1
|
Wang J, Deng Z, Ou X, Chen X, Yang S, Zhang J, He X, Sun J, Kwok RTK, Lam JWY, Tang BZ. Fluorescence tracking of inter- and intramolecular motion in zwitterionic aggregate. Natl Sci Rev 2025; 12:nwaf113. [PMID: 40330046 PMCID: PMC12051867 DOI: 10.1093/nsr/nwaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Ionic aggregates are among the most common forms of matter, yet the investigation of their molecular motion is often constrained by the instability of isolated anions and cations, as well as the lack of real-time monitoring techniques. This study presents a zwitterionic strategy that integrates both cations and anions into one fluorescent organic framework, forming a zwitterionic molecule. The zwitterionic strategy simplifies the intricate cation-anion systems that are typically found in conventional inorganic salts and imparts them with fluorescent properties, facilitating real-time tracking of ionic-interaction-induced molecular motion within ionic aggregates. Specifically, a blue shift in the fluorescence wavelength signified changes in aggregate states due to intermolecular motion, whereas a decrease in intensity was linked to intramolecular-motion-caused conformational changes. This spontaneous molecular motion enabled dynamic switching of the excited state energy-decay pathway, leading to switchable color-light responses. Overall, the zwitterionic strategy offers a novel framework for exploring the properties and behaviors of molecules in ionic aggregates.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Zihao Deng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xinmeng Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Shengyi Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xuan He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
2
|
Ji T, Yang X, Chen Q, Zhang H. Decimeter-length elastic organic crystals capable of mechanical post-processing and optical waveguide modulation at 77 K. Chem Sci 2025; 16:8099-8107. [PMID: 40206544 PMCID: PMC11977401 DOI: 10.1039/d4sc07313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
The development of decimeter-length organic crystals that remain elastic, functional, and machinable at extremely low temperatures, such as in liquid nitrogen (LN) environments, is a great challenge. Here, we report two novel elastic organic crystals, 1 and 2, derived from mono-benzene compounds. Crystals 1 are elastically bendable with decimeter-scale length (>10 cm) and exhibit better elastic bending ability at LN temperature compared to room temperature. In contrast, centimeter-length crystals 2 show reduced elasticity at LN temperature. Notably, crystals 1 can be cut and stripped at LN temperature. To the best of our knowledge, this is the first report on the cryogenic machinability of organic crystals. By crystallographic analyses of 1 and 2, intermolecular interactions are shown to be responsible for their distinct crystal habits and cryogenic machinability. In addition, after stripping, crystals 1 exhibit programmable optical waveguide properties that vary in proportion to the crystal width and thus have the potential for applications as tunable wavelength modulators, capable of real-time two-dimensional motion detection in cryogenic environments. This material not only advances the field of flexible organic crystals but also opens up new possibilities for the development of smart materials that can be used under extreme conditions.
Collapse
Affiliation(s)
- Tingting Ji
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Xuesong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Quanliang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
3
|
Yang X, Jin L, Sun J, Yue Y, Ye K, Liu C, Chen C, Li L, Naumov P, Lu R. Head-to-Tail Packing to Facilitate [2+2] Cycloaddition for Green Synthesis of Cyclobutane Derivatives in Specific Configuration. Chemistry 2025; 31:e202500442. [PMID: 40097355 DOI: 10.1002/chem.202500442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Topological [2+2] cycloaddition is known to provide a convenient synthetic route for cyclobutane derivatives from favorably dispositioned dienes. In this study, new (2Z,4E)-2-(2,4-difluorophenyl)-5-phenylpenta-2,4-dienenitrile (HDE), (2Z,4E)-2-(2,4-difluorophenyl)-5-(p-tolyl)penta-2,4-dienenitrile (MeDE), (2Z,4E)-5-(4-chlorophenyl)-2-(2,4-difluorophenyl)penta-2,4-dienenitrile (ClDE), (2Z,4E)-5-(4-bromophenyl)-2-(2,4-difluorophenyl)penta-2,4-dienenitrile (BrDE), (2Z,4E)-2-(2,4-difluorophenyl)-5-(4-methoxyphenyl) penta-2,4-dienenitrile (MeODE), and (2Z,4E)-2-(2,4-difluorophenyl)-5-(4-(dimethylamino)phenyl)penta-2,4-dienenitrile (MeNDE) were synthesized, and their reactivity and selectivity were investigated in relation to their molecular packing in the respective crystals. HDE and MeDE, with head-to-tail (HT) arrangement, yielded only one type of photodimer. On the contrary, ClDE and BrDE, with head-to-head (HH) packing, and where the "olefin pairsα,β-α,β" and "olefin pairsγ,δ-γ,δ" satisfy Schimdt's criteria, reacted to a mixture of photoproducts. Kinetics analysis suggests that the reaction rates of HDE and MeDE are higher than those of ClDE and BrDE. This observation may be due to the strong non-covalent interactions between the potentially reactive olefin pairs as suggested by energy decomposition analysis. Furthermore, the reaction activation energies for photodimerization of the HT-packed olefin pairs are indeed lower than those of the HH-arranged ones. The HT packing of the diphenyldienes not only enhances the reactivity in the topological [2+2] cycloaddition but also contributes chemospecificity, regiospecifity, and stereospecificity, all of which are essential for the preparation of specific cyclobutanes derivatives based on photodimerization.
