1
|
Liu W, Luo Q, Zhu X, Liu M, Yao L, Wei F. A Multichannel Continuum Robot for In Situ Diagnosis and Treatment of Vascular Lesions. ACS Biomater Sci Eng 2025; 11:3071-3081. [PMID: 40300206 DOI: 10.1021/acsbiomaterials.5c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
In recent years, continuum soft robots have emerged as a promising avenue for the advancement of in vivo therapeutic interventions. However, the current continuum robots are often limited to singular functionalities and exhibit a deficiency in diagnostic capabilities for vascular lesions. For example, vasculitis often leads to temperature abnormalities in local blood vessels, and the existing continuum robots are unable to accurately detect the lesion area based on this characteristic. To address this issue, this paper presents the design of a multifunctional integrated thermally drawn polymer multichannel continuum robot. First, the magnetic deformation of the continuum robot was theoretically analyzed, and the robot's locomotion within a flow field was experimentally verified. Moreover, different channels of the multichannel continuum robot were independently designed for specific functions, enabling multithreaded operations. It can perform real-time sensing and monitoring of external environmental temperatures with high resolution and carry out targeted drug delivery as well as neural electrical stimulation. We successfully conducted in vitro experiments on isolated frog sciatic nerves, confirming the effectiveness of the multichannel continuum robot for biological treatment. The multichannel continuum robot shows great potential in the diagnosis and treatment of vasculitis in situ and nerve system disorder.
Collapse
Affiliation(s)
- Wei Liu
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Qinzhou Luo
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Xintao Zhu
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Ming Liu
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| |
Collapse
|
2
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
3
|
Zhang K, Liang W, Chen XB, Mang J. Smart materials strategy for vascular challenges targeting in-stent restenosis: a critical review. Regen Biomater 2025; 12:rbaf020. [PMID: 40290450 PMCID: PMC12034381 DOI: 10.1093/rb/rbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
In-stent restenosis (ISR) presents a major challenge in vascular disease management, often leading to complications and repeated interventions. This review article explores the potential of existing smart materials strategies in addressing ISR, emphasizing advancements in materials science and biomedical engineering. We focus on innovative solutions such as bioactive coatings and responsive polymers that offer targeted responses to ISR-related internal and external triggers. These smart materials can dynamically adapt to the physiological conditions within blood vessels, responding in real time to various stimuli such as pH, oxidative stress and temperature. Moreover, we discuss preclinical progress and translational challenges associated with these materials as they move toward clinical applications. The review highlights the importance of controlled drug release and the need for materials that can degrade appropriately to minimize adverse effects. This work aims to identify critical research gaps and provide guidance to encourage interdisciplinary efforts to advance the development of smart stent technologies. Ultimately, the goal is to improve patient outcomes in vascular interventions by leveraging the capabilities of intelligent biomaterials to enhance ISR management and ensure better long-term efficacy and safety in-stent applications.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Geriatrics and General Practice, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenzhao Liang
- Department of Geriatrics and General Practice, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
4
|
Hou Y, Zhong S, Zheng Z, Du J, Nie R, Shi Q, Huang Q, Wang H. Magnetic Shaftless Propeller Millirobot with Multimodal Motion for Small-Scale Fluidic Manipulation. CYBORG AND BIONIC SYSTEMS 2025; 6:0235. [PMID: 40078330 PMCID: PMC11903028 DOI: 10.34133/cbsystems.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Magnetic miniature robots have shown great potential in biomedical applications in recent years. However, a challenge remains in which it is difficult for magnetic miniature robots to achieve balanced capabilities for multimodal locomotion and fluidic manipulation in various environments. Here, we report a magnetic shaftless propeller-like millirobot (MSPM) that possesses the capabilities of rotating-based multimodal 3-dimensional motion and cargo transportation with untethered manipulation. The MSPM utilizes the propulsion and pumping capabilities of the propeller structure to achieve fluidic manipulation. The shaftless propeller structures are designed to achieve omnidirectional locomotion through rolling, propelling, and tumbling. Additionally, the shaftless 3-blade propeller is used to perform a pumping function to achieve controllable transportation of fluids and particles. We anticipate that the MSPM holds great potential as a minimally invasive device for thrombosis treatment and targeted medicine delivery.
Collapse
Affiliation(s)
- Yaozhen Hou
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
- School of Medical Engineering,
Beijing Institute of Technology, Zhuhai 519088, China
| | - Shihao Zhong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Zhiqiang Zheng
- Department of Biomedical Engineering,
City University of Hong Kong, Hong Kong 999077, China
| | - Jiabao Du
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Ruhao Nie
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
- School of Medical Engineering,
Beijing Institute of Technology, Zhuhai 519088, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
5
|
Zhang L, Wang S, Hou Y. Magnetic Micro/nanorobots in Cancer Theranostics: From Designed Fabrication to Diverse Applications. ACS NANO 2025; 19:7444-7481. [PMID: 39970007 DOI: 10.1021/acsnano.4c10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cancer poses a substantial threat and a serious challenge to public human health, driving the promotion of sophisticated technologies for cancer therapy. While conventional chemotherapy has bottlenecks such as low delivery efficiency, strong toxic side effects, and tumor enrichment barriers, magnetic micro/nanorobots (MNRs) emerge as promising therapeutic candidates that provide alternative strategies for cancer therapy. MNR is a kind of human-made machine that is micro- or nanosized, is reasonably designed, and performs command tasks through self-actuated or externally controlled propulsion mechanisms, which can be potentially applied in cancer theranostics. Here, this review first introduces the components that constitute a typical magnetic MNR, including the body part, the driving part, the control part, the function part, and the sensing part. Subsequently, this review elucidates representative fabrication methods to construct magnetic MNRs from top-down approaches to bottom-up approaches, covering injection molding, self-rolling, melt electrospinning writing, deposition, biotemplate method, lithography, assembling, 3D printing, and chemical synthesis. Furthermore, this review focuses on multiple applications of magnetic MNRs facing cancer diagnosis and treatment, encompassing imaging, quantification, drug release, synergy with typical therapies, cell manipulation, and surgical assistance. Then, this review systematically elaborates on the biocompatibility and biosafety of magnetic MNRs. Finally, the challenges faced by magnetic MNRs are discussed alongside future research directions. This review is intended to provide scientific guidance that may improve the comprehension and cognition of cancer theranostics through the platform of magnetic MNRs, promoting and prospering the practical application development of magnetic MNRs.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuren Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Wu J, Zou W, Lu Q, Zheng T, Li Y, Ying T, Li Y, Zheng Y, Wang L. Cilia-Mimic Locomotion of Magnetic Colloidal Collectives Enhanced by Low-Intensity Ultrasound for Thrombolytic Drug Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410351. [PMID: 39731361 PMCID: PMC11831500 DOI: 10.1002/advs.202410351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/28/2024] [Indexed: 12/29/2024]
Abstract
Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis. Inspired by ciliary movement for cargo transportation in human body, in this study, cilia-mimic locomotion of magnetic colloidal collectives is realized under torque-force vortex magnetic field (TFV-MF) by a designed rotating permanent magnet assembly. This cilia-mimic locomotion mode can generate more disturbances to the fluids to improve thrombolytic drug transportation and the increased height and area of colloidal collectives boosted the imaging capability. In addition, low-intensity ultrasound is applied to enhance colloids infiltration by producing the fiber breakage and inducing erythrocyte deformation. In vitro thrombolytic experiments demonstrate that the thrombolysis efficiency increased by 16.2 times compared with that of pure tissue plasminogen activator (tPA) treatments. Furthermore, in vivo rat models of femoral vein thrombosis confirmed that this approach can achieve blood flow recanalization more quickly. The proposed cilia-mimic locomotion of magnetic colloidal collectives combined with low-intensity ultrasound irradiation mode provides a new insight of therapeutic interventions for vascular thrombus by enhancing drug penetration.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
- Shanghai Key Laboratory of Neuro‐Ultrasound for Diagnosis and TreatmentShanghai200233P. R. China
| | - Weijuan Zou
- Department of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
- Shanghai Key Laboratory of Neuro‐Ultrasound for Diagnosis and TreatmentShanghai200233P. R. China
| | - Qijie Lu
- Department of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
- Shanghai Key Laboratory of Neuro‐Ultrasound for Diagnosis and TreatmentShanghai200233P. R. China
| | - Tingjia Zheng
- Department of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
- Shanghai Key Laboratory of Neuro‐Ultrasound for Diagnosis and TreatmentShanghai200233P. R. China
| | - Yanping Li
- Department of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
- Shanghai Key Laboratory of Neuro‐Ultrasound for Diagnosis and TreatmentShanghai200233P. R. China
| | - Tao Ying
- Department of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
- Shanghai Key Laboratory of Neuro‐Ultrasound for Diagnosis and TreatmentShanghai200233P. R. China
| | - Yuehua Li
- Department of RadiologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
- Shanghai Key Laboratory of Neuro‐Ultrasound for Diagnosis and TreatmentShanghai200233P. R. China
| | - Longchen Wang
- Department of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600, Yishan RoadShanghai200233P. R. China
- Shanghai Key Laboratory of Neuro‐Ultrasound for Diagnosis and TreatmentShanghai200233P. R. China
| |
Collapse
|
7
|
Kim DW, Wrede P, Estrada H, Yildiz E, Lazovic J, Bhargava A, Razansky D, Sitti M. Hierarchical Nanostructures as Acoustically Manipulatable Multifunctional Agents in Dynamic Fluid Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404514. [PMID: 39400967 PMCID: PMC11636169 DOI: 10.1002/adma.202404514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Acoustic waves provide a biocompatible and deep-tissue-penetrating tool suitable for contactless manipulation in in vivo environments. Despite the prevalence of dynamic fluids within the body, previous studies have primarily focused on static fluids, and manipulatable agents in dynamic fluids are limited to gaseous core-shell particles. However, these gas-filled particles face challenges in fast-flow manipulation, complex setups, design versatility, and practical medical imaging, underscoring the need for effective alternatives. In this study, flower-like hierarchical nanostructures (HNS) into microparticles (MPs) are incorporated, and demonstrated that various materials fabricated as HNS-MPs exhibit effective and reproducible acoustic trapping within high-velocity fluid flows. Through simulations, it is validated that the HNS-MPs are drawn to the focal point by acoustic streaming and form a trap through secondary acoustic streaming at the tips of the nanosheets comprising the HNS-MPs. Furthermore, the wide range of materials and modification options for HNS, combined with their high surface area and biocompatibility, enable them to serve as acoustically manipulatable multimodal imaging contrast agents and microrobots. They can perform intravascular multi-trap maneuvering with real-time imaging, purification of wastewater flow, and highly-loaded drug delivery. Given the diverse HNS materials developed to date, this study extends their applications to acoustofluidic and biomedical fields.
