1
|
Chen Q, Cao Z, Zhao H, Deng Y, Peng X, Ding Z, Zhang G, Yu L, Wang Y, Tu B, Xue Y. Electrostatically Gated Trilayer Graphene Nanopore as an Ultrathin Rectifying Ion Filter. ACS NANO 2025; 19:21589-21599. [PMID: 40457217 DOI: 10.1021/acsnano.5c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Biological ion channels have significant ion selectivity and rectification properties due to angstrom-scale selectivity filters, but it is challenging to develop artificial analogs. Nanopores in two-dimensional (2D) materials have presented various potential applications such as energy conversion, ion separation, and biosensing. Here, we report a subnanometer trilayer graphene (TLG) nanopore with a conical structure as a switchable biomimetic ion filter under electrostatic gating. The nanopores show high ion selectivity and rectified current-voltage characteristics. Electrostatic gating significantly enhances the rectification ratio to an ultrahigh value. The transmembrane voltage induces reversible conductance "on" and "off" states of the TLG nanopore, which simulates the action potentials in electrically excitable cells. Theoretical modeling reveals that the unique ion transport through the 1 nm thick conical channels is attributed to the contrasting overlapping intensity of the electrical double layers (EDL) at the base and tip of the TLG nanopore. Combined with the different internal inhomogeneous electric fields, this leads to a reversed rectification direction, distinct from conventional microscopical conical channels. This study suggests ways to develop ultrathin in vitro biomimetic devices for broad applications in energy conversion and biosensing.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Zhouwen Cao
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Yunsheng Deng
- Pico Center and SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xin Peng
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Zhenya Ding
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Guoyuan Zhang
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Lingfeng Yu
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Bin Tu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Xue
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Chen C, Wang Z, Chen G, Zhang Z, Bedran Z, Tipper S, Diaz-Núñez P, Timokhin I, Mishchenko A, Yang Q. Silver Electrodeposition from Ag/AgCl Electrodes: Implications for Nanoscience. NANO LETTERS 2025; 25:9427-9432. [PMID: 40434723 PMCID: PMC12164511 DOI: 10.1021/acs.nanolett.5c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
With the advancement of nanoscience, silver/silver chloride (Ag/AgCl) electrodes have become widely utilized in microscale and nanoscale fluidic experiments, because of their stability. However, our findings reveal that the dissolution of AgCl from the electrode in Cl--rich solutions can lead to significant silver contamination, through the formation of silver complexes, [ A g C l n + 1 ] n - . We demonstrate the electrodeposition of silver particles on graphene in KCl aqueous solution, with AgCl dissolution from the electrode as the sole source of silver. This unexpected electrodeposition process offers a more plausible interpretation of the recently reported "ionic flow-induced current in graphene." That is, the measured electronic current in graphene is due to the electrodeposition of silver, challenging the previously claimed "ionic Coulomb drag". More caution is called for when using Ag/AgCl electrodes in microfluidic, and especially nanofluidic, systems because AgCl dissolution should not be neglected.
Collapse
Affiliation(s)
- Chuhongxu Chen
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
| | - Guilin Chen
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
| | - Zhijia Zhang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
| | - Zakhar Bedran
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
| | - Stephen Tipper
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
| | - Pablo Diaz-Núñez
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
| | - Ivan Timokhin
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, U.K.
| | - Qian Yang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, U.K.
| |
Collapse
|
3
|
Abrishami S, Xiao H, Asadnia M, Low ZX, Razmjou A. Recent advances in the design principles of lithium selective membranes. WATER RESEARCH 2025; 283:123724. [PMID: 40373372 DOI: 10.1016/j.watres.2025.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025]
Abstract
The growing demand for lithium in energy storage applications has intensified the need for efficient lithium extraction technologies, with membrane processes emerging as a promising approach. Among various membrane technologies, nanostructured membranes with precisely engineered channels have shown exceptional potential for selective lithium extraction due to their ability to control ion transport at the molecular level. This review provides a comprehensive analysis of the fundamental design principles governing lithium-selective membranes, with a specific focus on nanochannel-based systems. We examine the critical parameters that influence lithium selectivity, including surface charge distribution, nanochannel dimensions, morphology, and wettability, while exploring how these factors interact with external driving forces to enable selective ion transport. This work extensively analyzes recent developments in nanochannel engineering and ion transport mechanisms, providing crucial insights into optimizing membrane selectivity and performance. By critically analyzing current challenges in scaling up these technologies and identifying promising research directions, this work provides a roadmap for developing next-generation lithium-selective membranes with enhanced efficiency and selectivity.