Collapse
Affiliation(s)
- Xiqiao Yang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Liuyang Jin
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jingbo Sun
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Yuan Yue
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Kaiqi Ye
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Cheng Liu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Chao Chen
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
- Novel Materials Development Lab, Sorbonne University Abu Dhabi, Abu Dhabi, 38044, United Arab Emirates
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
- Center for Smart Engineering Materials, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Boulevard Krste Misirkov 2, MK‒1000, Skopje, Macedonia
- Department of Chemistry, Molecular Design Institute, New York University, 100 Washington Square East, New York, New York, 10003, USA
| | - Ran Lu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
4
|
Cassiano TSA, Pereira Junior ML, de Oliveira Neto PH, Ribeiro Junior LA. Determining charge transport regimes in organic molecular crystals: a machine learning framework. Phys Chem Chem Phys 2025; 27:7053-7067. [PMID: 40105500 DOI: 10.1039/d4cp04185b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Charge transport performance in organic molecular crystals (OMCs) is crucial for advancements in nanotechnology. Experiments have shown metallic-like and semiconducting charge transport regimes in OMCs, mediated by free electrons with Bloch-like oscillations (BOs) and polaronic states. In metallic-like regimes, the charge propagates as a wave, while in semiconducting regimes, it travels as a quasi-particle coupling charge with a cloud of lattice phonons. While the conditions for polaronic states in OMCs are well-established, those enabling BOs still need to be understood. In this study, we identify the electronic and structural properties of OMCs that favor the formation of polarons or BOs by analyzing their linear and wave transport properties. We employ semiempirical non-adiabatic dynamical simulations at the picosecond scale and machine learning methods to map the parameter spaces where the charge transport occurs via polarons or BOs. The dynamical simulations are based on a general model Hamiltonian developed to address OMCs. Our results reveal that increasing the electronic transfer rate between molecules, the crystal's speed of sound, and its metallicity favors the formation of BOs. BOs in OMCs can exhibit frequencies around 2 THz and current amplitudes up to 3000 |e| ps-1, opening up possibilities for high-frequency applications. Conversely, large polarons are predominantly formed based on the interplay between intra- and intermolecular electron-lattice interactions.
Collapse
Affiliation(s)
- T S A Cassiano
- Institute of Physics, University of Brasília, 70910-900 Brasília, Brazil.
| | - M L Pereira Junior
- College of Technology, Department of Electrical Engineering, University of Brasília, 70910-900 Brasília, Brazil
| | - P H de Oliveira Neto
- Institute of Physics, University of Brasília, 70910-900 Brasília, Brazil.
- University of Brasília, International Center of Physics, 70919-970, Brazil
| | - L A Ribeiro Junior
- Institute of Physics, University of Brasília, 70910-900 Brasília, Brazil.
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, 70910-900 Brasília, Brazil
| |
Collapse
|
5
|
Zhou Z, Joshi VC, Guo Y, Xiang T, Wang Z, Sun CC. How elastically flexible can molecular crystals be? - a new record. Chem Sci 2025; 16:5797-5802. [PMID: 40123691 PMCID: PMC11927576 DOI: 10.1039/d5sc01260k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
The elastic strain limit, which quantifies the elastic flexibility of a material, is critical for technological applications of functional materials in a number of fields. Although the elastic flexibility of molecular crystals has been recognized, the extent of elastic flexibility of such materials remains to be defined. Here, we report a molecular crystal, i.e., form I polymorph of celecoxib (CEL), exhibiting exceptional elastic flexibility with an elastic strain of at least 8.70%. The record high elastic strain is accompanied by low Young's modulus (E = 3.18 ± 1.01 GPa) and hardness (H = 39.8 ± 15.6 MPa), as determined by single crystal nanoindentation, along with the high plasticity of the bulk powder observed in in-die Heckel analysis.
Collapse
Affiliation(s)
- Zhengzheng Zhou
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University Guangzhou Guangdong 510515 China
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Vikram Chandrashekhar Joshi
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Yiwang Guo
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Tianyi Xiang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Zijian Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
6
|
Thompson AJ, Chong BSK, Kenny EP, Evans JD, Powell JA, Spackman MA, McMurtrie JC, Powell BJ, Clegg JK. Origins of elasticity in molecular materials. NATURE MATERIALS 2025; 24:356-360. [PMID: 39984738 DOI: 10.1038/s41563-025-02133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/03/2025] [Indexed: 02/23/2025]
Abstract
Elasticity is ubiquitous and produces a spontaneously reversible response to applied stress1. Despite the utility and importance of this property in regard to scientific and engineering applications, the atomic-scale location of the force that returns an object to its original shape remains elusive in molecular crystals. Here we use a series of density functional theory calculations to locate precisely where the energy is stored when single crystals of three molecular materials are placed under elastic stress. We show for each material that different intermolecular interactions are responsible for the restoring force under both expansive and compressive strain. These findings provide insight into the elastic behaviour of crystalline materials that is needed for more efficient design of flexible technologies and future smart devices.
