1
|
Zhang Z, Xu L, Zhang S, Peng C, Zhang G, Zhou X. DEMO-EMol: modeling protein-nucleic acid complex structures from cryo-EM maps by coupling chain assembly with map segmentation. Nucleic Acids Res 2025:gkaf416. [PMID: 40366028 DOI: 10.1093/nar/gkaf416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Atomic structure modeling is a crucial step in determining the structures of protein complexes using cryo-electron microscopy (cryo-EM). This work introduces DEMO-EMol, an improved server that integrates deep learning-based map segmentation and chain fitting to accurately assemble protein-nucleic acid (NA) complex structures from cryo-EM density maps. Starting from a density map and independently modeled chain structures, DEMO-EMol first segments protein and NA regions from the density map using deep learning. The overall complex is then assembled by fitting protein and NA chain models into their respective segmented maps, followed by domain-level fitting and optimization for protein chains. The output of DEMO-EMol includes the final assembled complex model along with overall and residue-level quality assessments. DEMO-EMol was evaluated on a comprehensive benchmark set of cryo-EM maps with resolutions ranging from 1.96 to 12.77 Å, and the results demonstrated its superior performance over the state-of-the-art methods for both protein-NA and protein-protein complex modeling. The DEMO-EMol web server is freely accessible at https://zhanggroup.org/DEMO-EMol/.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Liang Xu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Shuai Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chunxiang Peng
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
2
|
Cai Y, Zhang Z, Xu X, Xu L, Chen Y, Zhang G, Zhou X. Fitting Atomic Structures into Cryo-EM Maps by Coupling Deep Learning-Enhanced Map Processing with Global-Local Optimization. J Chem Inf Model 2025; 65:3800-3811. [PMID: 40152222 DOI: 10.1021/acs.jcim.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
With the breakthroughs in protein structure prediction technology, constructing atomic structures from cryo-electron microscopy (cryo-EM) density maps through structural fitting has become increasingly critical. However, the accuracy of the constructed models heavily relies on the precision of the structure-to-map fitting. In this study, we introduce DEMO-EMfit, a progressive method that integrates deep learning-based backbone map extraction with a global-local structural pose search to fit atomic structures into density maps. DEMO-EMfit was extensively evaluated on a benchmark data set comprising both cryo-electron tomography (cryo-ET) and cryo-EM maps of protein and nucleic acid complexes. The results demonstrate that DEMO-EMfit outperforms state-of-the-art approaches, offering an efficient and accurate tool for fitting atomic structures into density maps.
Collapse
Affiliation(s)
- Yaxian Cai
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ziying Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiangyu Xu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Liang Xu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yu Chen
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
3
|
Zheng S. Navigating the unstructured by evaluating alphafold's efficacy in predicting missing residues and structural disorder in proteins. PLoS One 2025; 20:e0313812. [PMID: 40131945 PMCID: PMC11936262 DOI: 10.1371/journal.pone.0313812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
The study investigated regions with undefined structures, known as "missing" segments in X-ray crystallography and cryo-electron microscopy (Cryo-EM) data, by assessing their predicted structural confidence and disorder scores. Utilizing a comprehensive dataset from the Protein Data Bank (PDB), residues were categorized as "modeled", "hard missing" and "soft missing" based on their visibility in structural datasets. Key features were determined, including a confidence score predicted local distance difference test (pLDDT) from AlphaFold2, an advanced structural prediction tool, and a disorder score from IUPred, a traditional disorder prediction method. To enhance prediction performance for unstructured residues, we employed a Long Short-Term Memory (LSTM) model, integrating both scores with amino acid sequences. Notable patterns such as composition, region lengths and prediction scores were observed in unstructured residues and regions identified through structural experiments over our studied period. Our findings also indicate that "hard missing" residues often align with low confidence scores, whereas "soft missing" residues exhibit dynamic behavior that can complicate predictions. The incorporation of pLDDT, IUPred scores, and sequence data into the LSTM model has improved the differentiation between structured and unstructured residues, particularly for shorter unstructured regions. This research elucidates the relationship between established computational predictions and experimental structural data, enhancing our ability to target structurally significant areas for research and guiding experimental designs toward functionally relevant regions.
Collapse
Affiliation(s)
- Sen Zheng
- Bio-Electron Microscopy Facility, iHuman Institution, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Fadini A, Li M, McCoy AJ, Terwilliger TC, Read RJ, Hekstra D, AlQuraishi M. AlphaFold as a Prior: Experimental Structure Determination Conditioned on a Pretrained Neural Network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638828. [PMID: 40027838 PMCID: PMC11870471 DOI: 10.1101/2025.02.18.638828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Advances in machine learning have transformed structural biology, enabling swift and accurate prediction of protein structure from sequence. However, challenges persist in capturing sidechain packing, condition-dependent conformational dynamics, and biomolecular interactions, primarily due to scarcity of high-quality training data. Emerging techniques, including cryo-electron tomography (cryo-ET) and high-throughput crystallography, promise vast new sources of structural data, but translating experimental observations into mechanistically interpretable atomic models remains a key bottleneck. Here, we address these challenges by improving the efficiency of structural analysis through combining experimental measurements with a landmark protein structure prediction method - AlphaFold2. We present an augmentation of AlphaFold2, ROCKET, that refines its predictions using cryo-EM, cryo-ET, and X-ray crystallography data, and demonstrate that this approach captures biologically important structural variation that AlphaFold2 does not. By performing structure optimization in the space of coevolutionary embeddings, rather than Cartesian coordinates, ROCKET automates difficult modeling tasks, such as flips of functional loops and domain rearrangements, that are beyond the scope of current state-of-the-art methods and, in some instances, even manual human modeling. The ability to efficiently sample these barrier-crossing rearrangements unlocks a new horizon for scalable and automated model building. Crucially, ROCKET does not require retraining of AlphaFold2 and is readily adaptable to multimers, ligand-cofolding, and other data modalities. Conversely, our differentiable crystal-lographic and cryo-EM target functions are capable of augmenting other structure prediction methods. ROCKET thus provides an extensible framework for the integration of experimental observables with biomolecular machine learning.