Collapse
Affiliation(s)
- Shayan Abrishami
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Huan Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
4
|
Han J, Lv B, Wang J, Lei L, Liu Y, Li S, Wang K, Liu J, Liu Z, Wang L. Light-boosted simultaneous acid and salinity gradient energy recovery from wastewater via a nanochannel membrane with multi-objective ion separation ability. WATER RESEARCH 2025; 281:123670. [PMID: 40280006 DOI: 10.1016/j.watres.2025.123670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The discharge of industrial wastewater has surged to unprecedented levels due to rapid industrialization. Developing effective strategies for the concurrent recovery of resources and energy from wastewater presents a promising pathway toward sustainable development. In this study, a composite nanochannel membrane with light-boosted ion separation capabilities was designed for the concurrent recovery of acid and salinity gradient energy from metallurgical industrial wastewater. The membrane demonstrated remarkable photothermal conversion efficiency, utilizing the synergy between localized surface plasmon resonance of Ti3C2Tx component and molecular vibration of Cu-TCPP component to achieve rapid temperature rise from room temperature to 139.5 °C within 60 s under illumination. This photothermal effect created an effective temperature gradient within nanochannels, enhancing the separation efficiency for both H⁺/Cl⁻ and H⁺/Fe2+ pairs by amplifying the differences in diffusion energy barriers. When applied to acidic wastewater, the membrane achieved an outstanding salinity gradient energy conversion power density of 7.31 W/m2 over an expanded testing area, along with a H+/Fe2+ selectivity of 64.18 for acid recovery. Both energy harvesting and acid recovery performance surpass those of state-of-the-art membranes under identical testing conditions. This work presents a critical strategy for energy conversion and resource recovery from wastewater, contributing to sustainable solutions for energy, environmental, and resource challenges.
Collapse
Affiliation(s)
- Jinming Han
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Bohao Lv
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China.
| | - Lei Lei
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Yanzheng Liu
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Kexin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Jihao Liu
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Zhiyan Liu
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China.
| |
Collapse
|
5
|
Cain D, Cao E, Vlassiouk I, Schäffer TE, Siwy ZS. Ion concentration polarization causes a nearly pore-length-independent conductance of nanopores. Faraday Discuss 2025; 257:344-359. [PMID: 39440602 DOI: 10.1039/d4fd00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
There has been a great amount of interest in nanopores as the basis for sensors and templates for preparation of biomimetic channels as well as model systems to understand transport properties at the nanoscale. The presence of surface charges on the pore walls has been shown to induce ion selectivity as well as enhance ionic conductance compared to uncharged pores. Here, using three-dimensional continuum modeling, we examine the role of the length of charged nanopores as well as applied voltage for controlling ion selectivity and ionic conductance of single nanopores and small nanopore arrays. First, we present conditions where the ion current and ion selectivity of nanopores with homogeneous surface charges remain unchanged, even if the pore length decreases by a factor of 6. This length-independent conductance is explained through the effect of ion concentration polarization (ICP), which modifies local ionic concentrations, not only at the pore entrances but also in the pore in a voltage-dependent manner. We describe how voltage controls the ion selectivity of nanopores with different lengths and present the conditions when charged nanopores conduct less current than uncharged pores of the same geometrical characteristics. The manuscript provides different measures of the extent of the depletion zone induced by ICP in single pores and nanopore arrays, including systems with ionic diodes. The modeling shown here will help design selective nanopores for a variety of applications where single nanopores and nanopore arrays are used.
