1
|
Wang J, Gao SN, Liu A, He L, Zhao X. Non vertical ionization-dissociation model for strong IR induced dissociation dynamics of [Formula: see text]. Sci Rep 2025; 15:117. [PMID: 39747152 PMCID: PMC11695604 DOI: 10.1038/s41598-024-83209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Electron-nuclear coupling plays a crucial role in strong laser induced molecular dissociation dynamics. The interplay between electronic and nuclear degrees of freedom determines the pathways and outcomes of molecular fragmentation. However, a full quantum mechanical treatment of electron-nuclear dynamics is computationally intensive. In this work, we have developed a Strong Laser Induced non-adiabatic Multi-Ionic-Multi-Electric States (SLIMIMES) approach, which contains the electron-laser and electron-nuclear couplings. We validate our model using a showcase example: water dissociation under strong infrared (IR) laser pulses. Our investigation reveals the predominant role of a non-vertical dissociation pathway in the photo-ionization dissociation (PID) process of [Formula: see text]. This pathway originates from neutral [Formula: see text], which undergoes vertical multi-photon-single-ionization, reaching the intermediate dissociation states of [Formula: see text] within [Formula: see text]. Subsequently, [Formula: see text] dissociates into [Formula: see text], with both [Formula: see text] and [Formula: see text] fragments potentially ionizing an electron during interaction with the IR laser. This sequential PID pathway significantly contributes to the dissociation yields of water dication. Our calculations are consistent with recent experimental data, which focus on measuring the branching ratio of water dication dissociation. We aim for our model to provide a deeper understanding and a fresh perspective on the coupling between electron and nuclear dynamics induced by a strong IR laser field.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Shu Ning Gao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Aihua Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Lanhai He
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, People's Republic of China.
| | - Xi Zhao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Iskandar W, Rescigno TN, Orel AE, Larsen KA, Severt T, Streeter ZL, Jochim B, Griffin B, Call D, Davis V, McCurdy CW, Lucchese RR, Williams JB, Ben-Itzhak I, Slaughter DS, Weber T. Tracking ultrafast non-adiabatic dissociation dynamics of the deuterated water dication molecule. J Chem Phys 2024; 161:044311. [PMID: 39056387 DOI: 10.1063/5.0219029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
We applied reaction microscopy to elucidate fast non-adiabatic dissociation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV with synchrotron radiation. For the very rare D+ + O+ + D breakup channel, the particle momenta, angular, and energy distributions of electrons and ions, measured in coincidence, reveal distinct electronic dication states and their dissociation pathways via spin-orbit coupling and charge transfer at crossings and seams on the potential energy surfaces. Notably, we could distinguish between direct and fast sequential dissociation scenarios. For the latter case, our measurements reveal the geometry and orientation of the deuterated water molecule with respect to the polarization vector that leads to this rare 3-body molecular breakup channel. Aided by multi-reference configuration-interaction calculations, the dissociation dynamics could be traced on the relevant potential energy surfaces and particularly their crossings and seams. This approach also unraveled the ultrafast time scales governing these processes.
Collapse
Affiliation(s)
- W Iskandar
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T N Rescigno
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A E Orel
- Chemical Engineering, University of California, Davis, California 95616, USA
| | - K A Larsen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720, USA
| | - T Severt
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Z L Streeter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - B Jochim
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - B Griffin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - D Call
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - V Davis
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - C W McCurdy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - R R Lucchese
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J B Williams
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - I Ben-Itzhak
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - D S Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T Weber
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Bagdia C, Severt T, Iwamoto N, Filinovich A, Rescigno TN, Orel AE, Carnes KD, Ben-Itzhak I. Direct Measurement of Charge Transfer Probability during Photodissociation of Few-keV OD + Beam. J Phys Chem Lett 2024; 15:6859-6865. [PMID: 38922646 PMCID: PMC11229692 DOI: 10.1021/acs.jpclett.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
We have measured the photodissociation of few-keV OD+ molecular ions into either D+ + O or O+ + D final products. The three-dimensional momentum imaging measurements of the light and massive fragments in coincidence were enabled by using an upgraded two-detector setup. In this work, we show that absorption of a single 790 or 395 nm photon excites the OD+ from its electronic ground state to the B Σ - 3 state, which dissociates to the O+(4S) + D dissociation limit. To reach the other nearly degenerate dissociation limit, D+ + O(3P), a unimolecular charge transfer, B Σ - 3 to X Σ - 3 , transition is required following the same photoexcitation. The measured branching ratio of these dissociation channels is a direct measure of the charge transfer transition probability. This measured probability as a function of energy above the dissociation limit agrees well with our calculations.
Collapse
Affiliation(s)
- Chandan Bagdia
- J.
R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - T. Severt
- J.
R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Naoki Iwamoto
- J.