Collapse
Affiliation(s)
- Alisia Fadini
- Cambridge Institute for Medical Research, University of Cambridge
| | - Minhuan Li
- John A. Paulson School of Engineering & Applied Sciences, Harvard University
| | - Airlie J. McCoy
- Cambridge Institute for Medical Research, University of Cambridge
| | | | - Randy J. Read
- Cambridge Institute for Medical Research, University of Cambridge
| | - Doeke Hekstra
- John A. Paulson School of Engineering & Applied Sciences, Harvard University
- Department of Molecular and Cellular Biology, Harvard University
| | | |
Collapse
|
5
|
Cao H, He J, Li T, Huang SY. Deciphering Protein Secondary Structures and Nucleic Acids in Cryo-EM Maps Using Deep Learning. J Chem Inf Model 2025; 65:1641-1652. [PMID: 39838545 DOI: 10.1021/acs.jcim.4c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
With the resolution revolution of cryo-electron microscopy (cryo-EM) and the rapid development of image processing technology, cryo-EM has become an indispensable experimental method for determining the three-dimensional structures of biological macromolecules. However, structural modeling from cryo-EM maps remains a difficult task for intermediate-resolution maps. In such cases, detection of protein secondary structures and nucleic acid locations in an EM map is of great value for model building of the map. Meeting the need, we present a deep learning-based method for detecting protein secondary structures and nucleic acid locations in cryo-EM density maps, named EMInfo. EMInfo was extensively evaluated on two protein-nucleic acid complex test sets including intermediate-resolution experimental maps and high-resolution experimental maps and compared them with two state-of-the-art methods including Emap2sec+ and Haruspex. It is shown that EMInfo can accurately predict different structural categories in an EM map. EMInfo is freely available at http://huanglab.phys.hust.edu.cn/EMInfo/.
Collapse
Affiliation(s)
- Hong Cao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jiahua He
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Tao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
6
|
Li S, Terashi G, Zhang Z, Kihara D. Advancing structure modeling from cryo-EM maps with deep learning. Biochem Soc Trans 2025; 53:BST20240784. [PMID: 39927816 DOI: 10.1042/bst20240784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by enabling the determination of biomolecular structures that are challenging to resolve using conventional methods. Interpreting a cryo-EM map requires accurate modeling of the structures of underlying biomolecules. Here, we concisely discuss the evolution and current state of automatic structure modeling from cryo-EM density maps. We classify modeling methods into two categories: de novo modeling methods from high-resolution maps (better than 5 Å) and methods that model by fitting individual structures of component proteins to maps at lower resolution (worse than 5 Å). Special attention is given to the role of deep learning in the modeling process, highlighting how AI-driven approaches are transformative in cryo-EM structure modeling. We conclude by discussing future directions in the field.
Collapse
Affiliation(s)
- Shu Li
- Department of Computer Science, Purdue University, West Lafayette, IN, U.S.A
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, U.S.A
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, IN, U.S.A
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, U.S.A
- Department of Biological Sciences, Purdue University, West Lafayette, IN, U.S.A
| |
Collapse
|
7
|
Rosignoli S, Pacelli M, Manganiello F, Paiardini A. An outlook on structural biology after AlphaFold: tools, limits and perspectives. FEBS Open Bio 2025; 15:202-222. [PMID: 39313455 PMCID: PMC11788754 DOI: 10.1002/2211-5463.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
AlphaFold and similar groundbreaking, AI-based tools, have revolutionized the field of structural bioinformatics, with their remarkable accuracy in ab-initio protein structure prediction. This success has catalyzed the development of new software and pipelines aimed at incorporating AlphaFold's predictions, often focusing on addressing the algorithm's remaining challenges. Here, we present the current landscape of structural bioinformatics shaped by AlphaFold, and discuss how the field is dynamically responding to this revolution, with new software, methods, and pipelines. While the excitement around AI-based tools led to their widespread application, it is essential to acknowledge that their practical success hinges on their integration into established protocols within structural bioinformatics, often neglected in the context of AI-driven advancements. Indeed, user-driven intervention is still as pivotal in the structure prediction process as in complementing state-of-the-art algorithms with functional and biological knowledge.
Collapse
Affiliation(s)
- Serena Rosignoli
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Maddalena Pacelli
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Francesca Manganiello
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Alessandro Paiardini
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| |
Collapse
|
8
|
Li T, He J, Cao H, Zhang Y, Chen J, Xiao Y, Huang SY. All-atom RNA structure determination from cryo-EM maps. Nat Biotechnol 2025; 43:97-105. [PMID: 38396075 DOI: 10.1038/s41587-024-02149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Many methods exist for determining protein structures from cryogenic electron microscopy maps, but this remains challenging for RNA structures. Here we developed EMRNA, a method for accurate, automated determination of full-length all-atom RNA structures from cryogenic electron microscopy maps. EMRNA integrates deep learning-based detection of nucleotides, three-dimensional backbone tracing and scoring with consideration of sequence and secondary structure information, and full-atom construction of the RNA structure. We validated EMRNA on 140 diverse RNA maps ranging from 37 to 423 nt at 2.0-6.0 Å resolutions, and compared EMRNA with auto-DRRAFTER, phenix.map_to_model and CryoREAD on a set of 71 cases. EMRNA achieves a median accuracy of 2.36 Å root mean square deviation and 0.86 TM-score for full-length RNA structures, compared with 6.66 Å and 0.58 for auto-DRRAFTER. EMRNA also obtains a high residue coverage and sequence match of 93.30% and 95.30% in the built models, compared with 58.20% and 42.20% for phenix.map_to_model and 56.45% and 52.3% for CryoREAD. EMRNA is fast and can build an RNA structure of 100 nt within 3 min.
