliva samples along the whole menstrual cycle of healthy females. It is also suitable for the determination of estradiol during pregnancy. Its high sensitivity makes this strategy ideal for the evaluation of the role of hormone production in women's health.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Applied Metabolomics Research Group, Hospital Del Mar Research Institute, Barcelona, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Univ. Jaume I, Castelló, Spain
| | - Élida Alechaga
- Applied Metabolomics Research Group, Hospital Del Mar Research Institute, Barcelona, Spain
| | - Noemí Haro
- Applied Metabolomics Research Group, Hospital Del Mar Research Institute, Barcelona, Spain
| | - Àlex Gomez-Gomez
- Applied Metabolomics Research Group, Hospital Del Mar Research Institute, Barcelona, Spain
| | - Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain
| | - Jaime F Nabás
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain
| | - Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain; Departament de Psicobiologia I de Metodologia de Les Ciències de La Salut, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut D'Investigació I Innovació Parc Taulí (I3PT), Spain; ICREA, Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
9
|
Warlick Iv H, Tocci D, Prashar S, Boldt E, Khalil A, Arora S, Matthews T, Wahid T, Fernandez R, Ram D, Leon L, Arain A, Rey J, Davis K. Role of vesicular monoamine transporter-2 for treating attention deficit hyperactivity disorder: a review. Psychopharmacology (Berl) 2024; 241:2191-2203. [PMID: 39302436 DOI: 10.1007/s00213-024-06686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
RATIONALE The Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) classifies attention deficit hyperactivity disorder (ADHD) as a neurodevelopmental disorder that interferes with human functioning and development. As the clinical presentation of ADHD involves a deficiency in executive function, neurocognitive deficits involving distinctive neuropathological changes must be present for clinical diagnosis. OBJECTIVES The vesicular monoamine transporter (VMAT), specifically VMAT-2, plays a role in ADHD pathogenesis. In addition, experimental data show that the stimulants (amphetamines and methylphenidate) are first-line treatments for the condition because of their extensive interaction with VMAT-2. The interactions of peptides, bupropion, and nutritional supplements with VMAT-2 receptors have been researched, but more evidence is needed to elucidate their pharmacodynamic properties. Therefore, this literature review evaluated the current pharmacological treatment modalities, peptides, and nutritional supplements for ADHD that target the VMAT-2 system. METHODS, RESULTS, AND CONCLUSIONS We obtained relevant studies from several platforms, including the National Center for Biotechnology, Clinical Key, Access Medicine, and PubMed. From the results of these studies, we observed that stimulants interact highly with the VMAT-2 transporter, with omega-3 fatty acids, peptides, and bupropion exerting some modulatory activity on VMAT-2. These agents should be considered for the future treatment of ADHD, although clinical-level research involving human participants is necessary.
Collapse
Affiliation(s)
- Halford Warlick Iv
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA.
| | - Darcy Tocci
- Dr. Kiran C. Patel College of Allopathic Medicine, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sukriti Prashar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Erick Boldt
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Alena Khalil
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Simran Arora
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Thomas Matthews
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Talha Wahid
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Richard Fernandez
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Dhiya Ram
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Lexie Leon
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Arisha Arain
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Jose Rey
- College of Pharmacy, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Kelley Davis
- Dr. Kiran C. Patel College of Allopathic Medicine, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
10
|
Marin-Blasco I, Vanzo G, Rusco-Portabella J, Perez-Molina L, Romero L, Florido A, Andero R. Sex differences in prelimbic cortex calcium dynamics during stress and fear learning. Biol Sex Differ 2024; 15:79. [PMID: 39415234 PMCID: PMC11481719 DOI: 10.1186/s13293-024-00653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
In recent years, research has progressively increased the importance of considering sex differences in stress and fear memory studies. Many studies have traditionally focused on male subjects, potentially overlooking critical differences with females. Emerging evidence suggests that males and females can exhibit distinct behavioral and neurophysiological responses to stress and fear conditioning. These differences may be attributable to variations in hormone levels, brain structure, and neural circuitry, particularly in regions such as the prefrontal cortex (PFC). In the present study, we explored sex differences in prelimbic cortex (PL) calcium activity in animals submitted to immobilization stress (IMO), fear conditioning (FC), and fear extinction (FE). While no significant sex differences were found in behavioral responses, we did observe differences in several PL calcium activity parameters. To determine whether these results were related to behaviors beyond stress and fear memory, we conducted correlation studies between the movement of the animals and PL activity during IMO and freezing behavior during FC and FE. Our findings revealed a clear correlation between PL calcium activity with movement during stress exposure and freezing behavior, with no sex differences observed in these correlations. These results suggest a significant role for the PL in movement and locomotion, in addition to its involvement in fear-related processes. The inclusion of both female and male subjects is crucial for studies like this to fully understand the role of the PFC and other brain areas in stress and fear responses. Recognizing sex differences enhances our comprehension of brain function and can lead to more personalized and effective approaches in the study and treatment of stress and fear-related conditions.