R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anjali Filinovich
- J.
R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - T. N. Rescigno
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - A. E. Orel
- Chemical
Engineering, University of California, Davis, Davis, California 95616, United States
| | - K. D. Carnes
- J.
R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - I. Ben-Itzhak
- J.
R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
4
|
Lam HVS, Venkatachalam AS, Bhattacharyya S, Chen K, Borne K, Wang E, Boll R, Jahnke T, Kumarappan V, Rudenko A, Rolles D. Differentiating Three-Dimensional Molecular Structures Using Laser-Induced Coulomb Explosion Imaging. PHYSICAL REVIEW LETTERS 2024; 132:123201. [PMID: 38579208 DOI: 10.1103/physrevlett.132.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/12/2024] [Indexed: 04/07/2024]
Abstract
Coulomb explosion imaging (CEI) with x-ray free electron lasers has recently been shown to be a powerful method for obtaining detailed structural information of gas-phase planar ring molecules [R. Boll et al., X-ray multiphoton-induced Coulomb explosion images complex single molecules, Nat. Phys. 18, 423 (2022).NPAHAX1745-247310.1038/s41567-022-01507-0]. In this Letter, we investigate the potential of CEI driven by a tabletop laser and extend this approach to differentiating three-dimensional structures. We study the static CEI patterns of planar and nonplanar organic molecules that resemble the structures of typical products formed in ring-opening reactions. Our results reveal that each molecule exhibits a well-localized and distinctive pattern in three-dimensional fragment-ion momentum space. We find that these patterns yield direct information about the molecular structures and can be qualitatively reproduced using a classical Coulomb explosion simulation. Our findings suggest that laser-induced CEI can serve as a robust method for differentiating molecular structures of organic ring and chain molecules. As such, it holds great promise as a method for following ultrafast structural changes, e.g., during ring-opening reactions, by tracking the motion of individual atoms in pump-probe experiments.
Collapse
Affiliation(s)
- Huynh Van Sa Lam
- James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | - Keyu Chen
- James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | - Kurtis Borne
- James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | - Enliang Wang
- James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | - Vinod Kumarappan
- James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | - Artem Rudenko
- James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | - Daniel Rolles
- James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
5
|
Rajput J, Garg D, Cassimi A, Fléchard X, Rangama J, Safvan CP. Addressing three-body fragmentation of methane dication using "native frames": Evidence of internal excitation in fragments. J Chem Phys 2023; 159:184303. [PMID: 37955322 DOI: 10.1063/5.0171881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
The three body fragmentation of methane dication has been studied using the technique of cold target recoil ion momentum spectroscopy. The process is initiated by impact of energetic Ar9+ ions on neutral methane and the data is subsequently collected in coincidence with Ar8+ projectile. By analysing the dissociation channels leading to (H + H+ + CH2+) and (H + H2+ + CH+) fragments, it is concluded that these fragments are formed in a sequential manner via formation of molecular intermediates CH3+ and CH2+ respectively. It is shown that these molecular intermediates carry a few eVs as their internal energies, part of which is released when they emit an H-atom with the open possibility that the final detected fragments may still be internally excited. This was accomplished by analysing the two-steps of the sequential process in their own native frames. For a molecular system having three-dimensional structure, our results prove to be an ideal example to highlight the importance of using native frames for correct interpretation of the obtained results. Our results indicate that the dissociation of methane dication can be a major source of production of H-atoms in addition to H+ fragments with the probability of the two being of similar order.
Collapse
Affiliation(s)
- Jyoti Rajput
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Diksha Garg
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - A Cassimi
- CIMAP, CEA-CNRS-ENSICAEN-UNICAEN, Normandie Université, F-14050 Caen Cedex 04, France
| | - X Fléchard
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France
| | - J Rangama
- CIMAP, CEA-CNRS-ENSICAEN-UNICAEN, Normandie Université, F-14050 Caen Cedex 04, France
| | - C P Safvan
- Inter-University Accelerator Centre, New Delhi 110067, India
| |
Collapse
|
6
|
Iskandar W, Rescigno TN, Orel AE, Severt T, Larsen KA, Streeter ZL, Jochim B, Griffin B, Call D, Davis V, McCurdy CW, Lucchese RR, Williams JB, Ben-Itzhak I, Slaughter DS, Weber T. Efficiency of charge transfer in changing the dissociation dynamics of OD+ transients formed after the photo-fragmentation of D2O. J Chem Phys 2023; 159:094301. [PMID: 37668253 DOI: 10.1063/5.0159300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
We present an investigation of the relaxation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV. We focus on the very rare D+ + O+ + D reaction channel in which the sequential fragmentation mechanisms were found to dominate the dynamics. Aided by theory, the state-selective formation and breakup of the transient OD+(a1Δ, b1Σ+) is traced, and the most likely dissociation path-OD+: a1Δ or b1Σ+ → A 3Π → X 3Σ- → B 3Σ--involving a combination of spin-orbit and non-adiabatic charge transfer transitions is determined. The multi-step transition probability of this complex transition sequence in the intermediate fragment ion is directly evaluated as a function of the energy of the transient OD+ above its lowest dissociation limit from the measured ratio of the D+ + O+ + D and competing D+ + D+ + O sequential fragmentation channels, which are measured simultaneously. Our coupled-channel time-dependent dynamics calculations reproduce the general trends of these multi-state relative transition rates toward the three-body fragmentation channels.