Collapse
Affiliation(s)
- Tao Li
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahua He
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Cao
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Chen
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xiao
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| | - Sheng-You Huang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Wang X, Zhu H, Terashi G, Taluja M, Kihara D. DiffModeler: large macromolecular structure modeling for cryo-EM maps using a diffusion model. Nat Methods 2024; 21:2307-2317. [PMID: 39433880 DOI: 10.1038/s41592-024-02479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024]
Abstract
Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multichain protein complexes. However, modeling a large complex structure, such as those with more than ten chains, is challenging, particularly when the map resolution decreases. Here we present DiffModeler, a fully automated method for modeling large protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. DiffModeler showed an average template modeling score of 0.88 and 0.91 for two datasets of cryo-EM maps of 0-5 Å resolution and 0.92 for intermediate resolution maps (5-10 Å), substantially outperforming existing methodologies. Further benchmarking at low resolutions (10-20 Å) confirms its versatility, demonstrating plausible performance.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Han Zhu
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Manav Taluja
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Alshammari M, He J, Wriggers W. Flexible fitting of AlphaFold2-predicted models to cryo-EM density maps using elastic network models: a methodical affirmation. BIOINFORMATICS ADVANCES 2024; 5:vbae181. [PMID: 39897947 PMCID: PMC11783307 DOI: 10.1093/bioadv/vbae181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/10/2024] [Accepted: 11/14/2024] [Indexed: 02/04/2025]
Abstract
Motivation This study investigates the flexible refinement of AlphaFold2 models against corresponding cryo-electron microscopy (cryo-EM) maps using normal modes derived from elastic network models (ENMs) as basis functions for displacement. AlphaFold2 generally predicts highly accurate structures, but 18 of the 137 models of isolated chains exhibit a TM-score below 0.80. We achieved a significant improvement in four of these deviating structures and used them to systematically optimize the parameters of the ENM motion model. Results We successfully refined four AlphaFold2 models with notable discrepancies: lipid-preserved respiratory supercomplex (TM-score increased from 0.52 to 0.69), flagellar L-ring protein (TM-score increased from 0.53 to 0.64), cation diffusion facilitator YiiP (TM-score increased from 0.76 to 0.83), and Sulfolobus islandicus pilus (TM-score increased from 0.77 to 0.85). We explored the effect of three different mode ranges (modes 1-9, 7-9, and 1-12), masked or box-cropped density maps, numerical optimization methods, and two similarity measures (Pearson correlation and inner product). The best results were achieved for the widest mode range (modes 1-12), masked maps, inner product, and local Powell optimization. These optimal parameters were implemented in the flexible fitting utility elforge.py in version 1.4 of our Python-based ModeHunter package. Availability and implementation https://modehunter.biomachina.org.
Collapse
Affiliation(s)
- Maytha Alshammari
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, United States
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, United States
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, United States
| |
Collapse
|
11
|
Li T, Cao H, He J, Huang SY. Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps. Nat Commun 2024; 15:9367. [PMID: 39477926 PMCID: PMC11525807 DOI: 10.1038/s41467-024-53721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Cryo-electron microscopy (cryo-EM) is one of the most powerful experimental methods for macromolecular structure determination. However, accurate DNA/RNA structure modeling from cryo-EM maps is still challenging especially for protein-DNA/RNA or multi-chain DNA/RNA complexes. Here we propose a deep learning-based method for accurate de novo structure determination of DNA/RNA from cryo-EM maps at <5 Å resolutions, which is referred to as EM2NA. EM2NA is extensively evaluated on a diverse test set of 50 experimental maps at 2.0-5.0 Å resolutions, and compared with state-of-the-art methods including CryoREAD, ModelAngelo, and phenix.map_to_model. On average, EM2NA achieves a residue coverage of 83.15%, C4' RMSD of 1.06 Å, and sequence recall of 46.86%, which outperforms the existing methods. Moreover, EM2NA is applied to build the DNA/RNA structures with 10 to 5347 nt from an EMDB-wide data set of 263 unmodeled raw maps, demonstrating its ability in the blind model building of DNA/RNA from cryo-EM maps. EM2NA is fast and can normally build a DNA/RNA structure of <500 nt within 10 minutes.