Collapse
Affiliation(s)
- Ignacio Marin-Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Giorgia Vanzo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Joaquin Rusco-Portabella
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Lucas Perez-Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Leire Romero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Applied Physical Sciences, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, 28090, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
11
|
Florido A, Velasco ER, Romero LR, Acharya N, Marin Blasco IJ, Nabás JF, Perez-Caballero L, Rivero G, Olabarrieta E, Nuñez-delMoral A, González-Parra JA, Porta-Casteràs D, Cano M, Steward T, Antony MS, Cardoner N, Torrubia R, Jackson AC, Fullana MA, Andero R. Sex differences in neural projections of fear memory processing in mice and humans. SCIENCE ADVANCES 2024; 10:eadk3365. [PMID: 38985873 PMCID: PMC11235172 DOI: 10.1126/sciadv.adk3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
It remains unexplored in the field of fear memory whether functional neuronal connectivity between two brain areas is necessary for one sex but not the other. Here, we show that chemogenetic silencing of centromedial (CeM)-Tac2 fibers in the lateral posterior BNST (BNSTpl) decreased fear memory consolidation in male mice but not females. Optogenetic excitation of CeM-Tac2 fibers in the BNSTpl exhibited enhanced inhibitory postsynaptic currents in males compared to females. In vivo calcium imaging analysis revealed a sex-dimorphic fear memory engram in the BNSTpl. Furthermore, in humans, the single-nucleotide polymorphism (SNP) in the Tac2 receptor (rs2765) (TAC3R) decreased CeM-BNST connectivity in a fear task, impaired fear memory consolidation, and increased the expression of the TAC3R mRNA in AA-carrier men but not in women. These sex differences in critical neuronal circuits underlying fear memory formation may be relevant to human neuropsychiatric disorders with fear memory alterations such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Eric R. Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Leire R. Romero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Neha Acharya
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Ignacio J. Marin Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaime F. Nabás
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Guadalupe Rivero
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Estíbaliz Olabarrieta
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Amaia Nuñez-delMoral
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Jose A. González-Parra
- IMIM-Hospital del Mar Medical Research Institute, Cell-Type Mechanisms in Normal and Pathological Behavior, Barcelona, Spain
| | - Daniel Porta-Casteràs
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d’Investigació i Innovació Sanitària Parc Taulí (I3PT), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Cano
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Trevor Steward
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Monica S. Antony
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Narcís Cardoner
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d’Investigació i Innovació Sanitària Parc Taulí (I3PT), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Torrubia
- Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alexander C. Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
- The Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - Miquel A. Fullana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
| | - Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
12
|
Liu Y, Ye S, Li XN, Li WG. Memory Trace for Fear Extinction: Fragile yet Reinforceable. Neurosci Bull 2024; 40:777-794. [PMID: 37812300 PMCID: PMC11178705 DOI: 10.1007/s12264-023-01129-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 10/10/2023] Open
Abstract
Fear extinction is a biological process in which learned fear behavior diminishes without anticipated reinforcement, allowing the organism to re-adapt to ever-changing situations. Based on the behavioral hypothesis that extinction is new learning and forms an extinction memory, this new memory is more readily forgettable than the original fear memory. The brain's cellular and synaptic traces underpinning this inherently fragile yet reinforceable extinction memory remain unclear. Intriguing questions are about the whereabouts of the engram neurons that emerged during extinction learning and how they constitute a dynamically evolving functional construct that works in concert to store and express the extinction memory. In this review, we discuss recent advances in the engram circuits and their neural connectivity plasticity for fear extinction, aiming to establish a conceptual framework for understanding the dynamic competition between fear and extinction memories in adaptive control of conditioned fear responses.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Shuai Ye
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Cardoner N, Andero R, Cano M, Marin-Blasco I, Porta-Casteràs D, Serra-Blasco M, Via E, Vicent-Gil M, Portella MJ. Impact of Stress on Brain Morphology: Insights into Structural Biomarkers of Stress-related Disorders. Curr Neuropharmacol 2024; 22:935-962. [PMID: 37403395 PMCID: PMC10845094 DOI: 10.2174/1570159x21666230703091435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 07/06/2023] Open
