1
|
Lam T, Quach HT, Hall L, Abou Chakra M, Wong AP. A multidisciplinary approach towards modeling of a virtual human lung. NPJ Syst Biol Appl 2025; 11:38. [PMID: 40251169 PMCID: PMC12008392 DOI: 10.1038/s41540-025-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Integrating biological data with in silico modeling offers the transformative potential to develop virtual human models, or "digital twins." These models hold immense promise for deepening our understanding of diseases and uncovering new therapeutic strategies. This approach is especially valuable for diseases lacking reliable models. Here we review current modelling efforts in of human lung development, highlighting the role of interdisciplinary collaboration and key advances toward a digital lung twin.
Collapse
Affiliation(s)
- Timothy Lam
- Program in Developmental, Stem cell and Cancer Biology, Hospital for Sick Children, PGCRL 16-9420, Toronto, ON, Canada
| | - Henry T Quach
- Program in Developmental, Stem cell and Cancer Biology, Hospital for Sick Children, PGCRL 16-9420, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Lauren Hall
- Program in Developmental, Stem cell and Cancer Biology, Hospital for Sick Children, PGCRL 16-9420, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Maria Abou Chakra
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, ON, Canada
| | - Amy P Wong
- Program in Developmental, Stem cell and Cancer Biology, Hospital for Sick Children, PGCRL 16-9420, Toronto, ON, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ren Y, Song Y, Li M, He L, Xiao C, Yang P, Zhang Y, Zhao C, Wang T, Zhou G, Lei B. An object detection-based model for automated screening of stem-cells senescence during drug screening. Neural Netw 2025; 183:106940. [PMID: 39631255 DOI: 10.1016/j.neunet.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Deep learning-based cell senescence detection is crucial for accurate quantitative analysis of senescence assessment. However, senescent cells are small in size and have little differences in appearance and shape in different states, which leads to insensitivity problems such as missed and false detection. In addition, complex intelligent models are not conducive to clinical application. Therefore, to solve the above problems, we proposed a Faster Region Convolutional Neural Network (Faster R-CNN) detection model with Swin Transformer (Swin-T) and group normalization (GN), called STGF R-CNN, for the detection of different senescent cells to achieve quantification assessment of induced pluripotent stem cell-derived mesenchymal stem cells (iP-MSCs) senescence. Specifically, to enhance the representation learning ability of the network, Swin-T with a hierarchical structure was constructed. It utilizes a local window attention mechanism to capture features of different scales and levels. In addition, the GN strategy is adopted to achieve a lightweight model. To verify the effectiveness of the STGF R-CNN, a cell senescence dataset, the iP-MSCs dataset, was constructed, and a series of experiments were conducted. Experiment results show that it has the advantage of high senescent detection accuracy, mean Average Precision (mAP) is 0.835, Params is 46.06M, and FLOPs is 95.62G, which significantly reduces senescent assessment time from 12 h to less than 1 s. The STGF R-CNN has advantages over existing cell senescence detection methods, providing potential for anti-senescent drug screening. Our code is available at https://github.com/RY-97/STGF-R-CNN.
Collapse
Affiliation(s)
- Yu Ren
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Youyi Song
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Mingzhu Li
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Liangge He
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-senescent and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China
| | - Chunlun Xiao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Peng Yang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yongtao Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Cheng Zhao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-senescent and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China
| | - Baiying Lei
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Sone N, Gotoh S. Micro-physiological system of human lung: The current status and application to drug discovery. Drug Metab Pharmacokinet 2025; 60:101050. [PMID: 39847976 DOI: 10.1016/j.dmpk.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025]
Abstract
Various attempts have been made to elucidate the mechanisms of human lung development, its physiological functions, and diseases, in the hope of new drug discovery. Recent technological advancements in experimental animals, cell culture, gene editing, and analytical methods have provided new insights and therapeutic strategies. However, the results obtained from animal experiments are often inconsistent with those obtained from human data because of reproducibility issues caused by structural and physiological differences between mice and humans. In addition, it is not possible to accurately reproduce the internal environment of the human lung structure using conventional two-dimensional (2D) or three-dimensional (3D) cell culture methods. As a result, the micro-physiological system (MPS) technology, such as "lung-on-a-chip" that can culture human cells in a state close to human body environment have been developed, and its applications to disease models, toxicological studies, and drug discovery are accelerated worldwide. Here, we focus on the mimetics of the lung, including "lung-on-a-chip" technology, and review their recent progress, achievements and challenges. Finally, we discuss the role of these chips in drug discovery for refractory lung diseases.