Collapse
Affiliation(s)
- Dong Wook Kim
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Paul Wrede
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Hector Estrada
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Erdost Yildiz
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Jelena Lazovic
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Aarushi Bhargava
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
8
|
Feng C, Zhiqiang X, Kewen C, Xiaodong W, Shengqiang J. 3D Printed Magnetic Bionic Robot Inspired by Octopus for Drug Transportation. Soft Robot 2024; 11:1068-1077. [PMID: 39666699 DOI: 10.1089/soro.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The octopus has attracted widespread attention owing to its unique underwater movement and its ability to escape with inkjets, which also promoted the development of underwater bionic robots. This study introduces a magnetic octopus robot (MOR) 3D printed with PA6/NdFeB composite material, which has good magnetic responsiveness and rigidity to cope with complex environments. The MOR can roll and rotate through complex terrain and passages because of its eight-claw structure. It also has amphibious locomotion and can pass through narrow gaps of 37.5% of its height by deformation. In addition, the MOR can not only clamp, transport, and release solids but also liquids by adding silicone hollow spheres, which indicates the potential of the MOR to be used in medical applications for transporting solid or liquid drugs. This research will help broaden the application prospects of magnetron robots in the field of medical drug transportation.
Collapse
Affiliation(s)
- Chen Feng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Xu Zhiqiang
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Chen Kewen
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Wang Xiaodong
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Jiang Shengqiang
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
9
|
Alabay HH, Le TA, Ceylan H. X-ray fluoroscopy guided localization and steering of miniature robots using virtual reality enhancement. Front Robot AI 2024; 11:1495445. [PMID: 39605865 PMCID: PMC11599259 DOI: 10.3389/frobt.2024.1495445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
In developing medical interventions using untethered milli- and microrobots, ensuring safety and effectiveness relies on robust methods for real-time robot detection, tracking, and precise localization within the body. The inherent non-transparency of human tissues significantly challenges these efforts, as traditional imaging systems like fluoroscopy often lack crucial anatomical details, potentially compromising intervention safety and efficacy. To address this technological gap, in this study, we build a virtual reality environment housing an exact digital replica (digital twin) of the operational workspace and a robot avatar. We synchronize the virtual and real workspaces and continuously send the robot position data derived from the image stream into the digital twin with short average delay time around 20-25 ms. This allows the operator to steer the robot by tracking its avatar within the digital twin with near real-time temporal resolution. We demonstrate the feasibility of this approach with millirobots steered in confined phantoms. Our concept demonstration herein can pave the way for not only improved procedural safety by complementing fluoroscopic guidance with virtual reality enhancement, but also provides a platform for incorporating various additional real-time derivative data, e.g., instantaneous robot velocity, intraoperative physiological data obtained from the patient, e.g., blood flow rate, and pre-operative physical simulation models, e.g., periodic body motions, to further refine robot control capacity.
Collapse
Affiliation(s)
- Husnu Halid Alabay
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Scottsdale, AZ, United States
| | - Tuan-Anh Le
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Scottsdale, AZ, United States
| | - Hakan Ceylan
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Scottsdale, AZ, United States
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Wang C, Wang T, Li M, Zhang R, Ugurlu H, Sitti M. Heterogeneous multiple soft millirobots in three-dimensional lumens. SCIENCE ADVANCES 2024; 10:eadq1951. [PMID: 39504364 PMCID: PMC11540014 DOI: 10.1126/sciadv.adq1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Miniature soft robots offer opportunities for safe and physically adaptive medical interventions in hard-to-reach regions. Deploying multiple robots could further enhance the efficacy and multifunctionality of these operations. However, multirobot deployment in physiologically relevant three-dimensional (3D) tubular structures is limited by the lack of effective mechanisms for independent control of miniature magnetic soft robots. This work presents a framework leveraging the shape-adaptive robotic design and heterogeneous resistance from robot-lumen interactions to enable magnetic multirobot control. We first compute influence and actuation regions to quantify robot movement. Subsequently, a path planning algorithm generates the trajectory of a permanent magnet for multirobot navigation in 3D lumens. Last, robots are controlled individually in multilayer lumen networks under medical imaging. Demonstrations of multilocation cargo delivery and flow diversion manifest their potential to enhance biomedical functions. This framework offers a solution to multirobot actuation benefiting applications across different miniature robotic devices in complex environments.
Collapse
Affiliation(s)
- Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Halim Ugurlu
- Zentrum für Radiologie Heilbronn, 74177 Heilbronn, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
11
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Yuan S, Xu C, Cui B, Zhang T, Liang B, Yuan W, Ren H. Motor-free telerobotic endomicroscopy for steerable and programmable imaging in complex curved and localized areas. Nat Commun 2024; 15:7680. [PMID: 39227604 PMCID: PMC11372151 DOI: 10.1038/s41467-024-51633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Intraluminal epithelial abnormalities, potential precursors to significant conditions like cancer, necessitate early detection for improved prognosis. We present a motor-free telerobotic optical coherence tomography (OCT) endoscope that offers high-resolution intraluminal imaging and overcomes the limitations of traditional systems in navigating curved lumens. This system incorporates a compact magnetic rotor with a rotatable diametrically magnetized cylinder permanent magnet (RDPM) and a reflector, effectively mitigating thermal and electrical risks by utilizing an external magnetic field to maintain temperature increases below 0.5 °C and generated voltage under 0.02 mV. Additionally, a learning-based method corrects imaging distortions resulting from nonuniform rotational speeds. Demonstrating superior maneuverability, the device achieves steerable angles up to 110° and operates effectively in vivo, providing distortion-free 3D programmable imaging in mouse colons. This advancement represents a significant step towards guidewire-independent endomicroscopy, enhancing both safety and potential patient outcomes.
Collapse
Affiliation(s)
- Sishen Yuan
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chao Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Beilei Cui
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tinghua Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baijia Liang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Wang C, Zhao Z, Han J, Sharma AA, Wang H, Zhang XS. Wireless Magnetic Robot for Precise Hierarchical Control of Tissue Deformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308619. [PMID: 39041885 PMCID: PMC11425225 DOI: 10.1002/advs.202308619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Mechanotherapy has emerged as a promising treatment for tissue injury. However, existing robots for mechanotherapy are often designed on intuition, lack remote and wireless control, and have limited motion modes. Herein, through topology optimization and hybrid fabrication, wireless magneto-active soft robots are created that can achieve various modes of programmatic deformations under remote magnetic actuation and apply mechanical forces to tissues in a precise and predictable manner. These soft robots can quickly and wirelessly deform under magnetic actuation and are able to deliver compressing, stretching, shearing, and multimodal forces to the surrounding tissues. The design framework considers the hierarchical tissue-robot interaction and, therefore, can design customized soft robots for different types of tissues with varied mechanical properties. It is shown that these customized robots with different programmable motions can induce precise deformations of porcine muscle, liver, and heart tissues with excellent durability. The soft robots, the underlying design principles, and the fabrication approach provide a new avenue for developing next-generation mechanotherapy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Zhi Zhao
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Joonsu Han
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Arvin Ardebili Sharma
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Hua Wang
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Xiaojia Shelly Zhang
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- National Center for Supercomputing ApplicationsUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
14
|
Lou H, Wang Y, Sheng Y, Zhu H, Zhu S, Yu J, Zhang Q. Water-Induced Shape-Locking Magnetic Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405021. [PMID: 39073727 PMCID: PMC11423202 DOI: 10.1002/advs.202405021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Untethered magnetic soft robots capable of performing adaptive locomotion and shape reconfiguration open up possibilities for various applications owing to their flexibility. However, magnetic soft robots are typically composed of soft materials with fixed modulus, making them unable to exert or withstand substantial forces, which limits the exploration of their new functionalities. Here, water-induced, shape-locking magnetic robots with magnetically controlled shape change and water-induced shape-locking are introduced. The water-induced phase separation enables these robots to undergo a modulus transition from 1.78 MPa in the dry state to 410 MPa after hydration. Moreover, the body material's inherent self-healing property enables the direct assembly of morphing structures and magnetic soft robots with complicated structures and magnetization profiles. These robots can be delivered through magnetic actuation and perform programmed tasks including supporting, blocking, and grasping by on-demand deformation and subsequent water-induced stiffening. Moreover, a water-stiffening magnetic stent is developed, and its precise delivery and water-induced shape-locking are demonstrated in a vascular phantom. The combination of untethered delivery, on-demand shape change, and water-induced stiffening properties makes the proposed magnetic robots promising for biomedical applications.