Collapse
Affiliation(s)
- W Iskandar
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T N Rescigno
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A E Orel
- Chemical Engineering, University of California, Davis, California 95616, USA
| | - T Severt
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - K A Larsen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720, USA
| | - Z L Streeter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - B Jochim
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - B Griffin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - D Call
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - V Davis
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - C W McCurdy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - R R Lucchese
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J B Williams
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - I Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - D S Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Th Weber
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Guillemin R, Inhester L, Ilchen M, Mazza T, Boll R, Weber T, Eckart S, Grychtol P, Rennhack N, Marchenko T, Velasquez N, Travnikova O, Ismail I, Niskanen J, Kukk E, Trinter F, Gisselbrecht M, Feifel R, Sansone G, Rolles D, Martins M, Meyer M, Simon M, Santra R, Pfeifer T, Jahnke T, Piancastelli MN. Isotope effects in dynamics of water isotopologues induced by core ionization at an x-ray free-electron laser. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:054302. [PMID: 37799711 PMCID: PMC10550338 DOI: 10.1063/4.0000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Dynamical response of water exposed to x-rays is of utmost importance in a wealth of science areas. We exposed isolated water isotopologues to short x-ray pulses from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we identify significant structural dynamics with characteristic isotope effects in H2O2+, D2O2+, and HDO2+, such as asymmetric bond elongation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. A method to disentangle the sequences of events taking place upon the consecutive absorption of two x-ray photons is described. The obtained deep look into structural properties and dynamics of dissociating water isotopologues provides essential insights into the underlying mechanisms.
Collapse
Affiliation(s)
- R. Guillemin
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - L. Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - T. Mazza
- European XFEL, 22869 Schenefeld, Germany
| | - R. Boll
- European XFEL, 22869 Schenefeld, Germany
| | - Th. Weber
- Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720, USA
| | - S. Eckart
- Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt am Main, Germany
| | | | | | - T. Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - N. Velasquez
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - O. Travnikova
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - I. Ismail
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - J. Niskanen
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - E. Kukk
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | | | | | - R. Feifel
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - G. Sansone
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - D. Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - M. Martins
- Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
| | - M. Meyer
- European XFEL, 22869 Schenefeld, Germany
| | - M. Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | | | - T. Pfeifer
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - T. Jahnke
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - M. N. Piancastelli
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| |
Collapse
|
8
|
Iskandar W, Rescigno TN, Orel AE, Larsen KA, Griffin B, Call D, Davis V, Jochim B, Severt T, Williams JB, Ben-Itzhak I, Slaughter DS, Weber T. Atomic autoionization in the photo-dissociation of super-excited deuterated water molecules fragmenting into D + + O + + D. Phys Chem Chem Phys 2023; 25:21562-21572. [PMID: 37545426 DOI: 10.1039/d3cp02438e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We present the relaxation dynamics of deuterated water molecules via autoionization, initiated by the absorption of a 61 eV photon, producing the very rare D+ + O+ + D breakup channel. We employ the COLd target recoil ion momentum spectroscopy method to measure the 3D momenta of the ionic fragments and emitted electrons from the dissociating molecule in coincidence. We interpret the results using the potential energy surfaces extracted from multi-reference configuration interaction calculations. The measured particle energy distributions can be related to a super-excited monocationic state located above the double ionization threshold of D2O. The autoionized electron energy shows a sharp distribution centered around 0.5 eV, which is a signature of the atomic oxygen autoionization occurring in the direct and sequential dissociation processes of D2O+* at a large internuclear distance. In this way, an O+ radical fragment and a low-energy electron are created, both of which can trigger secondary reactions in their environment.
Collapse
Affiliation(s)
- W Iskandar
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA.
| | - T N Rescigno
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA.
| | - A E Orel
- Department of Chemical Engineering, University of California, Davis, CA-95616, USA
| | - K A Larsen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA.
- Graduate Group in Applied Science and Technology, University of California, Berkeley, CA-94720, USA
| | - B Griffin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA.