Collapse
Affiliation(s)
- Tao Li
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Cao
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahua He
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-You Huang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Chen S, Zhang S, Fang X, Lin L, Zhao H, Yang Y. Protein complex structure modeling by cross-modal alignment between cryo-EM maps and protein sequences. Nat Commun 2024; 15:8808. [PMID: 39394203 PMCID: PMC11470027 DOI: 10.1038/s41467-024-53116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Cryo-electron microscopy (cryo-EM) technique is widely used for protein structure determination. Current automatic cryo-EM protein complex modeling methods mostly rely on prior chain separation. However, chain separation without sequence guidance often suffers from errors caused by cross-chain interaction or noise densities, which would accumulate and mislead the subsequent steps. Here, we present EModelX, a fully automated cryo-EM protein complex structure modeling method, which achieves sequence-guiding modeling through cross-modal alignments between cryo-EM maps and protein sequences. EModelX first employs multi-task deep learning to predict Cα atoms, backbone atoms, and amino acid types from cryo-EM maps, which is subsequently used to sample Cα traces with amino acid profiles. The profiles are then aligned with protein sequences to obtain initial structural models, which yielded an average RMSD of 1.17 Å in our test set, approaching atomic-level precision in recovering PDB-deposited structures. After filling unmodeled gaps through sequence-guiding Cα threading, the final models achieved an average TM-score of 0.808, outperforming the state-of-the-art method. The further combination with AlphaFold can improve the average TM-score to 0.911. Analyzes conducted by comparing some EModelX-built models and PDB structures highlight its potential to improve PDB structures. EModelX is accessible at https://bio-web1.nscc-gz.cn/app/EModelX .
Collapse
Affiliation(s)
- Sheng Chen
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Sen Zhang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Fang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Liang Lin
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Huiying Zhao
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Zeng C, Zhuo C, Gao J, Liu H, Zhao Y. Advances and Challenges in Scoring Functions for RNA-Protein Complex Structure Prediction. Biomolecules 2024; 14:1245. [PMID: 39456178 PMCID: PMC11506084 DOI: 10.3390/biom14101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-protein complexes play a crucial role in cellular functions, providing insights into cellular mechanisms and potential therapeutic targets. However, experimental determination of these complex structures is often time-consuming and resource-intensive, and it rarely yields high-resolution data. Many computational approaches have been developed to predict RNA-protein complex structures in recent years. Despite these advances, achieving accurate and high-resolution predictions remains a formidable challenge, primarily due to the limitations inherent in current RNA-protein scoring functions. These scoring functions are critical tools for evaluating and interpreting RNA-protein interactions. This review comprehensively explores the latest advancements in scoring functions for RNA-protein docking, delving into the fundamental principles underlying various approaches, including coarse-grained knowledge-based, all-atom knowledge-based, and machine-learning-based methods. We critically evaluate the strengths and limitations of existing scoring functions, providing a detailed performance assessment. Considering the significant progress demonstrated by machine learning techniques, we discuss emerging trends and propose future research directions to enhance the accuracy and efficiency of scoring functions in RNA-protein complex prediction. We aim to inspire the development of more sophisticated and reliable computational tools in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | | | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China; (C.Z.); (C.Z.); (J.G.); (H.L.)
| |
Collapse
|
14
|
Hanau S, Helliwell JR. Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy. Acta Crystallogr F Struct Biol Commun 2024; 80:236-251. [PMID: 39259139 PMCID: PMC11448927 DOI: 10.1107/s2053230x24008112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Stefania Hanau
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - John R Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
15
|
Kyrilis FL, Low JKK, Mackay JP, Kastritis PL. Structural biology in cellulo: Minding the gap between conceptualization and realization. Curr Opin Struct Biol 2024; 87:102843. [PMID: 38788606 DOI: 10.1016/j.sbi.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Recent technological advances have deepened our perception of cellular structure. However, most structural data doesn't originate from intact cells, limiting our understanding of cellular processes. Here, we discuss current and future developments that will bring us towards a structural picture of the cell. Electron cryotomography is the standard bearer, with its ability to provide in cellulo snapshots. Single-particle electron microscopy (of purified biomolecules and of complex mixtures) and covalent crosslinking combined with mass spectrometry also have significant roles to play, as do artificial intelligence algorithms in their many guises. To integrate these multiple approaches, data curation and standardisation will be critical - as is the need to expand efforts beyond our current protein-centric view to the other (macro)molecules that sustain life.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece. https://twitter.com/Fotansky_16
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Panagiotis L Kastritis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany.
| |
Collapse
|
16
|
Song X, Bao L, Feng C, Huang Q, Zhang F, Gao X, Han R. Accurate Prediction of Protein Structural Flexibility by Deep Learning Integrating Intricate Atomic Structures and Cryo-EM Density Information. Nat Commun 2024; 15:5538. [PMID: 38956032 PMCID: PMC11219796 DOI: 10.1038/s41467-024-49858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
The dynamics of proteins are crucial for understanding their mechanisms. However, computationally predicting protein dynamic information has proven challenging. Here, we propose a neural network model, RMSF-net, which outperforms previous methods and produces the best results in a large-scale protein dynamics dataset; this model can accurately infer the dynamic information of a protein in only a few seconds. By learning effectively from experimental protein structure data and cryo-electron microscopy (cryo-EM) data integration, our approach is able to accurately identify the interactive bidirectional constraints and supervision between cryo-EM maps and PDB models in maximizing the dynamic prediction efficacy. Rigorous 5-fold cross-validation on the dataset demonstrates that RMSF-net achieves test correlation coefficients of 0.746 ± 0.127 at the voxel level and 0.765 ± 0.109 at the residue level, showcasing its ability to deliver dynamic predictions closely approximating molecular dynamics simulations. Additionally, it offers real-time dynamic inference with minimal storage overhead on the order of megabytes. RMSF-net is a freely accessible tool and is anticipated to play an essential role in the study of protein dynamics.