Collapse
Affiliation(s)
- He Lou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yifeng Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
15
|
Yan W, Jones T, Jawetz CL, Lee RH, Hopkins JB, Mehta A. Self-deployable contracting-cord metamaterials with tunable mechanical properties. MATERIALS HORIZONS 2024; 11:3805-3818. [PMID: 39005193 DOI: 10.1039/d4mh00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Recent advances in active materials and fabrication techniques have enabled the production of cyclically self-deployable metamaterials with an expanded functionality space. However, designing metamaterials that possess continuously tunable mechanical properties after self-deployment remains a challenge, notwithstanding its importance. Inspired by push puppets, we introduce an efficient design strategy to create reversibly self-deployable metamaterials with continuously tunable post-deployment stiffness and damping. Our metamaterial comprises contracting actuators threaded through beads with matching conical concavo-convex interfaces in networked chains. The slack network conforms to arbitrary shapes, but when actuated, it self-assembles into a preprogrammed configuration with beads gathered together. Further contraction of the actuators can dynamically tune the assembly's mechanical properties through the beads' particle jamming, while maintaining the overall structure with minimal change. We show that, after deployment, such metamaterials exhibit pronounced tunability in bending-dominated configurations: they can become more than 35 times stiffer and change their damping capability by over 50%. Through systematic analysis, we find that the beads' conical angle can introduce geometric nonlinearity, which has a major effect on the self-deployability and tunability of the metamaterial. Our work provides routes towards reversibly self-deployable, lightweight, and tunable metamaterials, with potential applications in soft robotics, reconfigurable architectures, and space engineering.
Collapse
Affiliation(s)
- Wenzhong Yan
- Electrical and Computer Engineering Department, UCLA, USA.
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | - Talmage Jones
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | - Christopher L Jawetz
- Mechanical and Aerospace Engineering Department, UCLA, USA
- Woodruff School of Mechanical Engineering, Georgia Tech, USA
| | - Ryan H Lee
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | | | - Ankur Mehta
- Electrical and Computer Engineering Department, UCLA, USA.
| |
Collapse
|
16
|
Sun M, Wu Y, Zhang J, Zhang H, Liu Z, Li M, Wang C, Sitti M. Versatile, modular, and customizable magnetic solid-droplet systems. Proc Natl Acad Sci U S A 2024; 121:e2405095121. [PMID: 39088393 PMCID: PMC11317579 DOI: 10.1073/pnas.2405095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/21/2024] [Indexed: 08/03/2024] Open
Abstract
Magnetic miniature robotic systems have attracted broad research interest because of their precise maneuverability in confined spaces and adaptability to diverse environments, holding significant promise for applications in both industrial infrastructures and biomedical fields. However, the predominant construction methodology involves the preprogramming of magnetic components into the system's structure. While this approach allows for intricate shape transformations, it exhibits limited flexibility in terms of reconfiguration and presents challenges when adapting to diverse materials, combining, and decoupling multiple functionalities. Here, we propose a construction strategy that facilitates the on-demand assembly of magnetic components, integrating ferrofluid droplets with the system's structural body. This approach enables the creation of complex solid-droplet robotic systems across a spectrum of length scales, ranging from 0.8 mm to 1.5 cm. It offers a diverse selection of materials and structural configurations, akin to assembling components like building blocks, thus allowing for the seamless integration of various functionalities. Moreover, it incorporates decoupling mechanisms to enable selective control over multiple functions, leveraging the fluidity, fission/fusion, and magneto-responsiveness properties inherent in the ferrofluid. Various solid-droplet systems have validated the feasibility of this strategy. This study advances the complexity and functionality achievable in small-scale magnetic robots, augmenting their potential for future biomedical and other applications.
Collapse
Affiliation(s)
- Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Yingdan Wu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin150001, China
| | - Jianhua Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Hongchuan Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| |
Collapse
|
17
|
Demir SO, Tiryaki ME, Karacakol AC, Sitti M. Learning Soft Millirobot Multimodal Locomotion with Sim-to-Real Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308881. [PMID: 38889239 PMCID: PMC11321659 DOI: 10.1002/advs.202308881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/18/2024] [Indexed: 06/20/2024]
Abstract
With wireless multimodal locomotion capabilities, magnetic soft millirobots have emerged as potential minimally invasive medical robotic platforms. Due to their diverse shape programming capability, they can generate various locomotion modes, and their locomotion can be adapted to different environments by controlling the external magnetic field signal. Existing adaptation methods, however, are based on hand-tuned signals. Here, a learning-based adaptive magnetic soft millirobot multimodal locomotion framework empowered by sim-to-real transfer is presented. Developing a data-driven magnetic soft millirobot simulation environment, the periodic magnetic actuation signal is learned for a given soft millirobot in simulation. Then, the learned locomotion strategy is deployed to the real world using Bayesian optimization and Gaussian processes. Finally, automated domain recognition and locomotion adaptation for unknown environments using a Kullback-Leibler divergence-based probabilistic method are illustrated. This method can enable soft millirobot locomotion to quickly and continuously adapt to environmental changes and explore the actuation space for unanticipated solutions with minimum experimental cost.
Collapse
Affiliation(s)
- Sinan Ozgun Demir
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Stuttgart Center for Simulation Science (SC SimTech)University of Stuttgart70569StuttgartGermany
| | - Mehmet Efe Tiryaki
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Alp Can Karacakol
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
18
|
Zhao X, Yao H, Lv Y, Chen Z, Dong L, Huang J, Mi S. Reprogrammable Magnetic Soft Actuators with Microfluidic Functional Modules via Pixel-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310009. [PMID: 38295155 DOI: 10.1002/smll.202310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/31/2023] [Indexed: 02/02/2024]
Abstract
Magnetic soft actuators and robots have attracted considerable attention in biomedical applications due to their speedy response, programmability, and biocompatibility. Despite recent advancements, the fabrication process of magnetic actuators and the reprogramming approach of their magnetization profiles continue to pose challenges. Here, a facile fabrication strategy is reported based on arrangements and distributions of reusable magnetic pixels on silicone substrates, allowing for various magnetic actuators with customizable architectures, arbitrary magnetization profiles, and integration of microfluidic technology. This approach enables intricate configurations with decent deformability and programmability, as well as biomimetic movements involving grasping, swimming, and wriggling in response to magnetic actuation. Moreover, microfluidic functional modules are integrated for various purposes, such as on/off valve control, curvature adjustment, fluid mixing, dynamic microfluidic architecture, and liquid delivery robot. The proposed method fulfills the requirements of low-cost, rapid, and simplified preparation of magnetic actuators, since it eliminates the need to sustain pre-defined deformations during the magnetization process or to employ laser heating or other stimulation for reprogramming the magnetization profile. Consequently, it is envisioned that magnetic actuators fabricated via pixel-assembly will have broad prospects in microfluidics and biomedical applications.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Hongyi Yao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Yaoyi Lv
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Zhixian Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Lina Dong
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
19
|
Zhang J, Fang J, Xu Y, Si G. How AI and Robotics Will Advance Interventional Radiology: Narrative Review and Future Perspectives. Diagnostics (Basel) 2024; 14:1393. [PMID: 39001283 PMCID: PMC11241154 DOI: 10.3390/diagnostics14131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The rapid advancement of artificial intelligence (AI) and robotics has led to significant progress in various medical fields including interventional radiology (IR). This review focuses on the research progress and applications of AI and robotics in IR, including deep learning (DL), machine learning (ML), and convolutional neural networks (CNNs) across specialties such as oncology, neurology, and cardiology, aiming to explore potential directions in future interventional treatments. To ensure the breadth and depth of this review, we implemented a systematic literature search strategy, selecting research published within the last five years. We conducted searches in databases such as PubMed and Google Scholar to find relevant literature. Special emphasis was placed on selecting large-scale studies to ensure the comprehensiveness and reliability of the results. This review summarizes the latest research directions and developments, ultimately analyzing their corresponding potential and limitations. It furnishes essential information and insights for researchers, clinicians, and policymakers, potentially propelling advancements and innovations within the domains of AI and IR. Finally, our findings indicate that although AI and robotics technologies are not yet widely applied in clinical settings, they are evolving across multiple aspects and are expected to significantly improve the processes and efficacy of interventional treatments.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Radiology, Clinical Medical College, Southwest Medical University, Luzhou 646699, China; (J.Z.); (J.F.)
| | - Jiayi Fang
- Department of Radiology, Clinical Medical College, Southwest Medical University, Luzhou 646699, China; (J.Z.); (J.F.)