Collapse
Affiliation(s)
- Naoyuki Sone
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shimpei Gotoh
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
4
|
Demchenko A, Balyasin M, Nazarova A, Grigorieva O, Panchuk I, Kondrateva E, Tabakov V, Schagina O, Amelina E, Smirnikhina S. Human Induced Lung Organoids: A Promising Tool for Cystic Fibrosis Drug Screening. Int J Mol Sci 2025; 26:437. [PMID: 39859153 PMCID: PMC11764749 DOI: 10.3390/ijms26020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient in vitro model is needed to screen therapeutic agents under development. This study, on the most common mutation, F508del, investigates the efficacy of human induced pluripotent stem cell-derived lung organoids (hiLOs) from NKX2.1+ lung progenitors and airway basal cells (hiBCs) as a 3D model for CFTR modulator response assessment by a forskolin-induced swelling assay. Weak swelling was observed for hiLOs from NKX2.1+ lung progenitors and hiBCs in response to modulators VX-770/VX-809 and VX-770/VX-661, whereas the VX-770/VX-661/VX-445 combination resulted in the highest swelling response, indicating superior CFTR function restoration. The ROC analysis of the FIS assay results revealed an optimal cutoff of 1.21, with 65.9% sensitivity and 71.8% specificity, and the predictive accuracy of the model was 76.4%. In addition, this study compared the response of hiLOs with the clinical response of patients to therapy and showed similar drug response dynamics. Thus, hiLOs can effectively model the CF pathology and predict patients' specific response to modulators.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Miklukho-Maklaya, 6, 117198 Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Dm. Ulyanova Str., 11, 117292 Moscow, Russia
| | - Aleksandra Nazarova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Olga Grigorieva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Irina Panchuk
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Olga Schagina
- DNA-Diagnostics Laboratory, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, 11th Parkovaya Str., 32/4, 105077 Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| |
Collapse
|
5
|
Kohn A, Herriges MJ, Basak P, Ma L, Thapa BR, Kotton DN, Hawkins FJ. Targeted pre-conditioning and cell transplantation in the murine lower respiratory tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.622518. [PMID: 39605510 PMCID: PMC11601482 DOI: 10.1101/2024.11.12.622518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transplantation of airway basal stem cells could achieve a durable cure for genetic diseases of the airway, such as cystic fibrosis and primary ciliary dyskinesia. Recent work demonstrated the potential of primary- and pluripotent stem cell (PSC)-derived basal cells to efficiently engrai into the mouse trachea aier injury. However, there are many hurdles to overcome in translating these approaches to humans including developing safe and efficient methods for delivery in larger animal models. We propose a model which targets preconditioning and cell-delivery to the intrapulmonary airways utilizing a micro- bronchoscope for delivery. The detergent polidocanol was adapted for distal lung pre-conditioning, inducing intrapulmonary airway epithelial denudation by 5 and 24-hours post-delivery. While initial re- epithelialization of airways occurred later than tracheas, complete repair was observed within 7-days. Both PSC-derived and primary basal cells delivered via micro-bronchoscope post-polidocanol injury engraied in tracheas and intrapulmonary airways, respectively. Transplanted cells differentiated into ciliated and secretory lineages while maintaining a population of basal cells. These findings demonstrate the utility of bronchoscopically targeted pre-conditioning and cell delivery to the conducting intra- pulmonary airways, providing an important framework for pre-clinical translation of approaches for engineered airway epithelial regeneration.
Collapse
|
6
|
Benam KH. Multidisciplinary approaches in electronic nicotine delivery systems pulmonary toxicology: emergence of living and non-living bioinspired engineered systems. COMMUNICATIONS ENGINEERING 2024; 3:123. [PMID: 39227652 PMCID: PMC11372223 DOI: 10.1038/s44172-024-00276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Technology-based platforms offer crucial support for regulatory agencies in overseeing tobacco products to enhance public health protection. The use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes, has surged exponentially over the past decade. However, the understanding of the impact of ENDS on lung health remains incomplete due to scarcity of physiologically relevant technologies for evaluating their toxicity. This review examines the societal and public health impacts of ENDS, prevalent preclinical approaches in pulmonary space, and the application of emerging Organ-on-Chip technologies and bioinspired robotics for assessing ENDS respiratory toxicity. It highlights challenges in ENDS inhalation toxicology and the value of multidisciplinary bioengineering approaches for generating reliable, human-relevant regulatory data at an accelerated pace.