Collapse
Affiliation(s)
- Xintao Song
- Research Center for Mathematics and Interdisciplinary Sciences (Ministry of Education Frontiers Science Center for Nonlinear Expectations), Shandong University, Qingdao, China
- BioMap Research, Menlo Park, CA, USA
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia
| | - Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Chenjie Feng
- College of Medical Information and Engineering, Ningxia Medical University, Yinchuan, China
| | - Qiang Huang
- Research Center for Mathematics and Interdisciplinary Sciences (Ministry of Education Frontiers Science Center for Nonlinear Expectations), Shandong University, Qingdao, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia.
| | - Renmin Han
- Research Center for Mathematics and Interdisciplinary Sciences (Ministry of Education Frontiers Science Center for Nonlinear Expectations), Shandong University, Qingdao, China.
- BioMap Research, Menlo Park, CA, USA.
| |
Collapse
|
17
|
Zhao N, Wu T, Wang W, Zhang L, Gong X. Review and Comparative Analysis of Methods and Advancements in Predicting Protein Complex Structure. Interdiscip Sci 2024; 16:261-288. [PMID: 38955920 DOI: 10.1007/s12539-024-00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 07/04/2024]
Abstract
Protein complexes perform diverse biological functions, and obtaining their three-dimensional structure is critical to understanding and grasping their functions. In many cases, it's not just two proteins interacting to form a dimer; instead, multiple proteins interact to form a multimer. Experimentally resolving protein complex structures can be quite challenging. Recently, there have been efforts and methods that build upon prior predictions of dimer structures to attempt to predict multimer structures. However, in comparison to monomeric protein structure prediction, the accuracy of protein complex structure prediction remains relatively low. This paper provides an overview of recent advancements in efficient computational models for predicting protein complex structures. We introduce protein-protein docking methods in detail and summarize their main ideas, applicable modes, and related information. To enhance prediction accuracy, other critical protein-related information is also integrated, such as predicting interchain residue contact, utilizing experimental data like cryo-EM experiments, and considering protein interactions and non-interactions. In addition, we comprehensively review computational approaches for end-to-end prediction of protein complex structures based on artificial intelligence (AI) technology and describe commonly used datasets and representative evaluation metrics in protein complexes. Finally, we analyze the formidable challenges faced in current protein complex structure prediction tasks, including the structure prediction of heteromeric complex, disordered regions in complex, antibody-antigen complex, and RNA-related complex, as well as the evaluation metrics for complex assessment. We hope that this work will provide comprehensive knowledge of complex structure predictions to contribute to future advanced predictions.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Tong Wu
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Wenda Wang
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Lunchuan Zhang
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
| | - Xinqi Gong
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China.
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
- Beijing Academy of Artificial Intelligence, Beijing, 100084, China.
| |
Collapse
|
18
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
19
|
Jamali K, Käll L, Zhang R, Brown A, Kimanius D, Scheres SHW. Automated model building and protein identification in cryo-EM maps. Nature 2024; 628:450-457. [PMID: 38408488 PMCID: PMC11006616 DOI: 10.1038/s41586-024-07215-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels of expertise and labour-intensive manual intervention in three-dimensional computer graphics programs1,2. Here we present ModelAngelo, a machine-learning approach for automated atomic model building in cryo-EM maps. By combining information from the cryo-EM map with information from protein sequence and structure in a single graph neural network, ModelAngelo builds atomic models for proteins that are of similar quality to those generated by human experts. For nucleotides, ModelAngelo builds backbones with similar accuracy to those built by humans. By using its predicted amino acid probabilities for each residue in hidden Markov model sequence searches, ModelAngelo outperforms human experts in the identification of proteins with unknown sequences. ModelAngelo will therefore remove bottlenecks and increase objectivity in cryo-EM structure determination.
Collapse
Affiliation(s)
| | - Lukas Käll
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rui Zhang
- Washington University in St Louis, St Louis, MO, USA
| | - Alan Brown
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
20
|
Chen J, Zia A, Luo A, Meng H, Wang F, Hou J, Cao R, Si D. Enhancing cryo-EM structure prediction with DeepTracer and AlphaFold2 integration. Brief Bioinform 2024; 25:bbae118. [PMID: 38609330 PMCID: PMC11014792 DOI: 10.1093/bib/bbae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/23/2024] [Accepted: 03/02/2024] [Indexed: 04/14/2024] Open
Abstract
Understanding the protein structures is invaluable in various biomedical applications, such as vaccine development. Protein structure model building from experimental electron density maps is a time-consuming and labor-intensive task. To address the challenge, machine learning approaches have been proposed to automate this process. Currently, the majority of the experimental maps in the database lack atomic resolution features, making it challenging for machine learning-based methods to precisely determine protein structures from cryogenic electron microscopy density maps. On the other hand, protein structure prediction methods, such as AlphaFold2, leverage evolutionary information from protein sequences and have recently achieved groundbreaking accuracy. However, these methods often require manual refinement, which is labor intensive and time consuming. In this study, we present DeepTracer-Refine, an automated method that refines AlphaFold predicted structures by aligning them to DeepTracers modeled structure. Our method was evaluated on 39 multi-domain proteins and we improved the average residue coverage from 78.2 to 90.0% and average local Distance Difference Test score from 0.67 to 0.71. We also compared DeepTracer-Refine with Phenixs AlphaFold refinement and demonstrated that our method not only performs better when the initial AlphaFold model is less precise but also surpasses Phenix in run-time performance.