| | - Yanneng Xu
- Department of Radiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646699, China;
| | - Guangyan Si
- Department of Radiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646699, China;
| |
Collapse
|
20
|
Wang X, Liu W, Luo Q, Yao L, Wei F. Thermally Drawn-Based Microtubule Soft Continuum Robot for Cardiovascular Intervention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29783-29792. [PMID: 38811019 DOI: 10.1021/acsami.4c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cardiovascular disease is becoming the leading cause of human mortality. In order to address this, flexible continuum robots have emerged as a promising solution for miniaturizing and automating vascular interventional equipment for diagnosing and treating cardiovascular diseases. However, existing continuum robots used for vascular intervention face challenges such as large cross-sectional sizes, inadequate driving force, and lack of navigation control, preventing them from accessing cerebral blood vessels or capillaries for medical procedures. Additionally, the complex manufacturing process and high cost of soft continuum robots hinder their widespread clinical application. In this study, we propose a thermally drawn-based microtubule soft continuum robot that overcomes these limitations. The proposed robot has cross-sectional dimensions several orders of magnitude smaller than the smallest commercially available conduits, and it can be manufactured without any length restrictions. By utilizing a driving strategy based on liquid kinetic energy advancement and external magnetic field for steering, the robot can easily navigate within blood vessels and accurately reach the site of the lesion. This innovation holds the potential to achieve controlled navigation of the robot throughout the entire blood vessel, enabling in situ diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xufeng Wang
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Wei Liu
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Qinzhou Luo
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| |
Collapse
|
21
|
Zhao M, Tao Y, Guo W, Ge Z, Hu H, Yan Y, Zou C, Wang G, Ren Y. Multifunctional flexible magnetic drive gripper for target manipulation in complex constrained environments. LAB ON A CHIP 2024; 24:2122-2134. [PMID: 38456199 DOI: 10.1039/d3lc00945a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Soft actuators capable of remote-controlled guidance and manipulation within complex constrained spaces hold great promise in various fields, especially in medical fields such as minimally invasive surgery. However, most current magnetic drive soft actuators only have the functions of position control and guidance, and it is still challenging to achieve more flexible operations on different targets within constrained spaces. Herein, we propose a multifunctional flexible magnetic drive gripper that can be steered within complex constrained spaces and operate on targets of various shapes. On the one hand, changing the internal pressure of the magnetic gripper can achieve functions such as suction or injection of liquid and transportation of targets with smooth surfaces. On the other hand, with the help of slit structures in the constrained environment, by simply changing the position and orientation of the permanent magnet in the external environment, the magnetic gripper can be controlled to clamp and release targets of linear, flaked, and polyhedral shapes. The full flexibility and multifunctionality of the magnetic gripper suggest new possibilities for precise remote control and object transportation in constrained spaces, so it could serve as a direct contact operation tool for hazardous drugs in enclosed spaces or a surgical tool in human body cavities.
Collapse
Affiliation(s)
- Meiying Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hanqing Hu
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Ying Yan
- Department of Oncology, The First Hospital of Harbin, Harbin 150010, China
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Guiyu Wang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
22
|
Peng Q, Wang S, Han J, Huang C, Yu H, Li D, Qiu M, Cheng S, Wu C, Cai M, Fu S, Chen B, Wu X, Du S, Xu T. Thermal and Magnetic Dual-Responsive Catheter-Assisted Shape Memory Microrobots for Multistage Vascular Embolization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0339. [PMID: 38550780 PMCID: PMC10976590 DOI: 10.34133/research.0339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 08/20/2024]
Abstract
Catheters navigating through complex vessels, such as sharp turns or multiple U-turns, remain challenging for vascular embolization. Here, we propose a novel multistage vascular embolization strategy for hard-to-reach vessels that releases untethered swimming shape-memory magnetic microrobots (SMMs) from the prior catheter to the vessel bifurcation. SMMs, made of organo-gel with magnetic particles, ensure biocompatibility, radiopacity, thrombosis, and fast thermal and magnetic responses. An SMM is initially a linear shape with a 0.5-mm diameter at 20 °C inserted in a catheter. It transforms into a predetermined helix within 2 s at 38 °C blood temperature after being pushed out of the catheter into the blood. SMMs enable agile swimming in confined and tortuous vessels and can swim upstream using helical propulsion with rotating magnetic fields. Moreover, we validated this multistage vascular embolization in living rabbits, completing 100-cm travel and renal artery embolization in 2 min. After 4 weeks, the SMMs maintained the embolic position, and the kidney volume decreased by 36%.
Collapse
Affiliation(s)
- Qianbi Peng
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu Wang
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Jianguo Han
- Department of Neurosurgery, South China Hospital, Medical School,
Shenzhen University, Shenzhen, China
| | - Chenyang Huang
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hengyuan Yu
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Dong Li
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital, Medical School,
Shenzhen University, Shenzhen, China
| | - Si Cheng
- Department of Neurosurgery, South China Hospital, Medical School,
Shenzhen University, Shenzhen, China
| | - Chong Wu
- Department of Neurosurgery, South China Hospital, Medical School,
Shenzhen University, Shenzhen, China
| | - Mingxue Cai
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Shixiong Fu
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binghan Chen
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Wu
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital, Medical School,
Shenzhen University, Shenzhen, China
| | - Tiantian Xu
- Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
23
|
Yarali E, Klimopoulou M, David K, Boukany PE, Staufer U, Fratila-Apachitei LE, Zadpoor AA, Accardo A, Mirzaali MJ. Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratio: Auxetic vs. non-auxetic meta-biomaterials. Acta Biomater 2024; 177:228-242. [PMID: 38325707 DOI: 10.1016/j.actbio.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The Poisson's ratio and elastic modulus are two parameters determining the elastic behavior of biomaterials. While the effects of elastic modulus on the cell response is widely studied, very little is known regarding the effects of the Poisson's ratio. The micro-architecture of meta-biomaterials determines not only the Poisson's ratio but also several other parameters that also influence cell response, such as porosity, pore size, and effective elastic modulus. It is, therefore, very challenging to isolate the effects of the Poisson's ratio from those of other micro-architectural parameters. Here, we computationally design meta-biomaterials with controlled Poisson's ratios, ranging between -0.74 and +0.74, while maintaining consistent porosity, pore size, and effective elastic modulus. The 3D meta-biomaterials were additively manufactured at the micro-scale using two-photon polymerization (2PP), and were mechanically evaluated at the meso‑scale. The response of murine preosteoblasts to these meta-biomaterials was then studied using in vitro cell culture models. Meta-biomaterials with positive Poisson's ratios resulted in higher metabolic activity than those with negative values. The cells could attach and infiltrate all meta-biomaterials from the bottom to the top, fully covering the scaffolds after 17 days of culture. Interestingly, the meta-biomaterials exhibited different cell-induced deformations (e.g., shrinkage or local bending) as observed via scanning electron microscopy. The outcomes of osteogenic differentiation (i.e., Runx2 immunofluorescent staining) and matrix mineralization (i.e., Alizarin red staining) assays indicated the significant potential impact of these meta-biomaterials in the field of bone tissue engineering, paving the way for the development of advanced bone meta-implants. STATEMENT OF SIGNIFICANCE: We studied the influence of Poisson's ratio on bone cell response in meta-biomaterials. While elastic modulus effects are well-studied, the impact of Poisson's ratio, especially negative values found in architected biomaterials, remains largely unexplored. The complexity arises from intertwined micro-architectural parameters, such as porosity and elastic modulus, making it challenging to isolate the Poisson's ratio. To overcome this limitation, this study employed rational computational design to create meta-biomaterials with controlled Poisson's ratios, alongside consistent effective elastic modulus, porosity, and pore size. The study reveals that two-photon polymerized 3D meta-biomaterials with positive Poisson's ratios displayed higher metabolic activity, while all the developed meta-biomaterials supported osteogenic differentiation of preosteoblasts as well as matrix mineralization. The outcomes pave the way for the development of advanced 3D bone tissue models and meta-implants.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands; Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Maria Klimopoulou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Kristen David
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Urs Staufer
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
24
|
Luan H, Wang M, Zhang Q, You Z, Jiao Z. Variable Stiffness Fibers Enabled Universal and Programmable Re-Foldability Strategy for Modular Soft Robotics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307350. [PMID: 38155496 PMCID: PMC10933646 DOI: 10.1002/advs.202307350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Indexed: 12/30/2023]
Abstract
Origami is a rich source of inspiration for creating soft actuators with complex deformations. However, implementing the re-foldability of origami on soft actuators remains a significant challenge. Herein, a universal and programmable re-foldability strategy is reported to integrate multiple origami patterns into a single soft origami actuator, thereby enabling multimode morphing capability. This strategy can selectively activate and deactivate origami creases through variable stiffness fibers. The utilization of these fibers enables the programmability of crease pattern quantity and types within a single actuator, which expands the morphing modes and deformation ranges without increasing their physical size and chamber number. The universality of this approach is demonstrated by developing a series of re-foldable soft origami actuators. Moreover, these soft origami actuators are utilized to construct a bidirectional crawling robot and a multimode soft gripper capable of adapting to object size, grasping orientation, and placing orientation. This work represents a significant step forward in the design of multifunctional soft actuators and holds great potential for the advancement of agile and versatile soft robots.