Collapse
Affiliation(s)
- DaVante Cain
- Department of Physics and Astronomy, University of California, Irvine, 92697, California, USA.
| | - Ethan Cao
- Department of Physics and Astronomy, University of California, Irvine, 92697, California, USA.
| | - Ivan Vlassiouk
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany.
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, 92697, California, USA.
| |
Collapse
|
6
|
Cui Y, Gao L, Ying C, Tian J, Liu Z. Two-Dimensional Material-Based Nanofluidic Devices and Their Applications. ACS NANO 2025; 19:1911-1943. [PMID: 39783262 DOI: 10.1021/acsnano.4c12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanofluidics is an interdisciplinary field of study that bridges hydrodynamics, statistical physics, chemistry, materials science, biology, and other fields to investigate the transport of fluids and ions on the nanometric scale. The progress in this field, however, has been constrained by challenges in fabricating nanofluidic devices suitable for systematic investigations. Recent advances in two-dimensional (2D) materials have revolutionized the development of nanofluids. Their ultrathin structure and photothermoelectric response make it possible to achieve the scale control, friction limitation, and regulatory response, all of which are challenging to achieve with traditional solid materials. In this review, we provide a comprehensive overview of the preparation methods and corresponding structures of three types of 2D material-based nanofluidic devices, including nanopores, nanochannels, and membranes. We highlight their applications and recent advances in exploring physical mechanisms, detecting biomolecules (DNA, protein), developing iontronics devices, improving ion/gas selectivity, and generating osmotic energy. We discuss the challenges facing 2D material-based nanofluidic devices and the prospects for future advancements in this field.
Collapse
Affiliation(s)
- Yangjun Cui
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Long Gao
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Cuifeng Ying
- Advanced Optics & Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, U.K
| | - Jianguo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Zhibo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
7
|
Fu Q, Wang L, Chen X, Pan S, Chen C, Jiang L, Gao J. Highly Selective and Excitable Artificial Ion Channel for Spike Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:71030-71037. [PMID: 39668636 DOI: 10.1021/acsami.4c15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Cation channels of the neuron can be excited by neurotransmitters and have high ionic selectivity, which are crucial for the generation of spikes. Intuitively, if a channel has both a high ionic selectivity and excitability, it may be used to generate spikes. However, integrating the high selectivity and excitability in a single channel remains highly challenging. In this work, we demonstrate an artificial ion channel based on a wetting film between an oil droplet and a glass substrate. The channel height is dominated by the repulsive electrostatic interaction between the glass/water and water/oil interfaces and is therefore highly adaptable to ambient ions and charged surfactant, setting the basis for flexible control of the open/close state and ion selectivity. The channel stays in a closed state unless excited by an anionic surfactant. Once excited, the channel opens wide for monovalent ions but narrows for divalent ions, exhibiting a selectivity up to >6800. By exploiting such excitability and selectivity, we constructed a prototype artificial neuron for spike generation. Using the anionic surfactant to simulate the neurotransmitter, our artificial neuron can automatically and step-wisely open and close the channel, generating a current spike with adjustable magnitude. We expect our work to inspire the development of biomimetic devices for potential neuromorphic computing applications.
Collapse
Affiliation(s)
- Qianqian Fu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Lin Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Xiaolei Chen
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Shangfa Pan
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Chang Chen
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jun Gao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
8
|
Seo D, Seo S, Kim T. Characterization of Diffusioosmotic Ion Transport for Enhanced Concentration-Driven Power Generation via Charge Heterogeneity in Nanoporous Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70119-70129. [PMID: 39648611 DOI: 10.1021/acsami.4c17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Nanoscopic mass/ion transport through heterogeneous nanostructures with various physicochemical environments occurs in both natural and artificial systems. Concentration gradient-driven mass/ion transport mechanisms, such as diffusioosmosis (DO), are primarily governed by the structural and electrical features of the nanostructures. However, these phenomena under various electrical and chemical conditions have not been adequately investigated. In this study, we fabricated a pervaporation-based particle-assembled membrane (PAM)-integrated micro-/nanofluidic device that facilitates easy tuning of the surface charge heterogeneity in nanopores/nanochannels. The nanochannels in the device consisted of two heterogeneous and in-series PAMs. The device was used to quantitatively measure electric signals generated by DO within the nanochannels with a single electrolyte or a combination of two electrolytes. Then, we characterized ion transport by changing surface charge heterogeneity and applying various electrolytic conditions, characterizing the concentration-driven power generation under these conditions. We found that not only does the charge heterogeneity provide additional resistance to ion transport but also the manipulation of the heterogeneity enables the effective modulation of ion transport and optimization of concentration-driven power generators regarding ion selectivity. In conjunction with the surface charge heterogeneity, the electrolytic conditions significantly affected the net flux of ion transport by enhancing or even negating the ion selectivity. Hence, we anticipate that both the platform and results will provide a deeper understanding of ion transport in nanostructures within complex environments by optimizing and improving practical concentration-driven applications, such as energy conversion/harvesting, molecular focusing/separation, and ionic diodes and memristors.
