1
|
Peng J, Bai R, Lan Y. How to Achieve Hydrogenation/Hydrofunctionalization via Metal Hydride Complexes. Acc Chem Res 2025; 58:1484-1495. [PMID: 40254886 DOI: 10.1021/acs.accounts.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
ConspectusMetal hydride (M-H) complexes have garnered widespread attention in the synthesis of fine chemicals, materials, agrochemicals, and pharmaceuticals owing to the remarkable reactivity of the M-H bonds. Specifically, M-H complexes are active intermediates that catalyze hydrogen-transfer reactions, leading to efficient hydrogenation and hydrofunctionalization of C═C/C═X (X = O or N) bonds in unsaturated organic substrates for the formation of new carbon-hydrogen, carbon-carbon, and carbon-heteroatom bonds.Our research group has long studied M-H transformation mechanisms, with significant advancements over the past decade. For this Account, we have drawn on our extensive expertise to investigate the mechanisms governing numerous M-H transformation-driven reactions, including the hydrogenation of inert C═X bonds in unsaturated compounds, the hydrofunctionalization of C═C/C═X bonds, dehydrogenative coupling, and C-H functionalizations. On the basis of these mechanistic investigations, we developed a series of representative M-H transformation models, which offer robust theoretical guidance for modulating the reactivity and selectivity of M-H complexes in hydrogenation and hydrofunctionalization.Our Account begins with the structures and properties of M-H complexes, which lead to homolytic and heterolytic cleavage in reactions with different conditions, showcasing the remarkable versatility of metal hydride reactivity. Based on these principles, three transformation modes are discussed. First, hydride transfer of low-oxidation-state M-H complexes is chiefly engaged because the hydrogen atom attached to the metal has a high electron density and is strongly nucleophilic. In this case, a hydrogen atom serves as a hydride to transfer from the metal center to the electropositive center of the substrate through the following pathways: (a) insertion of an unsaturated bond into the M-H bond; (b) direct hydride transfer from the metal center to the electrophilic site of an unsaturated bond; (c) σ-bond metathesis; and (d) oxidative hydrogen migration. Reductive elimination might also occur when the oxidation state of the metal center increases and the metal center becomes electron-deficient. This usually regenerates the low-oxidation-state catalytic species while producing C/X'-H bonds. Notably, metal hydride hydrogen atom transfer (MHAT) is an advanced approach to radical-type hydrofunctionalizations. MHAT is usually induced by (a) a one-electron redox process enabled by a paramagnetic metal or (b) low M-H bond dissociation energy (BDE) values. Two possible types of MHAT (i.e., spontaneous and passive), which lead to different regioselectivities, are proposed. This article provides a detailed account of the strategies and mechanisms related to the reactivity and selectivity of M-H bond transformations, thus offering valuable guidance for the rational design of novel M-H complexes and reaction systems.
Collapse
Affiliation(s)
- Ju Peng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Jiangsu, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Kim JA, Kim S, Tambe SD, Jang J, Cho EJ. Nickel-catalyzed stereo-controlled 2,3-hydrosilylation of 1,1-disubstituted allenes. Chem Sci 2025; 16:7489-7494. [PMID: 40160358 PMCID: PMC11950983 DOI: 10.1039/d5sc01148e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025] Open
Abstract
Directing regioselectivity and stereoselectivity in allene reactions has long been a significant challenge due to the multiple reactive pathways available. In this study, we report the development of a Ni-catalyzed regio- and stereoselective 2,3-hydrosilylation of 1,1-disubstituted allenes. Stereoselectivity was precisely controlled through the strategic modulation of ligand-induced steric effects and non-covalent interactions. Phenyl dibenzophosphole as the ligand enabled the selective formation of (Z)-allylsilanes, while tricyclohexylphosphine favored the production of (E)-allylsilanes. This work highlights the critical role of ligand-induced steric and non-covalent interactions in dictating regio- and stereoselectivity, offering new insights into Ni(ii) catalysis for stereoselective hydrosilylation.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Seoyeon Kim
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Shrikant D Tambe
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Jihoon Jang
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| |
Collapse
|
3
|
Chen S, Gao M, He X, Shen X. Photo-induced ring-maintaining hydrosilylation of unactivated alkenes with hydrosilacyclobutanes. Nat Commun 2025; 16:2468. [PMID: 40074750 PMCID: PMC11903747 DOI: 10.1038/s41467-025-57705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Increasing attention has been paid to silacyclobutanes because of their wide application in ring opening and ring extension reactions. However, the synthesis of functionalized silacyclobutanes remains an unmet challenge because of the limited functional group tolerance of the reactions with organometallic reagents and chlorosilacyclobutanes. Herein, we report a conceptually different solution to this end through a visible-light-induced metal-free hydrosilylation of unactivated alkenes with hydrosilacyclobutanes. A wide range of unactivated alkenes with diverse functional groups including the base-sensitive acid, alcohol and ketones participated in this reaction smoothly. In particular, the first hydrosilylation reaction of alkenes with dihydrosilacyclobutane provides a facile access to various functionalized alkyl monohydrosilacyclobutanes. Unsymmetrical dialkyl silacyclobutanes have also been synthesized through consecutive hydrosilylation with dihydrosilacyclobutane in one pot. The mechanism study reveals that the Lewis basic solvent could promote the generation of strained silyl radicals by direct light irradiation without a redox-active photocatalyst and the thiol catalyst plays an important role in accelerating the reaction.