Collapse
Affiliation(s)
- Hengxuan Luan
- College of Mechanical and Electronic EngineeringShandong University of Science and TechnologyQingdao266590China
| | - Meng Wang
- Shandong University of Science and TechnologyTaian271019China
| | - Qiang Zhang
- College of Mechanical and Electronic EngineeringShandong University of Science and TechnologyQingdao266590China
| | - Zhong You
- College of Mechanical and Electronic EngineeringShandong University of Science and TechnologyQingdao266590China
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Zhongdong Jiao
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| |
Collapse
|
25
|
Liu X, Wang L, Xiang Y, Liao F, Li N, Li J, Wang J, Wu Q, Zhou C, Yang Y, Kou Y, Yang Y, Tang H, Zhou N, Wan C, Yin Z, Yang GZ, Tao G, Zang J. Magnetic soft microfiberbots for robotic embolization. Sci Robot 2024; 9:eadh2479. [PMID: 38381840 DOI: 10.1126/scirobotics.adh2479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Cerebral aneurysms and brain tumors are leading life-threatening diseases worldwide. By deliberately occluding the target lesion to reduce the blood supply, embolization has been widely used clinically to treat cerebral aneurysms and brain tumors. Conventional embolization is usually performed by threading a catheter through blood vessels to the target lesion, which is often limited by the poor steerability of the catheter in complex neurovascular networks, especially in submillimeter regions. Here, we propose magnetic soft microfiberbots with high steerability, reliable maneuverability, and multimodal shape reconfigurability to perform robotic embolization in submillimeter regions via a remote, untethered, and magnetically controllable manner. Magnetic soft microfiberbots were fabricated by thermal drawing magnetic soft composite into microfibers, followed by magnetizing and molding procedures to endow a helical magnetic polarity. By controlling magnetic fields, magnetic soft microfiberbots exhibit reversible elongated/aggregated shape morphing and helical propulsion in flow conditions, allowing for controllable navigation through complex vasculature and robotic embolization in submillimeter regions. We performed in vitro embolization of aneurysm and tumor in neurovascular phantoms and in vivo embolization of a rabbit femoral artery model under real-time fluoroscopy. These studies demonstrate the potential clinical value of our work, paving the way for a robotic embolization scheme in robotic settings.
Collapse
Affiliation(s)
- Xurui Liu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing 100190, China
| | - Yuanzhuo Xiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fan Liao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Na Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiyu Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qingyang Wu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Zhou
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youzhou Yang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanshi Kou
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueying Yang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanchuan Tang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhouping Yin
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfeng Zang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Wang Q, Wang Q, Ning Z, Chan KF, Jiang J, Wang Y, Su L, Jiang S, Wang B, Ip BYM, Ko H, Leung TWH, Chiu PWY, Yu SCH, Zhang L. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci Robot 2024; 9:eadh1978. [PMID: 38381838 DOI: 10.1126/scirobotics.adh1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Micro/nanorobotic swarms consisting of numerous tiny building blocks show great potential in biomedical applications because of their collective active delivery ability, enhanced imaging contrast, and environment-adaptive capability. However, in vivo real-time imaging and tracking of micro/nanorobotic swarms remain a challenge, considering the limited imaging size and spatial-temporal resolution of current imaging modalities. Here, we propose a strategy that enables real-time tracking and navigation of a microswarm in stagnant and flowing blood environments by using laser speckle contrast imaging (LSCI), featuring full-field imaging, high temporal-spatial resolution, and noninvasiveness. The change in dynamic convection induced by the microswarm can be quantitatively investigated by analyzing the perfusion unit (PU) distribution, offering an alternative approach to investigate the swarm behavior and its interaction with various blood environments. Both the microswarm and surrounding environment were monitored and imaged by LSCI in real time, and the images were further analyzed for simultaneous swarm tracking and navigation in the complex vascular system. Moreover, our strategy realized real-time tracking and delivery of a microswarm in vivo, showing promising potential for LSCI-guided active delivery of microswarm in the vascular system.
Collapse
Affiliation(s)
- Qinglong Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Zhipeng Ning
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
| | - Jialin Jiang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Yuqiong Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Lin Su
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Shuai Jiang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Bonaventure Yiu Ming Ip
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Thomas Wai Hong Leung
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
- Department of Surgery, CUHK, Shatin, N.T., Hong Kong, China
| | - Simon Chun Ho Yu
- Department of Imaging and Interventional Radiology, CUHK, Shatin, N.T., Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
- Department of Surgery, CUHK, Shatin, N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, CUHK, Shatin, N.T., Hong Kong, China
| |
Collapse
|
27
|
Dreyfus R, Boehler Q, Lyttle S, Gruber P, Lussi J, Chautems C, Gervasoni S, Berberat J, Seibold D, Ochsenbein-Kölble N, Reinehr M, Weisskopf M, Remonda L, Nelson BJ. Dexterous helical magnetic robot for improved endovascular access. Sci Robot 2024; 9:eadh0298. [PMID: 38354258 DOI: 10.1126/scirobotics.adh0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Treating vascular diseases in the brain requires access to the affected region inside the body. This is usually accomplished through a minimally invasive technique that involves the use of long, thin devices, such as wires and tubes, that are manually maneuvered by a clinician within the bloodstream. By pushing, pulling, and twisting, these devices are navigated through the tortuous pathways of the blood vessels. The outcome of the procedure heavily relies on the clinician's skill and the device's ability to navigate to the affected target region in the bloodstream, which is often inhibited by tortuous blood vessels. Sharp turns require high flexibility, but this flexibility inhibits translation of proximal insertion to distal tip advancement. We present a highly dexterous, magnetically steered continuum robot that overcomes pushability limitations through rotation. A helical protrusion on the device's surface engages with the vessel wall and translates rotation to forward motion at every point of contact. An articulating magnetic tip allows for active steerability, enabling navigation from the aortic arch to millimeter-sized arteries of the brain. The effectiveness of the magnetic continuum robot has been demonstrated through successful navigation in models of the human vasculature and in blood vessels of a live pig.
Collapse
Affiliation(s)
- R Dreyfus
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - Q Boehler
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - S Lyttle
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - P Gruber
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - J Lussi
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - C Chautems
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - S Gervasoni
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - J Berberat
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - D Seibold
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - N Ochsenbein-Kölble
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
- Institute of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
| | - M Reinehr
- University of Zurich, Zurich, Switzerland
| | - M Weisskopf
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - L Remonda
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - B J Nelson
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Ren Z, Sitti M. Design and build of small-scale magnetic soft-bodied robots with multimodal locomotion. Nat Protoc 2024; 19:441-486. [PMID: 38097687 DOI: 10.1038/s41596-023-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/21/2023] [Indexed: 02/12/2024]
Abstract
Small-scale magnetic soft-bodied robots can be designed to operate based on different locomotion modes to navigate and function inside unstructured, confined and varying environments. These soft millirobots may be useful for medical applications where the robots are tasked with moving inside the human body. Here we cover the entire process of developing small-scale magnetic soft-bodied millirobots with multimodal locomotion capability, including robot design, material preparation, robot fabrication, locomotion control and locomotion optimization. We describe in detail the design, fabrication and control of a sheet-shaped soft millirobot with 12 different locomotion modes for traversing different terrains, an ephyra jellyfish-inspired soft millirobot that can manipulate objects in liquids through various swimming modes, a larval zebrafish-inspired soft millirobot that can adjust its body stiffness for efficient propulsion in different swimming speeds and a dual stimuli-responsive sheet-shaped soft millirobot that can switch its locomotion modes automatically by responding to changes in the environmental temperature. The procedure is aimed at users with basic expertise in soft robot development. The procedure requires from a few days to several weeks to complete, depending on the degree of characterization required.
Collapse
Affiliation(s)
- Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
29
|
Liu R, Xiang Y, Wei Z, Zhang J. A Computer‐Aided Teleoperation System for Intuitively Controlling the Behavior of a Magnetic Millirobot within a Stomach Phantom. ADVANCED INTELLIGENT SYSTEMS 2024; 6. [DOI: 10.1002/aisy.202300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 01/03/2025]
Abstract
Untethered magnetic millirobots with a characteristic length of a few millimeters can be wirelessly controlled. They exhibit promising potential in a wide variety of applications, particularly for tasks in clinic workspaces. However, magnetically controlling these robots is counter‐intuitive and requires a steep learning curve, hindering their wide adoption. Herein, a computer‐aided teleoperation platform is developed to operate a soft millirobot, with its feedback control being conducted behind‐the‐scenes, bridging the user's inputs directly with the millirobot's actions to offer an intuitive control. This system enables untrained users to conveniently control the position and actions of the millirobot inside a human stomach phantom by pointing‐and‐clicking on a real‐time video monitor or using a keyboard. The platform automatically materializes the user's instructions by maneuvering a robotic arm with a tip‐mounted magnet to exert a magnetic field to induce the desired response from the millirobot. Experiments show that the system allows the user to intuitively operate the millirobot and deliver its cargo without splitting their attention to monitor the workspace or to calculate the constantly changing control parameters. This platform can lower the barrier for healthcare practitioners without engineering expertise to adopt miniature robotic systems into their workflow and realize these systems’ promising potential.