Collapse
Affiliation(s)
- Dongwoo Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
9
|
Wang X, Zhang H, Wei G, Xing J, Chen S, Quan X. Comediation of voltage gating and ion charge in MXene membrane for controllable and selective monovalent cation separation. SCIENCE ADVANCES 2024; 10:eado3998. [PMID: 39630891 PMCID: PMC11616687 DOI: 10.1126/sciadv.ado3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Artificial ion channels with controllable mono/monovalent cation separation fulfill important roles in biomedicine, ion separation, and energy conversion. However, it remains a daunting challenge to develop an artificial ion channel similar to biological ion channels due to ion-ion competitive transport and lack of ion-gating ability of channels. Here, we report a conductive MXene membrane with polydopamine-confined angstrom-scale channels and propose a voltage gating and ion charge comediation strategy to concurrently achieve gated and selective mono/monovalent cation separation. The membrane shows a highly switchable "on-off" ratio of ∼9.9 for K+ transport and an excellent K+/Li+ selectivity of 40.9, outperforming the ion selectivity of reported membranes with electrical gating (typically 1.5 to 6). Theoretical simulations reveal that the introduced high-charge cations such as Mg2+ enable the preferential distribution of target K+ over competing Li+ at the channel entrance, and the surface potential reduces the ionic transport energy barrier for allowing K+ to pass quickly through the channel.
Collapse
Affiliation(s)
| | | | - Gaoliang Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiajian Xing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Feng Y, Li S, Lu H, Lei L, Rong Q, Su Z, Zhang D, Wang X, Wang L, Wang J. Nanoarchitecture via Synchronic Stacking of Metallic and Nonmetallic Two-Dimensional Nanosheets for Optimal Light-Driven Ion Transport. ACS NANO 2024; 18:32793-32805. [PMID: 39498782 DOI: 10.1021/acsnano.4c10913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The exceptional selectivity and responsive ion transport in biological channels inspire technology breakthrough in energy, environmental, and resource sectors. However, existing nanofluidic systems with a high photothermal conversion efficiency often exhibit excessive thermal conductivity, which impedes the creation of effective temperature gradients and results in a low ion transport efficiency. In this study, a strategy based on the synchronic stacking of metallic and nonmetallic two-dimensional (2D) nanosheets was presented to construct heterogeneous nanofluidic channels. This specific nanoconfined architecture sustained high temperatures in the illuminated area while maintaining low temperatures in the nonilluminated area, thus obtaining a robust driving force from sunlight for directional ion transport. As a result, our light-responsive ion transport system demonstrated significant potential in solar energy conversion and osmotic energy harvesting, surpassing those of all previously reported nanofluidic systems. Additionally, although it is still at the proof-of-concept stage, it shows great promise in light signal monitoring. This work provides an effective strategy for developing advanced light-responsive ion transport systems and their important applications.