Collapse
Affiliation(s)
- Shaowei Chen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, 430072, Wuhan, Hubei, PR China
| | - Meiyun Gao
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, 430072, Wuhan, Hubei, PR China
| | - Xiaoqian He
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, 430072, Wuhan, Hubei, PR China
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, 430072, Wuhan, Hubei, PR China.
| |
Collapse
|
4
|
Tan YX, Li S, Chen L, Huang J, Zhang C, Song L, Zhang X, Wu YD, Sun J. Ruthenium-Catalyzed α-Regioselective Hydroboration of Allenes. Angew Chem Int Ed Engl 2025; 64:e202420370. [PMID: 39633550 DOI: 10.1002/anie.202420370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
Hydroboration of allenes is powerful and atom-economic approach to the synthesis of organoboranes, such as the highly versatile allylboranes. However, regarding regiocontrol, existing methods uniformly deliver the boron functionality to the less hindered β- or γ-position, but not the α-position. The latter is particularly challenging for allenes with substantial steric difference between the two terminals and lacking electronic bias (e.g., 1,1-disubstituted allenes). Herein we report the first highly efficient ruthenium-catalyzed hydroboration of allenes featuring exclusive α-regioselectivity, providing access to sterically hindered allyl boranes that are limitedly accessible by conventional methods. DFT studies suggested that the unusual α-regioselectivity is attributed to the disfavored reductive elimination at the γ-position due to the high energy cost required to overcome the agostic interaction and rotation of the key π-allyl intermediates. This protocol is also applicable to the previously unprecedented α-hydroalkynylation and underdeveloped α-hydrosilylation of allenes, thus complementing known catalytic systems and providing convenient access to highly congested yet densely-functionalized allyl silanes and skipped enynes bearing a fully-substituted allylic carbon center. It is expected that this ruthenium-catalyzed system can serve as a new platform for the development of other hydrofunctionalization processes with unorthodox selectivity.
Collapse
Affiliation(s)
- Yun-Xuan Tan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Liang Chen
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
| | - Jing Huang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Chaoshen Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
| |
Collapse
|
5
|
Yu XL, Hu JW, Cao J, Xu LW. Intramolecular Hosomi-Sakurai Reaction for the Synthesis of Benzoxasiloles. J Org Chem 2024; 89:9027-9030. [PMID: 38815156 DOI: 10.1021/acs.joc.3c02925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A Lewis acid-catalyzed intramolecular Hosomi-Sakurai reaction of o-(allylsilyl)benzaldehyde/ketone has been developed. The reaction proceeds through simultaneous C-Si bond cleavage and C-C bond reconstruction. This protocol provides a rapid approach for the synthesis of allyl-substituted benzoxasiloles under mild conditions.
Collapse
Affiliation(s)
- Xin-Long Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Jia-Wei Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, P. R. China
| |
Collapse
|
6
|
Lee H, Lee Y, Lee Y, Kamranifard T, Lee Y, Jung B. Cu-Catalyzed Synthesis of 2-Silyl-1,3-butadienes from Allenols and Applications to One-Pot Synthesis of Tetrasubstituted Arylsilanes. Org Lett 2023. [PMID: 38049370 DOI: 10.1021/acs.orglett.3c03794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
A copper-catalyzed chemo- and stereoselective method for the synthesis of (E)-2-silyl-1,3-butadienes from a broad range of allenols using mild Si-B reagents is reported in this study. Our protocol required a short reaction time at ambient temperature to produce the desired dienes in high yields. Synthetic applications are highlighted by the one-pot synthesis of tetrasubstituted arylsilanes from allenols as well as the further functionalization of C-Si bonds.