Collapse
Affiliation(s)
- Ruomao Liu
- Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 000000 China
| | - Yuxuan Xiang
- Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 000000 China
| | - Zihan Wei
- Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 000000 China
| | - Jiachen Zhang
- Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 000000 China
| |
Collapse
|
30
|
Chen Z, Wang Y, Chen H, Law J, Pu H, Xie S, Duan F, Sun Y, Liu N, Yu J. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat Commun 2024; 15:644. [PMID: 38245517 PMCID: PMC10799857 DOI: 10.1038/s41467-024-44995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Magnetic soft robots have shown great potential for biomedical applications due to their high shape reconfigurability, motion agility, and multi-functionality in physiological environments. Magnetic soft robots with multi-layer structures can enhance the loading capacity and function complexity for targeted delivery. However, the interactions between soft entities have yet to be fully investigated, and thus the assembly of magnetic soft robots with on-demand motion modes from multiple film-like layers is still challenging. Herein, we model and tailor the magnetic interaction between soft film-like layers with distinct in-plane structures, and then realize multi-layer soft robots that are capable of performing agile motions and targeted adhesion. Each layer of the robot consists of a soft magnetic substrate and an adhesive film. The mechanical properties and adhesion performance of the adhesive films are systematically characterized. The robot is capable of performing two locomotion modes, i.e., translational motion and tumbling motion, and also the on-demand separation with one side layer adhered to tissues. Simulation results are presented, which have a good qualitative agreement with the experimental results. The feasibility of using the robot to perform multi-target adhesion in a stomach is validated in both ex-vivo and in-vivo experiments.
Collapse
Affiliation(s)
- Ziheng Chen
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Junhui Law
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Huayan Pu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Shaorong Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
31
|
Vinnakota M, Bellur K, Starnes SL, Schulz MJ. Scaling a Hydraulic Motor for Minimally Invasive Medical Devices. MICROMACHINES 2024; 15:131. [PMID: 38258250 PMCID: PMC10818856 DOI: 10.3390/mi15010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Aligned with the medical device industry's trend of miniaturization, academic and commercial researchers are constantly attempting to reduce device sizes. Many applications require miniature actuators (2 mm range) to perform mechanical work; however, biocompatible micromotors are not readily available. To that end, a hydraulic motor-driven cutting module that aims to combine cutting and drug delivery is presented. The hydraulic motor prototype developed has an outside diameter (OD) of ~4 mm (twice the target size) and a 1 mm drive shaft to attach a cutter. Four different designs were explored and fabricated using additive manufacturing. The benchtop experimental data of the prototypes are presented herein. For the prototype motor with fluid inlet perpendicular to the blades, the average angular velocity was 10,593 RPM at a flowrate of 3.6 mL/s and 42,597 RPM at 10.1 mL/s. This design was numerically modeled using 3D-transient simulations in ANSYS CFX (version 2022 R2) to determine the performance characteristics and the internal resistance of the motor. Simplified mathematical models were also used to compute and compare the peak torque with the simulation estimates. The viability of current design represents a crucial milestone in scaling the hydraulic motor to a 2 mm OD to power a microcutter.
Collapse
Affiliation(s)
- Manjeera Vinnakota
- College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA; (M.V.); (M.J.S.)
| | - Kishan Bellur
- College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA; (M.V.); (M.J.S.)
| | - Sandra L. Starnes
- College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Mark J. Schulz
- College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA; (M.V.); (M.J.S.)
| |
Collapse
|
32
|
Tian M, Ma Z, Yang GZ. Micro/nanosystems for controllable drug delivery to the brain. Innovation (N Y) 2024; 5:100548. [PMID: 38161522 PMCID: PMC10757293 DOI: 10.1016/j.xinn.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Huang J, Liu Y, Wu J, Dong F, Liu C, Luo J, Liu X, Wang N, Wang L, Xu H. An extracellular matrix-mimicking magnetic microrobot for targeted elimination of circulating cancer cells. NANOSCALE 2024; 16:624-634. [PMID: 38086673 DOI: 10.1039/d3nr03799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cancer cells disseminate through the bloodstream, leading to metastasis in distant sites within the body. One promising strategy to prevent metastasis is to eliminate circulating tumor cells. However, this remains challenging due to the lack of an active and targeted biomedical tool for efficient cancer cell elimination. Here, we developed a magnetic microrobot by using natural materials derived from the extracellular matrix (ECM) to mimic the ligand-receptor interaction between cancer cells and the ECM, offering targeted elimination of cancer cells. The ECM-mimicking microrobot is designed with a biodegradable hydrogel matrix, incorporating a cancer cell ligand and magnetic microparticles for cancer cell capture and active locomotion. This microrobot was fabricated based on an interface-shearing method, enabling controllable magnetic response and size scalability (30 μm-500 μm). The presented ECM-mimicking microrobot can actively approach and capture single cancer cells and cell clusters under the control of specific magnetic fields. The experiment was conducted in a blood vessel-mimicking simulator. The microrobot demonstrates an outstanding elimination efficacy of 92.3% on MDA-MB-231 cancer cells and a stable transport capability of the captured cells over long distances to a designed recycling site, inhibiting cell metastasis. This magnetic ECM-mimicking microrobot based on a bioinspired binding mechanism represents a promising candidate for the efficient elimination of cancer cells and other biological waste in the blood.
Collapse
Affiliation(s)
- Jing Huang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Jiandong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| | - Chu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Jiawei Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Xiangchao Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Ning Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Lei Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Haifeng Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Li W, Sang M, Lou C, Liao G, Liu S, Wu J, Gong X, Ma Q, Xuan S. Triple-Responsive Soft Actuator with Plastically Retentive Deformation and Magnetically Programmable Recovery. ACS NANO 2023. [PMID: 37987998 DOI: 10.1021/acsnano.3c08888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Multistimuli responsiveness and programmable shape recovery are crucial for soft actuators in soft robotics, electronics, and wearables. However, existing strategies for actuation cannot attain power-free shape retention after removing the external energy supply. Here, a self-assembled density deposition method was developed to fabricate an electrothermal-NIR-magnetic triple-response actuator which was composed of cellulose nanofiber/poly(vinyl alcohol)/liquid metal (CNF/PVA/LM) and magnetic polydimethylsiloxane (MPDMS) layer. Interestingly, the large deformation can be controllably fixed and the temporary configuration will be programmable recovered under a magnetic field due to the thermal-plastic transferring behavior of the CNF/PVA/LM. Rolling robot prepared based on soft actuators exhibits good ability to avoid obstacles. In addition, the object handling and programmable release capabilities of the carrier robots demonstrate that this actuation approach will contribute to a better understanding of how to more rationally utilize various stimuli for application purposes.
Collapse
Affiliation(s)
- Wenwen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Congcong Lou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Guojiang Liao
- Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu Sichuan 610213, PR China
| | - Shuai Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jianpeng Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Qian Ma
- BASF Advanced Chemicals Co., Ltd. 333 Jiang Xin Sha Road, Pudong, Shanghai 200137, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| |
Collapse
|
35
|
Fan X, Zhang Y, Wu Z, Xie H, Sun L, Chen T, Yang Z. Combined three dimensional locomotion and deformation of functional ferrofluidic robots. NANOSCALE 2023. [PMID: 37982182 DOI: 10.1039/d3nr02535g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Magnetic microrobots possess remarkable potential for targeted applications in the medical field, primarily due to their non-invasive, controllable properties. These unique qualities have garnered increased attention and fascination among researchers. However, these robotic systems do face challenges such as limited deformation capabilities and difficulties navigating confined spaces. Recently, researchers have turned their attention towards magnetic droplet robots, which are notable for their superior deformability, controllability, and potential for a range of applications such as automated virus detection and targeted drug delivery. Despite these advantages, the majority of current research is constrained to two-dimensional deformation and motion, thereby limiting their broader functionality. In response to these limitations, this study proposes innovative strategies for controlling deformation and achieving a three-dimensional (3D) trajectory in ferrofluidic robots. These strategies leverage a custom-designed eight-axis electromagnetic coil and a sliding mode controller. The implementation of these methods exhibits the potential of ferrofluidic robots in diverse applications, including microfluidic pump systems, 3D micromanipulation, and selective vascular occlusion. In essence, this study aims to broaden the capabilities of ferrofluidic robots, thereby enhancing their applicability across a multitude of fields such as medicine, micromanipulation, bioengineering, and more by maximizing the potential of these intricate robotic systems.