Collapse
Affiliation(s)
- Yuan Feng
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Shangzhen Li
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Haochen Lu
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Lei Lei
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Qianyi Rong
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Ziyi Su
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Derong Zhang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| |
Collapse
|
11
|
Guo L, Wu N, Zhang S, Zeng H, Yang J, Han X, Duan H, Liu Y, Wang L. Emerging Advances around Nanofluidic Transport and Mass Separation under Confinement in Atomically Thin Nanoporous Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404087. [PMID: 39031097 DOI: 10.1002/smll.202404087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Membrane separation stands as an environmentally friendly, high permeance and selectivity, low energy demand process that deserves scientific investigation and industrialization. To address intensive demand, seeking appropriate membrane materials to surpass trade-off between permeability and selectivity and improve stability is on the schedule. 2D materials offer transformational opportunities and a revolutionary platform for researching membrane separation process. Especially, the atomically thin graphene with controllable porosity and structure, as well as unique properties, is widely considered as a candidate for membrane materials aiming to provide extreme stability, exponentially large selectivity combined with high permeability. Currently, it has shown promising opportunities to develop separation membranes to tackle bottlenecks of traditional membranes, and it has been of great interest for tremendously versatile applications such as separation, energy harvesting, and sensing. In this review, starting from transport mechanisms of separation, the material selection bank is narrowed down to nanoporous graphene. The study presents an enlightening overview of very recent developments in the preparation of atomically thin nanoporous graphene and correlates surface properties of such 2D nanoporous materials to their performance in critical separation applications. Finally, challenges related to modulation and manufacturing as well as potential avenues for performance improvements are also pointed out.
Collapse
Affiliation(s)
- Liping Guo
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Ningran Wu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Shengping Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Haiou Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Jing Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Xiao Han
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Hongwei Duan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
| | - Yuancheng Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Luda Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| |
Collapse
|
12
|
Liu M, Wang L, Yu G. Recent Research Progress of Porous Graphene and Applications in Molecular Sieve, Sensor, and Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401767. [PMID: 38847563 DOI: 10.1002/smll.202401767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Hoenig E, Han Y, Xu K, Li J, Wang M, Liu C. In situ generation of (sub) nanometer pores in MoS 2 membranes for ion-selective transport. Nat Commun 2024; 15:7911. [PMID: 39256368 PMCID: PMC11387774 DOI: 10.1038/s41467-024-52109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Ion selective membranes are fundamental components of biological, energy, and computing systems. The fabrication of solid-state ultrathin membranes that can separate ions of similar size and the same charge with both high selectivity and permeance remains a challenge, however. Here, we present a method, utilizing the application of a remote electric field, to fabricate a high-density of (sub)nm pores in situ. This method takes advantage of the grain boundaries in few-layer polycrystalline MoS2 to enable the synthesis of nanoporous membranes with average pore size tunable from <1 to ~4 nm in diameter (with in situ pore expansion resolution of ~0.2 nm2 s-1). These membranes demonstrate selective transport of monovalent ions (K+, Na+ and Li+) as well as divalent ions (Mg2+ and Ca2+), outperforming existing two-dimensional material nanoporous membranes that display similar total permeance. We investigate the mechanism of selectivity using molecular dynamics simulations and unveil that the interactions between cations and the sluggish water confined to the pore, as well as cation-anion interactions, result in the different transport behaviors observed between ions.
Collapse
Affiliation(s)
- Eli Hoenig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kangli Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jingyi Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
14
|
Fan F, Ren Y, Zhang S, Tang Z, Wang J, Han X, Yang Y, Lu G, Zhang Y, Chen L, Wang Z, Zhang K, Gao J, Zhao J, Cui G, Tang B. A Bioinspired Membrane with Ultrahigh Li +/Na + and Li +/K + Separations Enables Direct Lithium Extraction from Brine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402898. [PMID: 39030996 PMCID: PMC11425256 DOI: 10.1002/advs.202402898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Membranes with precise Li+/Na+ and Li+/K+ separations are imperative for lithium extraction from brine to address the lithium supply shortage. However, achieving this goal remains a daunting challenge due to the similar valence, chemical properties, and subtle atomic-scale distinctions among these monovalent cations. Herein, inspired by the strict size-sieving effect of biological ion channels, a membrane is presented based on nonporous crystalline materials featuring structurally rigid, dimensionally confined, and long-range ordered ion channels that exclusively permeate naked Li+ but block Na+ and K+. This naked-Li+-sieving behavior not only enables unprecedented Li+/Na+ and Li+/K+ selectivities up to 2707.4 and 5109.8, respectively, even surpassing the state-of-the-art membranes by at least two orders of magnitude, but also demonstrates impressive Li+/Mg2+ and Li+/Ca2+ separation capabilities. Moreover, this bioinspired membrane has to be utilized for creating a one-step lithium extraction strategy from natural brines rich in Na+, K+, and Mg2+ without utilizing chemicals or creating solid waste, and it simultaneously produces hydrogen. This research has proposed a new type of ion-sieving membrane and also provides an envisioning of the design paradigm and development of advanced membranes, ion separation, and lithium extraction.