Collapse
Affiliation(s)
- Amy J Thompson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bowie S K Chong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elise P Kenny
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
| | - Jack D Evans
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joshua A Powell
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of Chemistry, Texas A & M University, College Station, TX, USA
| | - Mark A Spackman
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia.
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Rohullah M, Chosenyah M, Kumar AV, Chandrasekar R. Cornu-Spiral-Like Organic Crystal Waveguide Providing Discriminatory Optical Pathway for Smart Organic Photonic Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407498. [PMID: 39487632 DOI: 10.1002/smll.202407498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Indexed: 11/04/2024]
Abstract
In the era of artificial intelligence, developing advanced and intelligent photonic circuits has become essential. In this work, the fabrication of a smart organic photonic circuit (OPC), is illustrated which utilizes a Cornu-spiral-like waveguide (CSW) to produce discriminating optical pathways in the circuit. The mechanical flexibility of Schiff base, (E)-1-(((5-iodopyridin-2-yl)imino)methyl)naphthalen-2-ol (IPyIN) facilitates the fabrication of a first-of-its-kind, two-ring-based CSW via the atomic force microscopy cantilever tip-assisted mechanophotonics approach. The photonic studies suggest that the CSW structure routes optical signals in discriminating trajectories. To capitalize on the discriminatory properties of the CSW, two linear waveguides are integrated onto both rings of the CSW to create a smart OPC. This smart OPC can selectively route photons depending on the pathways determined by the CSW to switch it ON or OFF completely depending on partial or complete flow of optical signals in the circuit. Such intelligent photonic circuits are essential for advancing smart technologies.
Collapse
Affiliation(s)
- Mehdi Rohullah
- School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Melchi Chosenyah
- School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Avulu Vinod Kumar
- Molecular Sciences Division, Arizona State University, Tempe, Arizona, 85287, USA
| | - Rajadurai Chandrasekar
- School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
8
|
Zhu X, Xie M, Gao L, Li L, Naumov P, Yu Q, Wang G. Combining Simple Deformations to Elicit Complex Motions and Directed Swimming of Smart Organic Crystals with Controllable Thickness. Angew Chem Int Ed Engl 2025; 64:e202416950. [PMID: 39487561 DOI: 10.1002/anie.202416950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
The lack of control over the crystal growth in a systematic way currently stands as an unsurmountable impediment to the preparation of dynamic crystals as soft robots; in effect, the mechanical effects of molecular crystals have become a subject of scattered reports that pertain only to specific crystal sizes and actuation conditions, often without the ability to establish or confirm systematic trends. One of the factors that prevents the verification of such performance is the unavailability of strategies for effectively controlling crystal size and aspect ratio, where crystals of serendipitous size are harvested from crystallization solution. Here we devised a water-assisted precipitation method to prepare crystals of chemical variants of 9-anthracene derivatives with various thicknesses that respond to ultraviolet light with simple mechanical effects, including bending, splintering, and rotation. By capitalizing on the robust mechanical flexibility and deformability of crystals, we demonstrate systematic variations in crystal deformation that are further elevated in complexity to construct crystal-based robots capable of controllable motions reminiscent of sailing and humanoid movements. The results illustrate an approach to eliminate one of the critical obstacles towards complete control over the motility of dynamic molecular crystals as microrobots in non-aerial environments.
Collapse
Affiliation(s)
- Xiaotong Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Mengyuan Xie
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Lin Gao
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, United Arab Emirates
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Qi Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Guoming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| |
Collapse
|
9
|
Zhao T, A S, Ma Y, Wang N, Liu F, Su Z. Organoboron Polymorphs with Different Molecular Packing Modes for Optical Waveguides. Chemistry 2024; 30:e202402290. [PMID: 39092488 DOI: 10.1002/chem.202402290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Organoboron compounds offer a new strategy to design optoelectronic materials with high fluorescence efficiency. In this paper, the organoboron compound B-BNBP with double B←N bridged bipyridine bearing four fluorine atoms as core unit is facilely synthesized and exhibits a narrowband emission spectrum and a high photoluminescence quantum yield (PLQY) of 86.53 % in solution. Its polymorphic crystals were controllable prepared by different solution self-assembly methods. Two microcrystals possess different molecular packing modes, one-dimensional microstrips (1D-MSs) for H-aggregation and two-dimensional microdisks (2D-MDs) for J-aggregation, owing to abundant intermolecular interactions of four fluorine atoms sticking out conjugated plane. Their structure-property relationships were investigated by crystallographic analysis and theoretical calculation. Strong emission spectra with the full width at half maximum (FWHM) of less than 30 nm can also be observed in thin film and 2D-MDs. 1D-MSs possess thermally activated delayed fluorescence (TADF) property and exhibit superior optical waveguide performance with an optical loss of 0.061 dB/μm. This work enriches the diversity of polymorphic microcrystals and further reveals the structure-property relationship in organoboron micro/nano-crystals.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Suru A
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Yurong Ma
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Nan Wang
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Fangbin Liu
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| |
Collapse
|
10
|
Matsumoto N, Nakagawa S, Morisato K, Kanamori K, Nakanishi K, Yanai N. Crystalline organic monoliths with bicontinuous porosity. Chem Sci 2024; 15:11500-11506. [PMID: 39055017 PMCID: PMC11268461 DOI: 10.1039/d4sc01650e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Organic crystals are a promising class of materials for various optical applications. However, it has been challenging to make macroscopic organic crystals with bicontinuous porosity that are applicable to flow chemistry. In this study, a new class of porous materials, cm-scale crystalline organic monoliths (COMs) with bicontinuous porosity, are synthesized by replicating the porous structure of silica monolith templates. The COMs composed of p-terphenyl can take up more than 30 wt% of an aqueous solution, and the photophysical properties of the p-terphenyl crystals are well maintained in the COMs. The relatively high surface area of the COMs can be exploited for efficient Dexter energy transfer from triplet sensitizers on the pore surface. The resulting triplet excitons in the COMs encounter and annihilate, generating upconverted UV emission. The COMs would open a new avenue toward applications of organic crystals in flow photoreaction systems.