Collapse
Affiliation(s)
- Jason Chen
- Division of Computing and Software Systems, University of Washington Bothell, Bothell, WA 98011, USA
| | - Ayisha Zia
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Albert Luo
- Division of Computing and Software Systems, University of Washington Bothell, Bothell, WA 98011, USA
| | - Hanze Meng
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jie Hou
- Department of Computer Science, Saint Louis University, Saint Louis, MO 63103, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, USA
| | - Dong Si
- Division of Computing and Software Systems, University of Washington Bothell, Bothell, WA 98011, USA
| |
Collapse
|
21
|
Liu H, Zhao Y. Integrated modeling of protein and RNA. Brief Bioinform 2024; 25:bbae139. [PMID: 38561980 PMCID: PMC10985284 DOI: 10.1093/bib/bbae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
22
|
Wang X, Zhu H, Terashi G, Taluja M, Kihara D. DiffModeler: Large Macromolecular Structure Modeling in Low-Resolution Cryo-EM Maps Using Diffusion Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576370. [PMID: 38328203 PMCID: PMC10849514 DOI: 10.1101/2024.01.20.576370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multi-chain protein complexes. However, modeling a complex structure is challenging particularly when the map resolution is low, typically in the intermediate resolution range of 5 to 10 Å. Within this resolution range, even accurate structure fitting is difficult, let alone de novo modeling. To address this challenge, here we present DiffModeler, a fully automated method for modeling protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. Extensive testing on cryo-EM maps at intermediate resolutions demonstrates the exceptional accuracy of DiffModeler in structure modeling, achieving an average TM-Score of 0.92, surpassing existing methodologies significantly. Notably, DiffModeler successfully modeled a protein complex composed of 47 chains and 13,462 residues, achieving a high TM-Score of 0.94. Further benchmarking at low resolutions (10-20 Å confirms its versatility, demonstrating plausible performance. Moreover, when coupled with CryoREAD, DiffModeler excels in constructing protein-DNA/RNA complex structures for near-atomic resolution maps (0-5 Å), showcasing state-of-the-art performance with average TM-Scores of 0.88 and 0.91 across two datasets.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Han Zhu
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Manav Taluja
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
- School of Computer Science and Engineering, Vellore Institute of Technology, Tamil Nadu 642014, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
23
|
He B, Zhang F, Feng C, Yang J, Gao X, Han R. Accurate global and local 3D alignment of cryo-EM density maps using local spatial structural features. Nat Commun 2024; 15:1593. [PMID: 38383438 PMCID: PMC10881975 DOI: 10.1038/s41467-024-45861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Advances in cryo-electron microscopy (cryo-EM) imaging technologies have led to a rapidly increasing number of cryo-EM density maps. Alignment and comparison of density maps play a crucial role in interpreting structural information, such as conformational heterogeneity analysis using global alignment and atomic model assembly through local alignment. Here, we present a fast and accurate global and local cryo-EM density map alignment method called CryoAlign, that leverages local density feature descriptors to capture spatial structure similarities. CryoAlign is a feature-based cryo-EM map alignment tool, in which the employment of feature-based architecture enables the rapid establishment of point pair correspondences and robust estimation of alignment parameters. Extensive experimental evaluations demonstrate the superiority of CryoAlign over the existing methods in terms of both alignment accuracy and speed.
Collapse
Affiliation(s)
- Bintao He
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenjie Feng
- College of Medical Information and Engineering, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianyi Yang
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, 23955, Saudi Arabia.
| | - Renmin Han
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
24
|
Zhang Z, Cai Y, Zhang B, Zheng W, Freddolino L, Zhang G, Zhou X. DEMO-EM2: assembling protein complex structures from cryo-EM maps through intertwined chain and domain fitting. Brief Bioinform 2024; 25:bbae113. [PMID: 38517699 PMCID: PMC10959074 DOI: 10.1093/bib/bbae113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024] Open
Abstract
The breakthrough in cryo-electron microscopy (cryo-EM) technology has led to an increasing number of density maps of biological macromolecules. However, constructing accurate protein complex atomic structures from cryo-EM maps remains a challenge. In this study, we extend our previously developed DEMO-EM to present DEMO-EM2, an automated method for constructing protein complex models from cryo-EM maps through an iterative assembly procedure intertwining chain- and domain-level matching and fitting for predicted chain models. The method was carefully evaluated on 27 cryo-electron tomography (cryo-ET) maps and 16 single-particle EM maps, where DEMO-EM2 models achieved an average TM-score of 0.92, outperforming those of state-of-the-art methods. The results demonstrate an efficient method that enables the rapid and reliable solution of challenging cryo-EM structure modeling problems.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yaxian Cai
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Biao Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
25
|
Park J, Joung I, Joo K, Lee J. Application of conformational space annealing to the protein structure modeling using cryo-EM maps. J Comput Chem 2023; 44:2332-2346. [PMID: 37585026 DOI: 10.1002/jcc.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/26/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo-EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax (FastRelax) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo-EM map and de novo protein modeling by tracing the Cryo-EM map, was performed by CSA. In the refinement of the rigid-fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross-correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo-EM structure modeling.
Collapse
Affiliation(s)
| | | | - Keehyoung Joo
- Center for Advanced Computations, Korea Institute for Advanced Study, Seoul, South Korea
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| |
Collapse
|
26
|
Jamali K, Käll L, Zhang R, Brown A, Kimanius D, Scheres SH. Automated model building and protein identification in cryo-EM maps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541002. [PMID: 37292681 PMCID: PMC10245678 DOI: 10.1101/2023.05.16.541002] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels of expertise and labour-intensive manual intervention. We present ModelAngelo, a machine-learning approach for automated atomic model building in cryo-EM maps. By combining information from the cryo-EM map with information from protein sequence and structure in a single graph neural network, ModelAngelo builds atomic models for proteins that are of similar quality as those generated by human experts. For nucleotides, ModelAngelo builds backbones with similar accuracy as humans. By using its predicted amino acid probabilities for each residue in hidden Markov model sequence searches, ModelAngelo outperforms human experts in the identification of proteins with unknown sequences. ModelAngelo will thus remove bottlenecks and increase objectivity in cryo-EM structure determination.