Collapse
Affiliation(s)
- Faying Fan
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yongwen Ren
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shu Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhilei Tang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jia Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaolei Han
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yuanyuan Yang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guoli Lu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yaojian Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Lin Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhe Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | | | - Jun Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bo Tang
- Tang Bo's institution, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
15
|
Jiang Y, Wang R, Ye C, Wang X, Wang D, Du Q, Liang H, Zhang S, Gao P. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35666-35674. [PMID: 38924711 DOI: 10.1021/acsami.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Responsive regulation of ion transport through nanochannels is crucial in the design of smart nanofluidic devices for sequencing, sensing, and water-energy nexus. Functionalization of the inner wall of the nanochannel enhances interaction with ions and fluid but restricts versatile chemical approaches and accurate characterizations of fluidic interfaces. Herein, we reveal a responsive regulating mechanism of ion transport through nanochannels by polydopamine (PDA)-induced functionalization on the macroscopic outer surface of nanochannels. Responsive molecules were codeposited with PDA on the outer surface of nanochannels and formed a valve of nanometer thickness to manually manipulate ion transport by changing its gap spacing, surface charge, and wettability under external stimulus. The response ratio can be up to 100-fold by maximizing the proportion of responsive molecules on the outer surface. Laminating the codepositions of different responsive molecules with PDA on the channel's outer surface produces multiple responses. A nearly universal adhesion of PDA with responsive molecules on the open outer surface induces nanochannels responsive to different external stimuli with variable response ratios and arbitrary combinations. The results challenge the primary role of functionalization on the nanoconfined interface of nanofluidics and open opportunities for developing new-style nanofluidic devices through the functionalization of macroscopic interface.
Collapse
Affiliation(s)
- You Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Rongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chunxi Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
16
|
Zhang S, Wang J, Yaroshchuk A, Du Q, Xin P, Bruening ML, Xia F. Addressing Challenges in Ion-Selectivity Characterization in Nanopores. J Am Chem Soc 2024. [PMID: 38606686 DOI: 10.1021/jacs.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ion selectivity is the basis for designing smart nanopore/channel-based devices, e.g., ion separators and biosensors. Quantitative characterization of ion selectivities in nanopores often employs the Nernst or Goldman-Hodgkin-Katz (GHK) equation to interpret transmembrane potentials. However, the direction of the measured transmembrane potential drop is not specified in these equations, and selectivity values calculated using absolute values of transmembrane potentials do not directly reveal the ion for which the membrane is selective. Moreover, researchers arbitrarily choose whether to use the Nernst or GHK equation and overlook the significant differences between them, leading to ineffective quantitative comparisons between studies. This work addresses these challenges through (a) specifying the transmembrane potential (sign) and salt concentrations in terms of working and reference electrodes and the solutions in which they reside when using the Nernst and GHK equations, (b) reporting of both Nernst-selectivity and GHK-selectivity along with solution compositions and transmembrane potentials when comparing different nanopores/channels, and (c) performing simulations to define an ideal selectivity for nanochannels. Experimental and modeling studies provide significant insight into these fundamental equations and guidelines for the development of nanopore/channel-based devices.