Collapse
Affiliation(s)
- Naoto Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Sakura Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kei Morisato
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
- PRESTO, JST Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| | - Kazuki Nakanishi
- Institute of Materials and Systems for Sustainability, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8601 Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- FOREST, JST Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
- CREST, JST Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
11
|
Kusumoto S, Wakabayashi K, Rakumitsu K, Harrowfield J, Kim Y, Koide Y. Photo- and Stress-Induced Bending of (E)-1,2-Bis(pyridinium-4-yl)ethene Dinitrate Crystals. Chemistry 2024; 30:e202401564. [PMID: 38797716 DOI: 10.1002/chem.202401564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
We report on the elastic and photodynamic properties of (E)-1,2-bis(pyridinium-4-yl)ethene dinitrate [H2Ebpe](NO3)2, whose needle-like crystals can be reversibly deformed by applying external mechanical stress. The macro-scale mechanical properties of [H2Ebpe](NO3)2 crystals were quantified by a three-point bending test, which gave a stress-strain curve with an elastic modulus of 1.18 GPa, and its values are lower than those of other flexible elastic organic crystals. It can also be reversibly bent through the [2+2] cycloaddition reaction of the olefin moiety, depending on the direction of UV irradiation.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Kaede Wakabayashi
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Kenta Rakumitsu
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino, Tokyo, 180-8633, Japan
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, Strasbourg, 67083, France
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yoshihiro Koide
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| |
Collapse
|
12
|
Almehairbi M, Joshi VC, Irfan A, Saeed ZM, Alkhidir T, Abdelhaq AM, Managutti PB, Dhokale B, Jadhav T, Calvin Sun C, Mohamed S. Surface Engineering of the Mechanical Properties of Molecular Crystals via an Atomistic Model for Computing the Facet Stress Response of Solids. Chemistry 2024; 30:e202400779. [PMID: 38613428 DOI: 10.1002/chem.202400779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Dynamic molecular crystals are an emerging class of crystalline materials that can respond to mechanical stress by dissipating internal strain in a number of ways. Given the serendipitous nature of the discovery of such crystals, progress in the field requires advances in computational methods for the accurate and high-throughput computation of the nanomechanical properties of crystals on specific facets which are exposed to mechanical stress. Here, we develop and apply a new atomistic model for computing the surface elastic moduli of crystals on any set of facets of interest using dispersion-corrected density functional theory (DFT-D) methods. The model was benchmarked against a total of 24 reported nanoindentation measurements from a diverse set of molecular crystals and was found to be generally reliable. Using only the experimental crystal structure of the dietary supplement, L-aspartic acid, the model was subsequently applied under blind test conditions, to correctly predict the growth morphology, facet and nanomechanical properties of L-aspartic acid to within the accuracy of the measured elastic stiffness of the crystal, 24.53±0.56 GPa. This work paves the way for the computational design and experimental realization of other functional molecular crystals with tailor-made mechanical properties.