Collapse
Affiliation(s)
- Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Gregor A, Zweier C. Modelling phenotypes, variants and pathomechanisms of syndromic diseases in different systems. MED GENET-BERLIN 2024; 36:121-131. [PMID: 38854643 PMCID: PMC11154186 DOI: 10.1515/medgen-2024-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this review we describe different model organisms and systems that are commonly used to study syndromic disorders. Different use cases in modeling diseases, underlying pathomechanisms and specific effects of certain variants are elucidated. We also highlight advantages and limitations of different systems. Models discussed include budding yeast, the nematode worm, the fruit fly, the frog, zebrafish, mice and human cell-based systems.
Collapse
Affiliation(s)
- Anne Gregor
- University of BernDepartment of Human GeneticsInselspital Bern3010BernSwitzerland
| | | |
Collapse
|
8
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Bitounis D, Jacquinet E, Rogers MA, Amiji MM. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat Rev Drug Discov 2024; 23:281-300. [PMID: 38263456 DOI: 10.1038/s41573-023-00859-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
mRNA formulated with lipid nanoparticles is a transformative technology that has enabled the rapid development and administration of billions of coronavirus disease 2019 (COVID-19) vaccine doses worldwide. However, avoiding unacceptable toxicity with mRNA drugs and vaccines presents challenges. Lipid nanoparticle structural components, production methods, route of administration and proteins produced from complexed mRNAs all present toxicity concerns. Here, we discuss these concerns, specifically how cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead to toxicity, and their possible reactogenicity. We focus on adverse events from mRNA applications for protein replacement and gene editing therapies as well as vaccines, tracing common biochemical and cellular pathways. The potential and limitations of existing models and tools used to screen for on-target efficacy and de-risk off-target toxicity, including in vivo and next-generation in vitro models, are also discussed.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Moderna, Inc., Cambridge, MA, USA
| | | | | | - Mansoor M Amiji
- Departments of Pharmaceutical Sciences and Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
10
|
Causa E, Fradique R, Cicuta P. Measuring Biophysical Properties of Cilia Motility from Mammalian Tissues via Quantitative Video Analysis Methods. Methods Mol Biol 2024; 2725:251-262. [PMID: 37856030 DOI: 10.1007/978-1-0716-3507-0_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Ciliated epithelia are common in various human organs, indeed across many species, and their physiological functions are vital. A number of diseases, of genetic, degenerative, or infectious nature, compromise motile cilia function and lead to severe downstream consequences. Culture of ciliated tissues is a common research approach. We focus here on the video microscopy and analysis pipelines developed over the last few years to phenotype ciliary beating in lung cells, specifically to extract: cilia coverage; ciliary beat frequency distributions; the scale for ciliary dynamical coordination; and cilia beat waveform.
Collapse
Affiliation(s)
- Erika Causa
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
12
|
Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133:e170500. [PMID: 37966116 PMCID: PMC10645385 DOI: 10.1172/jci170500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Over the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.
Collapse
Affiliation(s)
- Ana I. Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
- Department of Medicine V, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research and Institute for Lung Health, Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
13
|
Fradique R, Causa E, Delahousse C, Kotar J, Pinte L, Vallier L, Vila-Gonzalez M, Cicuta P. Assessing motile cilia coverage and beat frequency in mammalian in vitro cell culture tissues. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230185. [PMID: 37538747 PMCID: PMC10394421 DOI: 10.1098/rsos.230185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Cilia density, distribution and beating frequency are important properties of airway epithelial tissues. These parameters are critical in diagnosing primary ciliary dyskinesia and examining in vitro models, including those derived from induced pluripotent stem cells. Video microscopy can be used to characterize these parameters, but most tools available at the moment are limited in the type of information they can provide, usually only describing the ciliary beat frequency of very small areas, while requiring human intervention and training for their use. We propose a novel and open-source method to fully characterize cilia beating frequency and motile cilia coverage in an automated fashion without user intervention. We demonstrate the ability to differentiate between different coverage densities, identifying even small patches of cilia in a larger field of view, and to fully characterize the cilia beating frequency of all moving areas. We also show that the method can be used to combine multiple fields of view to better describe a sample without relying on small pre-selected regions of interest. This is released with a simple graphical user interface for file handling, enabling a full analysis of individual fields of view in a few minutes on a typical personal computer.