Collapse
Affiliation(s)
- Hwiwoong Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yurim Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Yeonjoo Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Telma Kamranifard
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Byunghyuck Jung
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
7
|
Zhang G, Wang K, Zhang D, Zhang C, Tan W, Chen Z, Chen F. Decarboxylative Allylation of Silanecarboxylic Acids Enabled by Organophotocatalysis. Org Lett 2023; 25:7406-7411. [PMID: 37782755 DOI: 10.1021/acs.orglett.3c02907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein we present a visible-light-facilitated transition-metal-free allylic silylation reaction under mild conditions. This protocol is enabled by an inexpensive organophotocatalyst and provides efficient and concise synthetic routes to substituted allylsilanes, particularly from readily available allyl sulfones and stable silanecarboxylic acids as silyl radical precursors. Further investigations reveal that this strategy is also generally compatible with vinyl sulfones to access vinylsilanes. The silver catalytic system opens up an alternative entry to realize the decarboxylative allylation of silanecarboxylic acids.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Zhanzhan Chen
- Medical College, Yangzhou University, Jiangyang Road 136, Yangzhou 225009, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| |
Collapse
|
8
|
Liu ZK, Wang B, Liu Y, Zhang ZQ, Zhan ZP. Lithium Triethylborohydride (LiHBEt 3)-Promoted Hydrosilylation of Allenes to Prepare ( E)-Allylsilanes. J Org Chem 2023; 88:12257-12264. [PMID: 37579280 DOI: 10.1021/acs.joc.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A transition-metal-free hydrosilylation of allenes is reported herein by using commercially available lithium triethylborohydride (LiHBEt3) as the catalyst. Both mono- and disubstituted allenes could be hydrosilylated with primary or secondary silanes effectively. This reaction represents an environmental and economic method to prepare (E)-allylsilanes in good yields along with decent selectivities.
Collapse
Affiliation(s)
- Zhi-Kai Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| | - Bin Wang
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, Fujian, People's Republic of China
| | - Yanzhi Liu
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, Fujian, People's Republic of China
| | - Zhen-Qiang Zhang
- Yunnan Precious Metals Laboratory Co., Ltd., Kunming 650106, Yunnan, People's Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, Fujian, People's Republic of China
| |
Collapse
|
9
|
Wang ZL, Li Q, Yang MW, Song ZX, Xiao ZY, Ma WW, Zhao JB, Xu YH. Regio- and enantioselective CuH-catalyzed 1,2- and 1,4-hydrosilylation of 1,3-enynes. Nat Commun 2023; 14:5048. [PMID: 37598226 PMCID: PMC10439940 DOI: 10.1038/s41467-023-40703-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
We report a copper-catalyzed ligand-controlled selective 1,2- and 1,4-hydrosilylation of 1,3-enynes, which furnishes enantiomerically enriched propargyl- and 1,2-allenylsilane products in high yields with excellent enantioselectivities (up to 99% ee). This reaction proceeds under mild conditions, shows broad substrate scope for both 1,3-enynes and trihydrosilanes, and displays excellent regioselectivities. Mechanistic studies based on deuterium-labeling reactions and density functional theory (DFT) calculations suggest that allenylcopper is the dominant reactive intermediate under both 1,2- and 1,4-hydrosilylation conditions, and it undergoes metathesis with silanes via selective four-membered or six-membered transition state, depending on the nature of the ligand. The weak interactions between the ligands and the reacting partners are found to be the key controlling factor for the observed regioselectivity switch. The origin of high enantiocontrol in the 1,4-hydrosilylation is also revealed by high level DLPNO-CCSD(T) calculations.
Collapse
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Qi Li
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Meng-Wei Yang
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Zhao-Xin Song
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Zhen-Yu Xiao
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jin-Bo Zhao
- Faculty of Chemistry and Life Science, Changchun University of Technology, 130012, Changchun, P.R. China.
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China.
| |
Collapse
|
10
|
Liu T, Mao XR, Song S, Chen ZY, Wu Y, Xu LP, Wang P. Enantioselective Nickel-Catalyzed Hydrosilylation of 1,1-Disubstituted Allenes. Angew Chem Int Ed Engl 2023; 62:e202216878. [PMID: 36651564 DOI: 10.1002/anie.202216878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Here, we report the first example of Ni-catalyzed asymmetric hydrosilylation of 1,1-disubstituted allenes with high level of regioselectivities and enantioselectivities. The key to achieve this stereoselective hydrosilylation reaction was the development of the SPSiOL-derived bisphosphite ligands (SPSiPO). This protocol features broad substrate scope, excellent functional group, and heterocycle tolerance, thus provides a versatile method for the construction of enantioenriched tertiary allylsilanes in a straightforward and atom-economic manner. DFT calculations were performed to reveal the reaction mechanism and the origins of the enantioselectivity.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xin-Rui Mao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Shuo Song
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zi-Yang Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
- CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|