Collapse
Affiliation(s)
- Mubarak Almehairbi
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Vikram C Joshi
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Ahamad Irfan
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Zeinab M Saeed
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Tamador Alkhidir
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Aya M Abdelhaq
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Praveen B Managutti
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Chemical Crystallography Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Bhausaheb Dhokale
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Thaksen Jadhav
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Sharmarke Mohamed
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Chemical Crystallography Laboratory, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
13
|
Li J, Chen S, Xu B, He Z, Yuan Q, Gan W. Temperature-Modulated Evolution of Surface Structures Induces Significant Enhancement of Two-Photon Fluorescent Emission from a Dye Molecule. J Phys Chem B 2024; 128:6400-6409. [PMID: 38914939 DOI: 10.1021/acs.jpcb.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fluorescence is an essential property of molecules and materials that plays a pivotal role across various areas such as lighting, sensing, imaging, and other applications. For instance, temperature-sensitive fluorescence emission is widely utilized for chemo-/biosensing but usually decreases the intensity upon the increase in temperature. In this study, we observed a temperature-induced enhancement of up to ∼150 times in two-photon fluorescence (TPF) emission from a dye molecule, 4-(4-diethylaminostyry)-1-methylpyridinium iodide (D289), as it interacted with binary complex vesicles composed of two commonly applied surfactants: sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). By employing second harmonic generation (SHG) and TPF techniques, we clearly revealed the temperature-dependent kinetic behavior of D289 on the surface of the vesicles and utilized it to interpret the origin of the significant TPF enhancement. Additionally, we also demonstrated a similar heating-induced enhancement of the TPF emission from D289 on the membrane of phospholipid vesicles, indicating the potential application of TPF in temperature sensing in the biology systems. The embedding of D289 in the tightly packed alkane chains was identified as the key factor in enhancing the TPF emission from D289. This finding may provide valuable information for synthesizing fluorescence materials with a high optical yield.
Collapse
Affiliation(s)
- Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Zikai He
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
14
|
Choi C, Choi J, Jo JS, Jeon GW, Lee KW, Park DH, Jang JW. Photoluminescence variations in organic fluorescent crystals by changing the surface energy of the substrate. J Colloid Interface Sci 2024; 663:379-386. [PMID: 38412723 DOI: 10.1016/j.jcis.2024.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Organic fluorescent crystals were obtained using single-benzene-based diethyl 2,5-dihydroxyterephthalate (DDT) molecules through crystallization from a droplet of the DDT solution on an Au substrate. To control the size of the DDT crystals, the surface energy of the Au substrate was modified with air plasma treatment, producing a hydrophilic surface and a hydrophobic self-assembled monolayer (SAM) coating. The size of DDT crystals increased as the surface energy of the substrate decreased. The averaged cross-section area of the DDT crystals on the Au substrates increased in the order of the air-plasma-treated substrate (∼23.43 μm2) < pristine substrate (∼225.6 μm2) < hydrophobic SAM-coated substrate (∼2240 μm2). On the other hand, the main emission of the DDT crystals redshifted from blue to green as the crystal size increased, which is related to the aggregation of the DDT crystals. Moreover, the coffee-ring effect during the DDT crystallization was hindered by controlling the solvent evaporation conditions. As examples of the application of the proposed technique, patterned DDT crystals were obtained using selectively patterned hydrophobic and hydrophilic substrates.
Collapse
Affiliation(s)
- Chiwon Choi
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Jinho Choi
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Sik Jo
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Wan Jeon
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyu Won Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Dong Hyuk Park
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Jae-Won Jang
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
15
|
Chai Y, Li T, Zhang M, Liu M, Yang G, Karvinen P, Kuittinen M, Kang G. Brilliant quantum dots' photoluminescence from a dual-resonance plasmonic grating. OPTICS EXPRESS 2024; 32:19950-19962. [PMID: 38859116 DOI: 10.1364/oe.521561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Semiconductor quantum dots (QDs) have recently caused a stir as a promising and powerful lighting material applied in real-time fluorescence detection, display, and imaging. Photonic nanostructures are well suited for enhancing photoluminescence (PL) due to their ability to tailor the electromagnetic field, which raises both radiative and nonradiative decay rate of QDs nearby. However, several proposed structures with a complicated manufacturing process or low PL enhancement hinder their application and commercialization. Here, we present two kinds of dual-resonance gratings to effectively improve PL enhancement and propose a facile fabrication method based on holographic lithography. A maximum of 220-fold PL enhancement from CdSe/CdS/ZnS QDs are realized on 1D Al-coated photoresist (PR) gratings, where dual resonance bands are excited to simultaneously overlap the absorption and emission bands of QDs, much larger than those of some reported structures. Giant PL enhancement realized by cost-effective method further suggests the potential of better developing the nanostructure to QD-based optical and optoelectronic devices.
Collapse
|
16
|
Tardío C, Pinilla-Peñalver E, Donoso B, Torres-Moya I. Tunable Unexplored Luminescence in Waveguides Based on D-A-D Benzoselenadiazoles Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:822. [PMID: 38786779 PMCID: PMC11124293 DOI: 10.3390/nano14100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
A set of novel Donor-Acceptor-Donor (D-A-D) benzoselenadiazole derivatives has been synthesized and crystallized in nanocrystals in order to explore the correlation between their chemical structure and the waveguided luminescent properties. The findings reveal that all crystals exhibit luminescence and active optical waveguiding, demonstrating the ability to adjust their luminescence within a broad spectral range of 550-700 nm depending on the donor group attached to the benzoselenadiazole core. Notably, a clear relationship exists between the HOMO-LUMO energy gaps of each compound and the color emission of the corresponding optical waveguides. These outcomes affirm the feasibility of modifying the color emission of organic waveguides through suitable chemical functionalization. Importantly, this study marks the first utilization of benzoseleniadiazole derivatives for such purposes, underscoring the originality of this research. In addition, the obtention of nanocrystals is a key tool for the implementation of miniaturized photonic devices.