Collapse
Affiliation(s)
- Ricardo Fradique
- Cavendish Laboratory, University of Cambridge, JJ Thomson Av., Cambridge CB3 0HE, UK
| | - Erika Causa
- Cavendish Laboratory, University of Cambridge, JJ Thomson Av., Cambridge CB3 0HE, UK
| | - Clara Delahousse
- Cavendish Laboratory, University of Cambridge, JJ Thomson Av., Cambridge CB3 0HE, UK
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, JJ Thomson Av., Cambridge CB3 0HE, UK
| | - Laetitia Pinte
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Ludovic Vallier
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Marta Vila-Gonzalez
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, JJ Thomson Av., Cambridge CB3 0HE, UK
| |
Collapse
|
14
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
15
|
von Schledorn L, Puertollano Martín D, Cleve N, Zöllner J, Roth D, Staar BO, Hegermann J, Ringshausen FC, Nawroth J, Martin U, Olmer R. Primary Ciliary Dyskinesia Patient-Specific hiPSC-Derived Airway Epithelium in Air-Liquid Interface Culture Recapitulates Disease Specific Phenotypes In Vitro. Cells 2023; 12:1467. [PMID: 37296588 PMCID: PMC10252476 DOI: 10.3390/cells12111467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare heterogenic genetic disorder associated with perturbed biogenesis or function of motile cilia. Motile cilia dysfunction results in diminished mucociliary clearance (MCC) of pathogens in the respiratory tract and chronic airway inflammation and infections successively causing progressive lung damage. Current approaches to treat PCD are symptomatic, only, indicating an urgent need for curative therapeutic options. Here, we developed an in vitro model for PCD based on human induced pluripotent stem cell (hiPSC)-derived airway epithelium in Air-Liquid-Interface cultures. Applying transmission electron microscopy, immunofluorescence staining, ciliary beat frequency, and mucociliary transport measurements, we could demonstrate that ciliated respiratory epithelia cells derived from two PCD patient-specific hiPSC lines carrying mutations in DNAH5 and NME5, respectively, recapitulate the respective diseased phenotype on a molecular, structural and functional level.
Collapse
Affiliation(s)
- Laura von Schledorn
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - David Puertollano Martín
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Cleve
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Janina Zöllner
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Doris Roth
- Helmholtz Pioneer Campus and Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ben Ole Staar
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), 60590 Frankfurt, Germany
| | - Janna Nawroth
- Helmholtz Pioneer Campus and Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
16
|
Chen J, Na F. Organoid technology and applications in lung diseases: Models, mechanism research and therapy opportunities. Front Bioeng Biotechnol 2022; 10:1066869. [PMID: 36568297 PMCID: PMC9772457 DOI: 10.3389/fbioe.2022.1066869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The prevalency of lung disease has increased worldwide, especially in the aging population. It is essential to develop novel disease models, that are superior to traditional models. Organoids are three-dimensional (3D) in vitro structures that produce from self-organizing and differentiating stem cells, including pluripotent stem cells (PSCs) or adult stem cells (ASCs). They can recapitulate the in vivo cellular heterogeneity, genetic characteristics, structure, and functionality of original tissues. Drug responses of patient-derived organoids (PDOs) are consistent with that of patients, and show correlations with genetic alterations. Thus, organoids have proven to be valuable in studying the biology of disease, testing preclinical drugs and developing novel therapies. In recent years, organoids have been successfully applied in studies of a variety of lung diseases, such as lung cancer, influenza, cystic fibrosis, idiopathic pulmonary fibrosis, and the recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. In this review, we provide an update on the generation of organoid models for these diseases and their applications in basic and translational research, highlighting these signs of progress in pathogenesis study, drug screening, personalized medicine and immunotherapy. We also discuss the current limitations and future perspectives in organoid models of lung diseases.
Collapse
Affiliation(s)
| | - Feifei Na
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Tomati V, Costa S, Capurro V, Pesce E, Pastorino C, Lena M, Sondo E, Di Duca M, Cresta F, Cristadoro S, Zara F, Galietta LJ, Bocciardi R, Castellani C, Lucanto MC, Pedemonte N. Rescue by elexacaftor-tezacaftor-ivacaftor of the G1244E cystic fibrosis mutation's stability and gating defects are dependent on cell background. J Cyst Fibros 2022:S1569-1993(22)01425-4. [DOI: 10.1016/j.jcf.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
|
18
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|