Abstract
Exposure to acute and chronic stress has a broad range of structural effects on the brain. The brain areas commonly targeted in the stress response models include the hippocampus, the amygdala, and the prefrontal cortex. Studies in patients suffering from the so-called stress-related disorders -embracing post-traumatic stress, major depressive and anxiety disorders- have fairly replicated animal models of stress response -particularly the neuroendocrine and the inflammatory models- by finding alterations in different brain areas, even in the early neurodevelopment. Therefore, this narrative review aims to provide an overview of structural neuroimaging findings and to discuss how these studies have contributed to our knowledge of variability in response to stress and the ulterior development of stress-related disorders. There are a gross number of studies available but neuroimaging research of stress-related disorders as a single category is still in its infancy. Although the available studies point at particular brain circuitries involved in stress and emotion regulation, the pathophysiology of these abnormalities -involving genetics, epigenetics and molecular pathways-, their relation to intraindividual stress responses -including personality characteristics, self-perception of stress conditions…-, and their potential involvement as biomarkers in diagnosis, treatment prescription and prognosis are discussed.
Collapse
Affiliation(s)
- Narcís Cardoner
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raül Andero
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marta Cano
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Marin-Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Porta-Casteràs
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Serra-Blasco
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Programa eHealth ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain
| | - Esther Via
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Muriel Vicent-Gil
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maria J. Portella
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Dong LG, An MQ, Gu HY, Zhang LG, Zhang JB, Li CJ, Mao CJ, Wang F, Liu CF. PACAP/PAC1-R activation contributes to hyperalgesia in 6-OHDA-induced Parkinson's disease model rats via promoting excitatory synaptic transmission of spinal dorsal horn neurons. Acta Pharmacol Sin 2023; 44:2418-2431. [PMID: 37563446 PMCID: PMC10692161 DOI: 10.1038/s41401-023-01141-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 μg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 μg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.
Collapse
Affiliation(s)
- Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Meng-Qi An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han-Ying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Li-Ge Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Cheng-Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
| |
Collapse
|
15
|
Jiang SZ, Zhang HY, Eiden LE. PACAP Controls Endocrine and Behavioral Stress Responses via Separate Brain Circuits. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:673-685. [PMID: 37881538 PMCID: PMC10593940 DOI: 10.1016/j.bpsgos.2023.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 10/27/2023] Open
Abstract
Background The neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV (adeno-associated virus) neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57BL/6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex to hypothalamus, impairs c-fos activation and corticotropin-releasing hormone (CRH) messenger RNA elevation in the paraventricular nucleus after 2 hours of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in nonhypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala, on the other hand, attenuates ARS-induced hypophagia, along with extended amygdala fos induction, without affecting ARS-induced CRH messenger RNA elevation in the paraventricular nucleus. PACAP projections to extended amygdala terminate at protein kinase C delta type (PKCδ) neurons in both the central amygdala and the oval bed nucleus of the stria terminalis. Silencing of PKCδ neurons in the central amygdala, but not in the oval bed nucleus of the stria terminalis, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n ≥ 3 per group. Conclusions A frontocortical descending PACAP projection controls paraventricular nucleus CRH messenger RNA production to maintain hypothalamic-pituitary-adrenal axis activation and regulate the endocrine response to stress. An ascending PACAPergic projection from the external lateral parabrachial nucleus to PKCδ neurons in the central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
Collapse
Affiliation(s)
- Sunny Zhihong Jiang
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Hai-Ying Zhang
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Lee E. Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| |
Collapse
|
16
|
Rajbhandari AK, Barson JR, Gilmartin MR, Hammack SE, Chen BK. The functional heterogeneity of PACAP: Stress, learning, and pathology. Neurobiol Learn Mem 2023; 203:107792. [PMID: 37369343 PMCID: PMC10527199 DOI: 10.1016/j.nlm.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.