Collapse
Affiliation(s)
- Carlos Tardío
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, Instituto Regional de Investigación Científica Aplicada (IRICA), University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Esther Pinilla-Peñalver
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Avenue Camilo José Cela, s/n, 13071 Ciudad Real, Spain;
| | - Beatriz Donoso
- Department of Organic Chemistry, Faculty of Sciences, Campus of Fuentenueva, University of Granada, 18071 Granada, Spain;
| | - Iván Torres-Moya
- Department of Organic Chemistry, Faculty of Chemical Sciences, Campus of Espinardo, University of Murcia, 30010 Murcia, Spain
| |
Collapse
|
17
|
Zhang X, Song JX, Chang X, Li K, Chen Y. Thermally Activated Delayed Fluorescent Binuclear Copper(I) Alkynyl Complexes with Cuprophilic Interactions. Chemistry 2024; 30:e202304224. [PMID: 38414117 DOI: 10.1002/chem.202304224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Copper(I)-based thermally activated delayed fluorescence (TADF) emitters have been conceived to be promising candidates for display and lighting applications because of their multifarious structures and strong photoluminescence. Herein a string of binuclear Cu(I) complexes bearing pronounced cuprophilic interactions have been designed and synthesized. [Cu2(dppb)2(μ2-η1-C≡C-Ph)2] (1 a) and [Cu2(dppb)2(μ2-η1-C≡C-PPXZ)2] (1 b) display photoluminescence quantum yields of up to 67 % in doped films and solid states via TADF and exhibit reversible bicolor luminescence switching upon mechanical stimuli. Computational studies manifest that the metal-to-ligand charge transfer predominant transitions ensure a small energy splitting (ΔEST) between the lowest singlet (S1) and triplet (T1) excited states and cuprophilic interactions promote the spin-orbit coupling (SOC), favoring the reverse intersystem crossing (RISC) process. This study provides a new strategy for the construction of stimuli-responsive metal-based TADF materials.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jia-Xi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Kai Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
18
|
Wei C, Li L, Zheng Y, Wang L, Ma J, Xu M, Lin J, Xie L, Naumov P, Ding X, Feng Q, Huang W. Flexible molecular crystals for optoelectronic applications. Chem Soc Rev 2024; 53:3687-3713. [PMID: 38411997 DOI: 10.1039/d3cs00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The cornerstones of the advancement of flexible optoelectronics are the design, preparation, and utilization of novel materials with favorable mechanical and advanced optoelectronic properties. Molecular crystalline materials have emerged as a class of underexplored yet promising materials due to the reduced grain boundaries and defects anticipated to provide enhanced photoelectric characteristics. An inherent drawback that has precluded wider implementation of molecular crystals thus far, however, has been their brittleness, which renders them incapable of ensuring mechanical compliance required for even simple elastic or plastic deformation of the device. It is perplexing that despite a plethora of reports that have in the meantime become available underpinning the flexibility of molecular crystals, the "discovery" of elastically or plastically deformable crystals remains limited to cases of serendipitous and laborious trial-and-error approaches, a situation that calls for a systematic and thorough assessment of these properties and their correlation with the structure. This review provides a comprehensive and concise overview of the current understanding of the origins of crystal flexibility, the working mechanisms of deformations such as plastic and elastic bending behaviors, and insights into the examples of flexible molecular crystals, specifically concerning photoelectronic changes that occur in deformed crystals. We hope this summary will provide a reference for future experimental and computational efforts with flexible molecular crystals aimed towards improving their mechanical behavior and optoelectronic properties, ultimately intending to advance the flexible optoelectronic technology.
Collapse
Affiliation(s)
- Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingyao Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, Skopje MK-1000, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Xuehua Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
19
|
Chen Q, Tang B, Ye K, Zhang H. Elastic Organic Crystals Exhibiting Amplified Spontaneous Emission Waveguides with Standard Red Chromaticity of the Rec.2020 Gamut. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311762. [PMID: 38215287 DOI: 10.1002/adma.202311762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Indexed: 01/14/2024]
Abstract
The use of mechanically flexible molecular crystals as optical transuding media is demonstrated for a plethora of applications; however, the spectral peaks of optical outputs located mainly in the range of 400-600 nm are insufficient for practical telecommunication and full-color display applications. Herein, two elastically bendable organic crystals are reported that show red emission of the rec.709 gamut under 365 nm UV light irradiation yet generate rec.2020 gamut red optical waveguides and amplified spontaneous emissions when irradiated by a 355 nm laser. Capitalizing on the extended π-conjugation and donor-acceptor character, as well as mechanical elasticity, these organic crystals exhibit flexible optical waveguides with Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29), nearly identical to the red chromaticity of the rec.2020 gamut required for ultrahigh-definition (UHD) displays. Notably, one of the elastic crystals functions as a soft resonance cavity, resulting in amplified spontaneous emission waveguides with CIE coordinates of (0.71, 0.29) and the standard red chromaticity of the rec.2020 gamut, both in straight and bent states. This study presents a new avenue for the development of high-purity red-emissive crystalline materials to create all-organic, lightweight, and mechanically compliant optical telecommunication and UHD display devices.