Collapse
Affiliation(s)
- Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Jinfeng Wang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Andriy Yaroshchuk
- Department of Chemical Engineering, Polytechnic University of Catalonia-Barcelona Tech, Avenida Diagonal 647, Barcelona 08028, Spain
- ICREA, pg.L.Companys 23, 08010 Barcelona, Spain
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Normal University, Xinxiang 453007, China
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
17
|
Sun C, Ma H, Yu F, Xia S. Preparation and evaluation of hydroxyethyl cellulose-based functional polymer for highly efficient utilization of heavy oil under the harsh reservoir environments. Int J Biol Macromol 2024; 259:128972. [PMID: 38151086 DOI: 10.1016/j.ijbiomac.2023.128972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Emulsification viscosity reduction and subsequent demulsification are effective strategies to improve the utilization rate of heavy oil. However, traditional surfactants are challenged by unsatisfactory salt tolerance, inadequate stability in emulsification, difficulty in demulsification and pollution problem of oily wastewater discharge. To realize the feasibility and environment-friendliness of heavy oil utilization in the harsh reservoir environments, we designed a functional polymer and conducted a comprehensive evaluation using heavy oil samples from Chenping oil well in Shengli Oilfield. It was synthesized by grafting two hydrophobic monomers, lauryl methacrylate (LMA) and N, N-Diethylaminomethyl methacrylate (DEAEMA), onto the hydrophilia hydroxyethyl cellulose (HEC) by free-radical polymerization. The viscosity reduction rate can reach 99.57 % even under the high salinity of 26,050 mg/L. The stable oil-in-water (O/W) emulsion can be maintained for >48 h, satisfying the actual requirements for heavy oil recovery. Moreover, the emulsion can be completely demulsified in a CO2 atmosphere within 30 min, suggesting its satisfactory demulsification performance. Our study achieved the one-step transformation of heavy oil emulsion between emulsification and demulsification, which provides a green bio-based material and an ingenious strategy for enhanced oil recovery and other chemical engineering applications including oil/water separation.
Collapse
Affiliation(s)
- Caixia Sun
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hao Ma
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fuce Yu
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuqian Xia
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
18
|
Li C, Zhai Y, Jiang H, Li S, Liu P, Gao L, Jiang L. Bioinspired light-driven chloride pump with helical porphyrin channels. Nat Commun 2024; 15:832. [PMID: 38280867 PMCID: PMC10821862 DOI: 10.1038/s41467-024-45117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Halorhodopsin, a light-driven chloride pump, utilizes photonic energy to drive chloride ions across biological membranes, regulating the ion balance and conveying biological information. In the light-driven chloride pump process, the chloride-binding chromophore (protonated Schiff base) is crucial, able to form the active center by absorbing light and triggering the transport cycle. Inspired by halorhodopsin, we demonstrate an artificial light-driven chloride pump using a helical porphyrin channel array with excellent photoactivity and specific chloride selectivity. The helical porphyrin channels are formed by a porphyrin-core star block copolymer, and the defects along the channels can be effectively repaired by doping a small number of porphyrins. The well-repaired porphyrin channel exhibits the light-driven Cl- migration against a 3-fold concentration gradient, showing the ion pumping behavior. The bio-inspired artificial light-driven chloride pump provides a prospect for designing bioinspired responsive ion channel systems and high-performance optogenetics.
Collapse
Affiliation(s)
- Chao Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yi Zhai
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Heming Jiang
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Siqi Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Pengxiang Liu
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Longcheng Gao
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
| | - Lei Jiang
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
19
|
Liu YL, Yu SY, An R, Miao Y, Jiang D, Ye D, Xu JJ, Zhao WW. A Fast and Reversible Responsive Bionic Transmembrane Nanochannel for Dynamic Single-Cell Quantification of Glutathione. ACS NANO 2023; 17:17468-17475. [PMID: 37602689 DOI: 10.1021/acsnano.3c05825] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Biological channels can rapidly and continuously modulate ion transport behaviors in response to external stimuli, which play essential roles in manipulating physiological and pathological processes in cells. Here, to mimic the biological channels, a bionic nanochannel is developed by synergizing a cationic silicon-substituted rhodamine (SiRh) with a glass nanopipette for transmembrane single-cell quantification. Taking the fast and reversible nucleophilic addition reaction between glutathione (GSH) and SiRh, the bionic nanochannel shows a fast and reversible response to GSH, with its inner-surface charges changing between positive and negative charges, leading to a distinct and reversible switch in ionic current rectification (ICR). With the bionic nanochannel, spatiotemporal-resolved operation is performed to quantify endogenous GSH in a single cell, allowing for monitoring of intracellular GSH fluctuation in tumor cells upon photodynamic therapy and ferroptosis. Our results demonstrate that it is a feasible tool for in situ quantification of the endogenous GSH in single cells, which may be adapted to addressing other endogenous biomolecules in single cells by usage of other stimuli-responsive probes.