Collapse
Affiliation(s)
- Xinjian Fan
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yunfei Zhang
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
| | - Zhengnan Wu
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Yikuang, Harbin 150080, China
| | - Lining Sun
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
- School of Future Science and Engineering, Soochow University, No. 1, Jiuyongxi Road, Suzhou 215222, China.
| | - Zhan Yang
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
36
|
Baburova PI, Kladko DV, Lokteva A, Pozhitkova A, Rumyantceva V, Rumyantceva V, Pankov IV, Taskaev S, Vinogradov VV. Magnetic Soft Robot for Minimally Invasive Urethral Catheter Biofilm Eradication. ACS NANO 2023; 17:20925-20938. [PMID: 37871301 DOI: 10.1021/acsnano.2c10127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Catheter-related biofilm infection remains the main problem for millions of people annually, affecting morbidity, mortality, and quality of life. Despite the recent advances in the prevention of biofilm formation, alternative methods for biofilm prevention or eradication still should be found to avoid traumatic and expensive removal or catheter replacement. Soft magnetic robots have drawn significant interest in favor of remote control, fast response, and wide space for design. In this work, we demonstrated magnetic soft robots as a minimally invasive, safe, and effective approach to eliminate biofilm from urethral catheters (20 Fr or 5.1 mm in diameter). Seven designs of the robot were fabricated (size 4.5 × 15 mm), characterized, and tested in the presence of a rotating magnetic field. As a proof-of-concept, we demonstrated the superior efficiency of biofilm removal on the model of a urethral catheter using a magnetic robot, reaching full eradication for the octagram-shaped robot (velocity 2.88 ± 0.6 mm/s) at a 15 Hz frequency and a 10 mT amplitude. These findings are helpful for the treatment of biofilm-associated catheter contamination, which allows an increase in the catheter wearing time without frequent replacement and treatment of catheter-associated infections.
Collapse
Affiliation(s)
- Polina I Baburova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Alina Lokteva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Anna Pozhitkova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Viktoriya Rumyantceva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Valeriya Rumyantceva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Ilya V Pankov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Sergey Taskaev
- National Research South Ural State University, Chelyabinsk 454080, Russia
- Chelyabinsk State University, Chelyabinsk 454001, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| |
Collapse
|
37
|
Sun Y, Wang L, Zhu Z, Li X, Sun H, Zhao Y, Peng C, Liu J, Zhang S, Li M. A 3D-Printed Ferromagnetic Liquid Crystal Elastomer with Programmed Dual-Anisotropy and Multi-Responsiveness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302824. [PMID: 37437184 DOI: 10.1002/adma.202302824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Liquid crystal elastomers (LCE) and magnetic soft materials are promising active materials in many emerging fields, such as soft robotics. Despite the high demand for developing active materials that combine the advantages of LCE and magnetic actuation, the lack of independent programming of the LCE nematic order and magnetization in a single material still hinders the desired multi-responsiveness. In this study, a ferromagnetic LCE (magLCE) ink with nematic order and magnetization is developed that can be independently programmed to be anisotropic, referred to as "dual anisotropy", via a customized 3D-printing platform. The magLCE ink is fabricated by dispersing ferromagnetic microparticles in the LCE matrix, and a 3D-printing platform is created by integrating a magnet with 3-DoF motion into an extrusion-based 3D printer. In addition to magnetic fields, magLCEs can also be actuated by heating sources (either environmental heating or photo-heating of the embedded ferromagnetic microparticles) with a high energy density and tunable actuation temperature. A programmed magLCE strip robot is demonstrated with enhanced adaptability to complex environments (different terrains, magnetic fields, and temperatures) using a multi-actuation strategy. The magLCE also has potential applications in mechanical memory, as demonstrated by the multistable mechanical metastructure array with remote writability and stable memory.
Collapse
Affiliation(s)
- Yuxuan Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing, 100190, P. R. China
| | - Zhengqing Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xingxiang Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yong Zhao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology of China, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shiwu Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mujun Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
38
|
Zhang L, Wang YC, Liao Y, Zhang Q, Liu X, Zhu D, Feng H, Bryce MR, Ren L. Near-Infrared Afterglow ONOO --Triggered Nanoparticles for Real-Time Monitoring and Treatment of Early Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45574-45584. [PMID: 37729542 PMCID: PMC10561133 DOI: 10.1021/acsami.3c08033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Early detection and drug intervention with the appropriate timing and dosage are the main clinical challenges for ischemic stroke (IS) treatment. The conventional therapeutic agents relay fluorescent signals, which require real-time external light excitation, thereby leading to inevitable autofluorescence and poor tissue penetration. Herein, we report endogenous peroxynitrite (ONOO-)-activated BDP-4/Cur-CL NPs that release NIR afterglow signals (λmax 697 nm) for real-time monitoring of the progression of ischemia reperfusion (I/R) brain injury while releasing curcumin for the safe treatment of IS. The BDP-4/Cur-CL NPs exhibited bright NIR afterglow luminescence (maximum 732-fold increase), superb sensitivity (LOD = 82.67 nM), high energy-transfer efficiency (94.6%), deep tissue penetration (20 mm), outstanding antiapoptosis, and anti-inflammatory effects. The activated NIR afterglow signal obtained in mice with middle cerebral artery occlusion (MCAO) showed three functions: (i) the BDP-4/Cur-CL NPs are rapidly activated by endogenous ONOO-, instantly illuminating the lesion area, distinguishing I/R damage from normal areas, which can be successfully used for endogenous ONOO- detection in the early stage of IS; (ii) real-time reporting of in situ generation and dynamic fluctuations of endogenous ONOO- levels in the lesion area, which is of great value in monitoring the evolutionary mechanisms of IS; and (iii) dynamic monitoring of the release of curcumin drug for safe treatment. Indeed, the released curcumin effectively decreased apoptosis, enhanced survival, alleviated neuroinflammation, reduced brain tissue loss, and improved the cognition of MCAO stroke mice. This work is the first example of afterglow luminescence for early diagnosis, real-time reporting, drug tracing, and treatment for IS.
Collapse
Affiliation(s)
- Liping Zhang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Ya-chao Wang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Yuqi Liao
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Qian Zhang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Xia Liu
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Dongxia Zhu
- Key
Laboratory of Nanobiosensing and Nanobioanalysis at Universities of
Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| | - Haixing Feng
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Martin R. Bryce
- Department
of Chemistry Durham, University Durham, Durham DH1 3LE, U.K.
| | - Lijie Ren
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| |
Collapse
|
39
|
Yan Y, Wang T, Zhang R, Liu Y, Hu W, Sitti M. Magnetically assisted soft milli-tools for occluded lumen morphology detection. SCIENCE ADVANCES 2023; 9:eadi3979. [PMID: 37585531 PMCID: PMC10431716 DOI: 10.1126/sciadv.adi3979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Methodologies based on intravascular imaging have revolutionized the diagnosis and treatment of endovascular diseases. However, current methods are limited in detecting, i.e., visualizing and crossing, complicated occluded vessels. Therefore, we propose a miniature soft tool comprising a magnet-assisted active deformation segment (ADS) and a fluid drag-driven segment (FDS) to visualize and cross the occlusions with various morphologies. First, via soft-bodied deformation and interaction, the ADS could visualize the structure details of partial occlusions with features as small as 0.5 millimeters. Then, by leveraging the fluidic drag from the pulsatile flow, the FDS could automatically detect an entry point selectively from severe occlusions with complicated microchannels whose diameters are down to 0.2 millimeters. The functions have been validated in both biologically relevant phantoms and organs ex vivo. This soft tool could help enhance the efficacy of minimally invasive medicine for the diagnosis and treatment of occlusions in various circulatory systems.
Collapse
Affiliation(s)
- Yingbo Yan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
40
|
Richter M, Sikorski J, Makushko P, Zabila Y, Venkiteswaran VK, Makarov D, Misra S. Locally Addressable Energy Efficient Actuation of Magnetic Soft Actuator Array Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302077. [PMID: 37330643 PMCID: PMC10460866 DOI: 10.1002/advs.202302077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Indexed: 06/19/2023]
Abstract
Advances in magnetoresponsive composites and (electro-)magnetic actuators have led to development of magnetic soft machines (MSMs) as building blocks for small-scale robotic devices. Near-field MSMs offer energy efficiency and compactness by bringing the field source and effectors in close proximity. Current challenges of near-field MSM are limited programmability of effector motion, dimensionality, ability to perform collaborative tasks, and structural flexibility. Herein, a new class of near-field MSMs is demonstrated that combines microscale thickness flexible planar coils with magnetoresponsive polymer effectors. Ultrathin manufacturing and magnetic programming of effectors is used to tailor their response to the nonhomogeneous near-field distribution on the coil surface. The MSMs are demonstrated to lift, tilt, pull, or grasp in close proximity to each other. These ultrathin (80 µm) and lightweight (100 gm-2 ) MSMs can operate at high frequency (25 Hz) and low energy consumption (0.5 W), required for the use of MSMs in portable electronics.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
| | - Jakub Sikorski
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| | - Pavlo Makushko
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Yevhen Zabila
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
- The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of SciencesKrakow31‐342Poland
| | | | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|
41
|
Chen E, Yang Y, Li M, Li B, Liu G, Mu W, Yin R. Bio-Mimic, Fast-Moving, and Flippable Soft Piezoelectric Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300673. [PMID: 37163730 PMCID: PMC10369280 DOI: 10.1002/advs.202300673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Cheetahs achieve high-speed movement and unique athletic gaits through the contraction and expansion of their limbs during the gallop. However, few soft robots can mimic their gaits and achieve the same speed of movement. Inspired by the motion gait of cheetahs, here the resonance of double spiral structure for amplified motion performance and environmental adaptability in a soft-bodied hopping micro-robot is exploited. The 0.058 g, 10 mm long tethered soft robot is capable of achieving a maximum motion speed of 42.8 body lengths per second (BL/s) and a maximum average turning speed of 482° s-1 . In addition, this robot can maintain high speed movement even after flipping. The soft robot's ability to move over complex terrain, climb hills, and carry heavy loads as well as temperature sensors is demonstrated. This research opens a new structural design for soft robots: a double spiral configuration that efficiently translates the deformation of soft actuators into swift motion of the robot with high environmental adaptability.