Collapse
Affiliation(s)
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, United States
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, United States.
| |
Collapse
|
17
|
Clancy KJ, Devignes Q, Kumar P, May V, Hammack SE, Akman E, Casteen EJ, Pernia CD, Jobson SA, Lewis MW, Daskalakis NP, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with increased amygdala-default mode network resting-state connectivity in posttraumatic stress disorder. Neuropsychopharmacology 2023; 48:1245-1254. [PMID: 37161077 PMCID: PMC10267202 DOI: 10.1038/s41386-023-01593-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) system is implicated in posttraumatic stress disorder (PTSD) and related amygdala-mediated arousal and threat reactivity. PTSD is characterized by increased amygdala reactivity to threat and, more recently, aberrant intrinsic connectivity of the amygdala with large-scale resting state networks, specifically the default mode network (DMN). While the influence of PACAP on amygdala reactivity has been described, its association with intrinsic amygdala connectivity remains unknown. To fill this gap, we examined functional connectivity of resting-state functional magnetic resonance imaging (fMRI) in eighty-nine trauma-exposed adults (69 female) screened for PTSD symptoms to examine the association between blood-borne (circulating) PACAP levels and amygdala-DMN connectivity. Higher circulating PACAP levels were associated with increased amygdala connectivity with posterior DMN regions, including the posterior cingulate cortex/precuneus (PCC/Precun) and left angular gyrus (lANG). Consistent with prior work, this effect was seen in female, but not male, participants and the centromedial, but not basolateral, subregions of the amygdala. Clinical association analyses linked amygdala-PCC/Precun connectivity to anxious arousal symptoms, specifically exaggerated startle response. Taken together, our findings converge with previously demonstrated effects of PACAP on amygdala activity in PTSD-related processes and offer novel evidence for an association between PACAP and intrinsic amygdala connectivity patterns in PTSD. Moreover, these data provide preliminary evidence to motivate future work ascertaining the sex- and subregion-specificity of these effects. Such findings may enable novel mechanistic insights into neural circuit dysfunction in PTSD and how the PACAP system confers risk through a disruption of intrinsic resting-state network dynamics.
Collapse
Affiliation(s)
- Kevin J Clancy
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Quentin Devignes
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Poornima Kumar
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Victor May
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Eylül Akman
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Emily J Casteen
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Cameron D Pernia
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sydney A Jobson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Michael W Lewis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nikolaos P Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William A Carlezon
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Molina P, Andero R, Armario A. Restraint or immobilization: a comparison of methodologies for restricting free movement in rodents and their potential impact on physiology and behavior. Neurosci Biobehav Rev 2023; 151:105224. [PMID: 37156310 DOI: 10.1016/j.neubiorev.2023.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Restriction of free movement has historically been used as a model for inducing acute and chronic stress in laboratory animals. This paradigm is one of the most widely employed experimental procedures for basic research studies of stress-related disorders. It is easy to implement, and it rarely involves any physical harm to the animal. Many different restraint methods have been developed with variations in the apparatuses used and the degree of limitation of movement. Unfortunately, very few studies directly compare the differential impact of the distinct protocols. Additionally, restraint and immobilization terms are not differentiated and are sometimes used interchangeably in the literature. This review offers evidence of great physiological differences in the impact of distinct restraint procedures in rats and mice and emphasizes the need for a standardized language on this topic. Moreover, it illustrates the necessity of additional systematic studies that compare the effects of the distinct restraint methodologies, which would help to decide better which procedure should be used depending on the objectives of each particular study.
Collapse
Affiliation(s)
- Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; ICREA, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
19
|
Velasco ER, Florido A, Perez-Caballero L, Marin I, Andero R. The Impacts of Sex Differences and Sex Hormones on Fear Extinction. Curr Top Behav Neurosci 2023; 64:105-132. [PMID: 37528309 DOI: 10.1007/7854_2023_426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Fear extinction memories are strongly modulated by sex and hormonal status, but the exact mechanisms are still being discovered. In humans, there are some basal and task-related features in which male and female individuals differ in fear conditioning paradigms. However, analyses considering the effects of sex hormones demonstrate a role for estradiol in fear extinction memory consolidation. Translational studies are taking advantage of the convergent findings between species to understand the brain structures implicated. Nevertheless, the human brain is complex and the transfer of these findings into the clinics remains a challenge. The promising advances in the field together with the standardization of fear extinction methodologies in humans will benefit the design of new personalized therapies.
Collapse
Affiliation(s)
- Eric Raul Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Marin
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|