Collapse
Affiliation(s)
- Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Li C, Liu P, Zhi Y, Zhai Y, Liu Z, Gao L, Jiang L. Ultra-mechanosensitive Chloride Ion Transport through Bioinspired High-Density Elastomeric Nanochannels. J Am Chem Soc 2023; 145:19098-19106. [PMID: 37603884 DOI: 10.1021/jacs.3c07675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Mechanosensitive ion channels play crucial roles in physiological activities, where small mechanical stimuli induce the membrane tension, trigger the ion channels' deformation, and are further transformed into significant electrochemical signals. Artificial ion channels with stiff moduli have been developed to mimic mechanosensory behaviors, exhibiting an electrochemical response by the high-pressure-induced flow. However, fabricating flexible mechanosensitive channels capable of regulating specific ion transporting upon dramatic deformation has remained a challenge. Here, we demonstrate bioinspired high-density elastomeric channels self-assembled by polyisoprene-b-poly4-vinylpyridine, which exhibit ultra-mechanosensitive chloride ion transport resulting from nanochannel deformation. The PI-formed continuous elastic matrix can transmit external forces into internal tensions, while P4VP forms transmembrane chloride channels that undergo dramatic deformation and respond to mechanical stimuli. The integrated and flexible chloride channels present a dramatic and stable electrochemical signal toward a low pressure of 0.2 mbar. This research first demonstrates the artificial mechanosensory chloride channels, which could provide a promising avenue for designing flexible and responsive channel systems.
Collapse
Affiliation(s)
- Chao Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Pengxiang Liu
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yafang Zhi
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yi Zhai
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhiwen Liu
- Oxford Instrument Technology China, Beijing 100034, P. R China
| | - Longcheng Gao
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lei Jiang
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
21
|
Su S, Liu Y, Li M, Huang H, Xue J. Long-Term Evolution of Vacancies in Large-Area Graphene. ACS OMEGA 2022; 7:36379-36386. [PMID: 36278062 PMCID: PMC9583090 DOI: 10.1021/acsomega.2c04121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Devices based on two-dimensional (2D) materials such as graphene and molybdenum disulfide have shown extraordinary potential in physics, nanotechnology, and electronics. The performances of these applications are heavily affected by defects in utilized materials. Although great efforts have been spent in studying the formation and property of various defects in 2D materials, the long-term evolution of vacancies is still unclear. Here, using a designed program based on the kinetic Monte Carlo method, we systematically investigate the vacancy evolution in monolayer graphene on a long-time and large spatial scale, focusing on the variation of the distribution of different vacancy types. In most cases, the vacancy distribution remains nearly unchanged during the whole evolution, and most of the evolution events are vacancy migrations with a few being coalescences, while it is extremely difficult for multiple vacancies to dissolve. The probabilities of different categories of vacancy evolutions are determined by their reaction rates, which, in turn, depend on corresponding energy barriers. We further study the influences of different factors such as the energy barrier for vacancy migration, coalescence, and dissociation on the evolution, and the coalescence energy barrier is found to be dominant. These findings indicate that vacancies (also subnanopores) in graphene are thermodynamically stable for a long period of time, conducive to subsequent characterizations or applications. Besides, this work provides hints to tune the ultimate vacancy distribution by changing related factors and suggests ways to study the evolution of other defects in various 2D materials.
Collapse
Affiliation(s)
- Shihao Su
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| | - Yong Liu
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| | - Man Li
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| | - Huaqing Huang
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| | - Jianming Xue
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| |
Collapse
|