Collapse
Affiliation(s)
| | - Lukas Käll
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rui Zhang
- Washington University in St. Louis, St. Louis, MO, USA
| | - Alan Brown
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
27
|
DiIorio MC, Kulczyk AW. Novel Artificial Intelligence-Based Approaches for Ab Initio Structure Determination and Atomic Model Building for Cryo-Electron Microscopy. MICROMACHINES 2023; 14:1674. [PMID: 37763837 PMCID: PMC10534518 DOI: 10.3390/mi14091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has emerged as the prevailing method for near-atomic structure determination, shedding light on the important molecular mechanisms of biological macromolecules. However, the inherent dynamics and structural variability of biological complexes coupled with the large number of experimental images generated by a cryo-EM experiment make data processing nontrivial. In particular, ab initio reconstruction and atomic model building remain major bottlenecks that demand substantial computational resources and manual intervention. Approaches utilizing recent innovations in artificial intelligence (AI) technology, particularly deep learning, have the potential to overcome the limitations that cannot be adequately addressed by traditional image processing approaches. Here, we review newly proposed AI-based methods for ab initio volume generation, heterogeneous 3D reconstruction, and atomic model building. We highlight the advancements made by the implementation of AI methods, as well as discuss remaining limitations and areas for future development.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry & Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
28
|
He J, Li T, Huang SY. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat Commun 2023; 14:3217. [PMID: 37270635 DOI: 10.1038/s41467-023-39031-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Cryo-EM has emerged as the most important technique for structure determination of macromolecular complexes. However, raw cryo-EM maps often exhibit loss of contrast at high resolution and heterogeneity over the entire map. As such, various post-processing methods have been proposed to improve cryo-EM maps. Nevertheless, it is still challenging to improve both the quality and interpretability of EM maps. Addressing the challenge, we present a three-dimensional Swin-Conv-UNet-based deep learning framework to improve cryo-EM maps, named EMReady, by not only implementing both local and non-local modeling modules in a multiscale UNet architecture but also simultaneously minimizing the local smooth L1 distance and maximizing the non-local structural similarity between processed experimental and simulated target maps in the loss function. EMReady was extensively evaluated on diverse test sets of 110 primary cryo-EM maps and 25 pairs of half-maps at 3.0-6.0 Å resolutions, and compared with five state-of-the-art map post-processing methods. It is shown that EMReady can not only robustly enhance the quality of cryo-EM maps in terms of map-model correlations, but also improve the interpretability of the maps in automatic de novo model building.
Collapse
Affiliation(s)
- Jiahua He
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-You Huang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Gutnik D, Evseev P, Miroshnikov K, Shneider M. Using AlphaFold Predictions in Viral Research. Curr Issues Mol Biol 2023; 45:3705-3732. [PMID: 37185764 PMCID: PMC10136805 DOI: 10.3390/cimb45040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Elucidation of the tertiary structure of proteins is an important task for biological and medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically significant animals and plants, but they can also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several activities, including drug design. Computational prediction and analysis of the structure of bacteriophage receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research, including evolutionary studies. The ongoing development and improvement of AlphaFold can ensure that its contribution to the study of viral proteins will be significant in the future.
Collapse
Affiliation(s)
- Daria Gutnik
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., 664033 Irkutsk, Russia
| | - Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| |
Collapse
|
30
|
Jiang J, Li J, Li J, Pei H, Li M, Zou Q, Lv Z. A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features. Foods 2023; 12:foods12071498. [PMID: 37048319 PMCID: PMC10094688 DOI: 10.3390/foods12071498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Umami peptides enhance the umami taste of food and have good food processing properties, nutritional value, and numerous potential applications. Wet testing for the identification of umami peptides is a time-consuming and expensive process. Here, we report the iUmami-DRLF that uses a logistic regression (LR) method solely based on the deep learning pre-trained neural network feature extraction method, unified representation (UniRep based on multiplicative LSTM), for feature extraction from the peptide sequences. The findings demonstrate that deep learning representation learning significantly enhanced the capability of models in identifying umami peptides and predictive precision solely based on peptide sequence information. The newly validated taste sequences were also used to test the iUmami-DRLF and other predictors, and the result indicates that the iUmami-DRLF has better robustness and accuracy and remains valid at higher probability thresholds. The iUmami-DRLF method can aid further studies on enhancing the umami flavor of food for satisfying the need for an umami-flavored diet.
Collapse
Affiliation(s)
- Jici Jiang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayu Li
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Junxian Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongdi Pei
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Wu Yuzhang Honors College, Sichuan University, Chengdu 610065, China
| | - Mingxin Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zhibin Lv
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Zabeo D, Davies KM. Studying membrane modulation mechanisms by electron cryo-tomography. Curr Opin Struct Biol 2022; 77:102464. [PMID: 36174286 DOI: 10.1016/j.sbi.2022.102464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Membrane modulation is a key part of cellular life. Critical to processes like energy production, cell division, trafficking, migration and even pathogen entry, defects in membrane modulation are often associated with diseases. Studying the molecular mechanisms of membrane modulation is challenging due to the highly dynamic nature of the oligomeric assemblies involved, which adopt multiple conformations depending on the precise event they are participating in. With the development of electron cryo-tomography and subtomogram averaging, many of these challenges are being resolved as it is now possible to observe complex macromolecular assemblies inside a cell at nanometre to sub-nanometre resolutions. Here, we review the different ways electron cryo-tomography is being used to help uncover the molecular mechanisms used by cells to shape their membranes.