Collapse
Affiliation(s)
- Erdong Chen
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Yiduo Yang
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Mengjiao Li
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Binghang Li
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Guijie Liu
- College of EngineeringOcean University of ChinaQingdao266100China
| | - Weilei Mu
- College of EngineeringOcean University of ChinaQingdao266100China
| | - Rong Yin
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
42
|
Zhang L, Zhao S, Zhou X, Jing X, Zhou Y, Wang Y, Zhu Y, Liu X, Zhao Z, Zhang D, Feng L, Chen H. A Magnetic-Driven Multi-motion Robot with Position/Orientation Sensing Capability. RESEARCH (WASHINGTON, D.C.) 2023; 6:0177. [PMID: 39882544 PMCID: PMC11778601 DOI: 10.34133/research.0177] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2023] [Indexed: 01/31/2025]
Abstract
Miniature magnetic-driven robots with multimode motions and high-precision pose sensing capacity (position and orientation) are greatly demanded in in situ manipulation in narrow opaque enclosed spaces. Various magnetic robots have been carried out, whereas their deformations normally remain in single mode, and the lack of the robot's real-time status leads to its beyond-sight remagnetization and manipulation being impossible. The function integration of pose sensing and multimode motion is still of challenge. Here, a multimotion thin-film robot is created in a novel multilayer structure with a magnetic-driven layer covered by a heating-sensing conductive layer. Such a heating-sensing layer not only can segmentally and on-demand heat the magnetic-driven layer for in situ magnetization reprogramming and multimode motions but also can precisely detect the robot's pose (position and orientation) from its electrical-resistance effect by creating a small deformation under preset magnetic fields. Under the integration of reprogramming and sensing, necessary multimode motions, i.e., swimming, rolling, crawling, and obstacle-crossing, are achieved under a reprogramming field BRepr of 10 mT, and high-precision poses sensing with an accuracy of ± 3 mm in position and ± 2.5° in orientation is obtained even under a low magnetic strength of BSens of 5 mT, which combined help realize accurate out-of-sight manipulations in the enclosed space environment. Finally, a gastroscope robot for stomach drug delivery has been demonstrated for more gastrointestinal medical treatments.
Collapse
Affiliation(s)
- Liwen Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Song Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Xinzhao Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Xueshan Jing
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yu Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yan Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yantong Zhu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Xiaolin Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Zehui Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
43
|
Wang Y, Du X, Zhang H, Zou Q, Law J, Yu J. Amphibious Miniature Soft Jumping Robot with On-Demand In-Flight Maneuver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207493. [PMID: 37097734 PMCID: PMC10288233 DOI: 10.1002/advs.202207493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In nature, some semiaquatic arthropods evolve biomechanics for jumping on the water surface with the controlled burst of kinetic energy. Emulating these creatures, miniature jumping robots deployable on the water surface have been developed, but few of them achieve the controllability comparable to biological systems. The limited controllability and agility of miniature robots constrain their applications, especially in the biomedical field where dexterous and precise manipulation is required. Herein, an insect-scale magnetoelastic robot with improved controllability is designed. The robot can adaptively regulate its energy output to generate controllable jumping motion by tuning magnetic and elastic strain energy. Dynamic and kinematic models are developed to predict the jumping trajectories of the robot. On-demand actuation can thus be applied to precisely control the pose and motion of the robot during the flight phase. The robot is also capable of making adaptive amphibious locomotion and performing various tasks with integrated functional modules.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and EngineeringThe Chinese University of Hong Kong518172ShenzhenChina
- Shenzhen Institute of Artificial Intelligence and Robotics for Society518172ShenzhenChina
| | - Xingzhou Du
- School of Science and EngineeringThe Chinese University of Hong Kong518172ShenzhenChina
- Shenzhen Institute of Artificial Intelligence and Robotics for Society518172ShenzhenChina
| | - Huimin Zhang
- School of Science and EngineeringThe Chinese University of Hong Kong518172ShenzhenChina
- Shenzhen Institute of Artificial Intelligence and Robotics for Society518172ShenzhenChina
| | - Qian Zou
- School of Science and EngineeringThe Chinese University of Hong Kong518172ShenzhenChina
- Shenzhen Institute of Artificial Intelligence and Robotics for Society518172ShenzhenChina
| | - Junhui Law
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoON M5S 3G8Canada
| | - Jiangfan Yu
- School of Science and EngineeringThe Chinese University of Hong Kong518172ShenzhenChina
- Shenzhen Institute of Artificial Intelligence and Robotics for Society518172ShenzhenChina
- School of MedicineThe Chinese University of Hong Kong518172ShenzhenChina
| |
Collapse
|
44
|
3D printing of thermosets with diverse rheological and functional applicabilities. Nat Commun 2023; 14:245. [PMID: 36646723 PMCID: PMC9842742 DOI: 10.1038/s41467-023-35929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Thermosets such as silicone are ubiquitous. However, existing manufacturing of thermosets involves either a prolonged manufacturing cycle (e.g., reaction injection molding), low geometric complexity (e.g., casting), or limited processable materials (e.g., frontal polymerization). Here, we report an in situ dual heating (ISDH) strategy for the rapid 3D printing of thermosets with complex structures and diverse rheological properties by incorporating direct ink writing (DIW) technique and a heating-accelerated in situ gelation mechanism. Enabled by an integrated Joule heater at the printhead, extruded thermosetting inks can quickly cure in situ, allowing for DIW of various thermosets with viscosities spanning five orders of magnitude, printed height over 100 mm, and high resolution of 50 μm. We further demonstrate DIW of a set of heterogenous thermosets using multiple functional materials and present a hybrid printing of a multilayer soft electronic circuit. Our ISDH strategy paves the way for fast manufacturing of thermosets for various emerging fields.
Collapse
|
45
|
Panikkanvalappil SR, Bhagavatula SK, Deans K, Jonas O, Rashidian M, Mishra S. Enhanced Tumor Accumulation of Multimodal Magneto-Plasmonic Nanoparticles via an Implanted Micromagnet-Assisted Delivery Strategy. Adv Healthc Mater 2023; 12:e2201585. [PMID: 36213946 PMCID: PMC9840675 DOI: 10.1002/adhm.202201585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/29/2022] [Indexed: 01/18/2023]
Abstract
One of the major shortcomings of nano carriers-assisted cancer therapeutic strategies continues to be the inadequate tumor penetration and retention of systemically administered nanoformulations and its off-target toxicity. Stromal parameters-related heterogeneity in enhanced permeability and retention effect and physicochemical properties of the nanoformulations immensely contributes to their poor tumor extravasation. Herein, a novel tumor targeting strategy, where an intratumorally implanted micromagnet can significantly enhance accumulation of magneto-plasmonic nanoparticles (NPs) at the micromagnet-implanted tumor in bilateral colorectal tumor models while limiting their off-target accumulation, is demonstrated. To this end, novel multimodal gold/iron oxide NPs comprised of an array of multifunctional moieties with high therapeutic, sensing, and imaging potential are developed. It is also discovered that cancer cell targeted NPs in combination with static magnetic field can selectively induce cancer cell death. A multimodal caspase-3 nanosensor is also developed for real-time visualization of selective induction of apoptosis in cancer cells. In addition, the photothermal killing capability of these NPs in vitro is evaluated, and their potential for enhanced photothermal ablation in tissue samples is demonstrated. Building on current uses of implantable devices for therapeutic purposes, this study envisions the proposed micromagnet-assisted NPs delivery approach may be used to accelerate the clinical translation of various nanoformulations.
Collapse
Affiliation(s)
| | - Sharath K. Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle Deans
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
46
|
Huang C, Lai Z, Wu X, Xu T. Multimodal Locomotion and Cargo Transportation of Magnetically Actuated Quadruped Soft Microrobots. CYBORG AND BIONIC SYSTEMS 2022; 2022:0004. [PMID: 36924475 PMCID: PMC10010670 DOI: 10.34133/cbsystems.0004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/06/2022] [Indexed: 01/02/2023] Open
Abstract
Untethered microrobots have attracted extensive attention due to their potential for biomedical applications and micromanipulation at the small scale. Soft microrobots are of great research importance because of their highly deformable ability to achieve not only multiple locomotion mechanisms but also minimal invasion to the environment. However, the existing microrobots are still limited in their ability to locomote and cross obstacles in unstructured environments compared to conventional legged robots. Nature provides much inspiration for developing miniature robots. Here, we propose a bionic quadruped soft thin-film microrobot with a nonmagnetic soft body and 4 magnetic flexible legs. The quadruped soft microrobot can achieve multiple controllable locomotion modes in the external magnetic field. The experiment demonstrated the robot's excellent obstacle-crossing ability by walking on the surface with steps and moving in the bottom of a stomach model with gullies. In particular, by controlling the conical angle of the external conical magnetic field, microbeads gripping, transportation, and release of the microrobot were demonstrated. In the future, the quadruped microrobot with excellent obstacle-crossing and gripping capabilities will be relevant for biomedical applications and micromanipulation.
Collapse
Affiliation(s)
- Chenyang Huang
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyu Lai
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Wu
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China
| | - Tiantian Xu
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China
| |
Collapse
|