- Department of Physics, University of Nevada, Reno, NV-89557, USA
| | - D Call
- Department of Physics, University of Nevada, Reno, NV-89557, USA
| | - V Davis
- Department of Physics, University of Nevada, Reno, NV-89557, USA
| | - B Jochim
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS-66506, USA
| | - T Severt
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS-66506, USA
| | - J B Williams
- Department of Physics, University of Nevada, Reno, NV-89557, USA
| | - I Ben-Itzhak
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS-66506, USA
| | - D S Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA.
| | - Th Weber
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA.
| |
Collapse
|
9
|
Crane SW, Lee JWL, Ashfold MNR, Rolles D. Molecular photodissociation dynamics revealed by Coulomb explosion imaging. Phys Chem Chem Phys 2023. [PMID: 37335247 DOI: 10.1039/d3cp01740k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Coulomb explosion imaging (CEI) methods are finding ever-growing use as a means of exploring and distinguishing the static stereo-configurations of small quantum systems (molecules, clusters, etc). CEI experiments initiated by ultrafast (femtosecond-duration) laser pulses also allow opportunities to track the time-evolution of molecular structures, and thereby advance understanding of molecular fragmentation processes. This Perspective illustrates two emerging families of dynamical studies. 'One-colour' studies (employing strong field ionisation driven by intense near infrared or single X-ray or extreme ultraviolet laser pulses) afford routes to preparing multiply charged molecular cations and exploring how their fragmentation progresses from valence-dominated to Coulomb-dominated dynamics with increasing charge and how this evolution varies with molecular size and composition. 'Two-colour' studies use one ultrashort laser pulse to create electronically excited neutral molecules (or monocations), whose structural evolution is then probed as a function of pump-probe delay using an ultrafast ionisation pulse along with time and position-sensitive detection methods. This latter type of experiment has the potential to return new insights into not just molecular fragmentation processes but also charge transfer processes between moieties separating with much better defined stereochemical control than in contemporary ion-atom and ion-molecule charge transfer studies.
Collapse
Affiliation(s)
- Stuart W Crane
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jason W L Lee
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Howard AJ, Britton M, Streeter ZL, Cheng C, Forbes R, Reynolds JL, Allum F, McCracken GA, Gabalski I, Lucchese RR, McCurdy CW, Weinacht T, Bucksbaum PH. Filming enhanced ionization in an ultrafast triatomic slingshot. Commun Chem 2023; 6:81. [PMID: 37106058 PMCID: PMC10140156 DOI: 10.1038/s42004-023-00882-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Filming atomic motion within molecules is an active pursuit of molecular physics and quantum chemistry. A promising method is laser-induced Coulomb Explosion Imaging (CEI) where a laser pulse rapidly ionizes many electrons from a molecule, causing the remaining ions to undergo Coulomb repulsion. The ion momenta are used to reconstruct the molecular geometry which is tracked over time (i.e., filmed) by ionizing at an adjustable delay with respect to the start of interatomic motion. Results are distorted, however, by ultrafast motion during the ionizing pulse. We studied this effect in water and filmed the rapid "slingshot" motion that enhances ionization and distorts CEI results. Our investigation uncovered both the geometry and mechanism of the enhancement which may inform CEI experiments in many other polyatomic molecules.
Collapse
Affiliation(s)
- Andrew J Howard
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Mathew Britton
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | - Zachary L Streeter
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Joshua L Reynolds
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Felix Allum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gregory A McCracken
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Ian Gabalski
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Robert R Lucchese
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - C William McCurdy
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Philip H Bucksbaum
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
- Department of Physics, Stanford University, Stanford, CA, 94305, USA.
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| |
Collapse
|
11
|
Cheng C, Frasinski LJ, Moğol G, Allum F, Howard AJ, Rolles D, Bucksbaum PH, Brouard M, Forbes R, Weinacht T. Multiparticle Cumulant Mapping for Coulomb Explosion Imaging. PHYSICAL REVIEW LETTERS 2023; 130:093001. [PMID: 36930921 DOI: 10.1103/physrevlett.130.093001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
We extend covariance velocity map ion imaging to four particles, establishing cumulant mapping and allowing for measurements that provide insights usually associated with coincidence detection, but at much higher count rates. Without correction, a fourfold covariance analysis is contaminated by the pairwise correlations of uncorrelated events, but we have addressed this with the calculation of a full cumulant, which subtracts pairwise correlations. We demonstrate the approach on the four-body breakup of formaldehyde following strong field multiple ionization in few-cycle laser pulses. We compare Coulomb explosion imaging for two different pulse durations (30 and 6 fs), highlighting the dynamics that can take place on ultrafast timescales. These results have important implications for Coulomb explosion imaging as a tool for studying ultrafast structural changes in molecules, a capability that is especially desirable for high-count-rate x-ray free-electron laser experiments.
Collapse
Affiliation(s)
- Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Leszek J Frasinski
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Gönenç Moğol
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|