Collapse
Affiliation(s)
- Davide Zabeo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Karen M Davies
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
32
|
Dasgupta B, Tiwari SP. Explicit versus implicit consideration of binding partners in protein-protein complex to elucidate intrinsic dynamics. Biophys Rev 2022; 14:1379-1392. [PMID: 36659985 PMCID: PMC9842844 DOI: 10.1007/s12551-022-01026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
The binding of many proteins to their protein partners is tightly regulated via control of their relative intrinsic dynamics during the binding process, a phenomenon which can in turn be modulated. Therefore, investigating the intrinsic dynamics of proteins is necessary to understand function in a comprehensive way. By intrinsic dynamics herein, we principally refer to the vibrational signature of a protein molecule popularly obtained from normal modes or essential modes. For normal modes, one often considers that the molecule under investigation is a collection of springs in a solvent-free or implicit-solvent medium. In the context of a protein-binding partner, the analysis of vibration of the target protein is often complicated due to molecular interaction within the complex. Generally, it is assumed that the isolated bound conformation of the target protein captures the implicit effect of the binding partner on the intrinsic dynamics, therefore suggesting that any influence of the partner molecule is also already integrated. Such an assumption allows large-scale studies of the conservation of protein flexibility. However, in cases where a partner protein directly influences the vibration of the target via critical contacts at the protein-protein interface, the above assumption falls short of providing a detailed view. In this review article, we discuss the implications of considering the dynamics of a protein in a protein-protein complex, as modelled implicitly and explicitly with methods dependent on elastic network models. We further propose how such an explicit consideration can be applied to understand critical protein-protein contacts that can be targeted in future studies.
Collapse
Affiliation(s)
- Bhaskar Dasgupta
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8904 Japan
| | - Sandhya P. Tiwari
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, 1-3-1 Kagamiyama, Hiroshima, 739-8526 Japan
- Present Address: Institute of Protein Research, Osaka University, 3-2 Yamadaoka, Suita-Shi, Osaka, 565-0871 Japan
| |
Collapse
|
33
|
Bouvier G, Bardiaux B, Pellarin R, Rapisarda C, Nilges M. Building Protein Atomic Models from Cryo-EM Density Maps and Residue Co-Evolution. Biomolecules 2022; 12:biom12091290. [PMID: 36139128 PMCID: PMC9496541 DOI: 10.3390/biom12091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Electron cryo-microscopy (cryo-EM) has emerged as a powerful method by which to obtain three-dimensional (3D) structures of macromolecular complexes at atomic or near-atomic resolution. However, de novo building of atomic models from near-atomic resolution (3–5 Å) cryo-EM density maps is a challenging task, in particular because poorly resolved side-chain densities hamper sequence assignment by automatic procedures at a lower resolution. Furthermore, segmentation of EM density maps into individual subunits remains a difficult problem when the structure of the subunits is not known, or when significant conformational rearrangement occurs between the isolated and associated form of the subunits. To tackle these issues, we have developed a graph-based method to thread most of the C-α trace of the protein backbone into the EM density map. The EM density is described as a weighted graph such that the resulting minimum spanning tree encompasses the high-density regions of the map. A pruning algorithm cleans the tree and finds the most probable positions of the C-α atoms, by using side-chain density when available, as a collection of C-α trace fragments. By complementing experimental EM maps with contact predictions from sequence co-evolutionary information, we demonstrate that this approach can correctly segment EM maps into individual subunits and assign amino acid sequences to backbone traces to generate atomic models.
Collapse
Affiliation(s)
- Guillaume Bouvier
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Correspondence: (G.B.); (B.B.)
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Correspondence: (G.B.); (B.B.)
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| | - Chiara Rapisarda
- Microbiologie Fondamentale et Pathogènicité, University of Bordeaux, CNRS UMR 5234, 33076 Bordeaux, France
- Institut Européen de Chimie et Biologie, University of Bordeaux, 33600 Pessac, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| |
Collapse
|
34
|
Chung JM, Durie CL, Lee J. Artificial Intelligence in Cryo-Electron Microscopy. Life (Basel) 2022; 12:1267. [PMID: 36013446 PMCID: PMC9410485 DOI: 10.3390/life12081267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) has become an unrivaled tool for determining the structure of macromolecular complexes. The biological function of macromolecular complexes is inextricably tied to the flexibility of these complexes. Single particle cryo-EM can reveal the conformational heterogeneity of a biochemically pure sample, leading to well-founded mechanistic hypotheses about the roles these complexes play in biology. However, the processing of increasingly large, complex datasets using traditional data processing strategies is exceedingly expensive in both user time and computational resources. Current innovations in data processing capitalize on artificial intelligence (AI) to improve the efficiency of data analysis and validation. Here, we review new tools that use AI to automate the data analysis steps of particle picking, 3D map reconstruction, and local resolution determination. We discuss how the application of AI moves the field forward, and what obstacles remain. We also introduce potential future applications of AI to use cryo-EM in understanding protein communities in cells.
Collapse
Affiliation(s)
- Jeong Min Chung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi, Korea
| | - Clarissa L. Durie
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Jinseok Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin-si 17104, Gyeonggi, Korea
| |
Collapse
|