Collapse
Affiliation(s)
- Quanliang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, 130012, P. R. China
| | - Baolei Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, 130012, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, 130012, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
20
|
Wang Z, Han W, Shi R, Han X, Zheng Y, Xu J, Bu XH. Mechanoresponsive Flexible Crystals. JACS AU 2024; 4:279-300. [PMID: 38425899 PMCID: PMC10900217 DOI: 10.1021/jacsau.3c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.
Collapse
Affiliation(s)
- Zhihua Wang
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Wenqing Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Rongchao Shi
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Xiao Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yongshen Zheng
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Jialiang Xu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| |
Collapse
|
21
|
Yang X, Al-Handawi MB, Li L, Naumov P, Zhang H. Hybrid and composite materials of organic crystals. Chem Sci 2024; 15:2684-2696. [PMID: 38404393 PMCID: PMC10884791 DOI: 10.1039/d3sc06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Organic molecular crystals have historically been viewed as delicate and fragile materials. However, recent studies have revealed that many organic crystals, especially those with high aspect ratios, can display significant flexibility, elasticity, and shape adaptability. The discovery of mechanical compliance in organic crystals has recently enabled their integration with responsive polymers and other components to create novel hybrid and composite materials. These hybrids exhibit unique structure-property relationships and synergistic effects that not only combine, but occasionally also enhance the advantages of the constituent crystals and polymers. Such organic crystal composites rapidly emerge as a promising new class of materials for diverse applications in optics, electronics, sensing, soft robotics, and beyond. While specific, mostly practical challenges remain regarding scalability and manufacturability, being endowed with both structurally ordered and disordered components, the crystal-polymer composite materials set a hitherto unexplored yet very promising platform for the next-generation adaptive devices. This Perspective provides an in-depth analysis of the state-of-the-art in design strategies, dynamic properties and applications of hybrid and composite materials centered on organic crystals. It addresses the current challenges and provides a future outlook on this emerging class of multifunctional, stimuli-responsive, and mechanically robust class of materials.
Collapse
Affiliation(s)
- Xuesong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Marieh B Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi PO Box 38044 Abu Dhabi UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts Bul. Krste Misirkov 2 MK-1000 Skopje Macedonia
- Molecular Design Institute, Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
22
|
Cassiano TSA, Pereira ML, E Silva GM, de Oliveira Neto PH, Ribeiro LA. Large polarons in two-dimensional fullerene networks: the crucial role of anisotropy in charge transport. NANOSCALE 2024; 16:2337-2346. [PMID: 38086667 DOI: 10.1039/d3nr04920e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The recent synthesis of a two-dimensional quasi-hexagonal-phase monolayer network of C60 molecules, known as qHPC60, holds significant promise for future semiconductor applications. However, the mechanism behind charge transport in these networks remains unknown. In this study, we developed a Holstein-Peierls Hamiltonian model to investigate charge transport in qHPC60, incorporating both local and non-local electron-phonon couplings. Our computational approach involved identifying suitable semi-empirical parameters to realize the formation of stable polarons in this material. The results unveiled the formation of stable large polarons as the primary carriers in the charge transport throughout qHPC60. To explore polaron transport properties, we conducted dynamic simulations within the picosecond time scale while subjecting the system to an external electric field. Our analysis emphasized the substantial influence of anisotropy on shaping mobile polarons, with an anisotropy coefficient of at least 50%. The polarons exhibited velocities within the acoustic regime ranging from 0.5-1.5 nm ps-1. While these velocities are comparable to those observed in high-end organic molecular crystals, they are considerably lower than those in graphene and conducting polymers. With qHPC60 possessing a semiconducting band gap of approximately 1.6 eV, our findings shed light on its potential application in flat electronics, overcoming the null-gap predicament of graphene.
Collapse
Affiliation(s)
- T S A Cassiano
- University of Brasília, Institute of Physics, 70.910-900, Brasília, Brazil.
| | - M L Pereira
- International Center of Physics, Institute of Physics, University of Brasília, Faculty of Technology, Department of Electrical Engineering, 70910-900, Brasília, Brazil
| | - G M E Silva
- University of Brasília, Institute of Physics, 70.910-900, Brasília, Brazil.
| | | | - L A Ribeiro
- University of Brasília, Institute of Physics, 70.910-900, Brasília, Brazil.
- Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, 70910-900, Brasília, Brazil
| |
Collapse
|
23
|
Ghasemlou S, Cuppen HM. Mechanism of Phase Transition in dl-Methionine: Determining Cooperative and Molecule-by-Molecule Transformations. ACS OMEGA 2024; 9:3229-3239. [PMID: 38284040 PMCID: PMC10809693 DOI: 10.1021/acsomega.3c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 01/30/2024]
Abstract
The solid-state phase transition in dl-methionine has been extensively studied because of its atypical behavior. The transition occurs through changes in the molecular conformation and 3D packing of the molecules. Phase transitions in racemic aliphatic amino acid crystals are known to show different behaviors depending on whether conformational changes or packing changes are involved, where the former is thought to proceed through a nucleation-and-growth mechanism in a standard molecule-by-molecule picture, and the latter through a cooperative mechanism. The phase transition of dl-methionine resembles the thermodynamic, kinetic, and structural features of both categories: a conformational change and relative shifts between layers in two directions. The present paper presents molecular dynamics simulations of the phase transition to examine the underlying mechanism from two perspectives: (i) analysis of the scaling behavior of the free energy barriers involved in the phase transition and (ii) a structural inspection of the phase transition. Both methods can help to distinguish between a concerted phase change and a molecule-by-molecule or zip-like mechanism. The free energy predominantly scales with the system size, which suggests a cooperative mechanism. The structural changes draw, however, a slightly more complex picture. The conformational changes appear to occur in a molecule-by-molecule fashion, where the rotational movement is triggered by movement in the same layer. Conformational changes occur on a time scale nearly twice as long as the shifts between layers. Shifts in one direction appear to be less concerted than shifts in the perpendicular direction. We relate this to the edge-free energy involved in these shifts. We believe that the behavior observed in dl-methionine is likely applicable to phase transitions in other layered systems that interact through aliphatic chains as well.
Collapse
Affiliation(s)
- Saba Ghasemlou
- Faculty
of Science, Institute for Molecules and
Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| | - Herma M. Cuppen
- Faculty
of Science, Institute for Molecules and
Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
- Computational
Chemistry Group, Van’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| |
Collapse
|
24
|
Kalita KJ, Mondal S, Reddy CM, Vijayaraghavan RK. Thermally activated delayed fluorescence in a mechanically soft charge-transfer complex: role of the locally excited state. Chem Sci 2023; 14:13870-13878. [PMID: 38075669 PMCID: PMC10699582 DOI: 10.1039/d3sc03267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 10/16/2024] Open
Abstract
Molecular design for thermally activated delayed fluorescence (TADF) necessitates precise molecular geometric requirements along with definite electronic states to ensure high intersystem crossing (ISC) rate and photoluminescence quantum yield (PLQY). Achieving all these requirements synchronously while maintaining ease of synthesis and scalability is still challenging. To circumvent this, our strategy of combining a crystal engineering approach with basic molecular quantum mechanical principles appears promising. A holistic, non-covalent approach for achieving efficient TADF in crystalline materials with distinct mechanical properties is highlighted here. Charge transfer (CT) co-crystals of two carbazole-derived donors (ETC and DTBC) with an acceptor (TFDCNB) molecule are elaborated as a proof-of-concept. Using temperature-dependent steady-state and time-resolved photoluminescence techniques, we prove the need for a donor-centric triplet state (3LE) to ensure efficient TADF. Such intermediate states guarantee a naturally forbidden, energetically uphill reverse intersystem crossing (RISC) process, which is paramount for effective TADF. A unique single-crystal packing feature with isolated D-A-D trimeric units ensured minimal non-radiative exciton loss, leading to a high PLQY and displaying interesting mechanical plastic bending behaviour. Thus, a comprehensive approach involving a non-covalent strategy to circumvent the conflicting requirements of a small effective singlet-triplet energy offset and a high oscillator strength for efficient TADF emitters is achieved here.
Collapse
Affiliation(s)
- Kalyan Jyoti Kalita
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - Saikat Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| |
Collapse
|
25
|
Peng J, Han C, Zhang X, Jia J, Bai J, Zhang Q, Wang Y, Xue P. Mechanical Effects of Elastic Crystals Driven by Natural Sunlight and Force. Angew Chem Int Ed Engl 2023; 62:e202311348. [PMID: 37828622 DOI: 10.1002/anie.202311348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Flexible crystals that can capture solar energy and convert it into mechanical energy are promising for a wide range of applications such as information storage and actuators, but obtaining them remains a challenge. Herein, an elastic crystal of a barbiturate derivative was found to be an excellent candidate, demonstrating plastic bending behavior under natural sunlight irradiation. 1 H NMR and high-resolution mass spectrum data of microcrystals before and after light irradiation demonstrated that light-induced [2+2] cycloaddition was the driving force for the photomechanical effects. Interestingly, the crystals retained elastic bending even after light irradiation. This is the first report of flexible crystals that can be driven by natural sunlight and that have both photomechanical properties and elasticity. Furthermore, regulation of the passive light output direction of the crystals and transport of objects by applying mechanical forces and light was demonstrated.
Collapse
Affiliation(s)
- Jiang Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Chuchu Han
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Xin Zhang
- Aerospace science & industry defense technology research and test center, 100039, Beijing, China
| | - Junhui Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Jiakun Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Qi Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Yan Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Pengchong Xue
- Tianjin key laboratory of structure and performance for functional molecules, College of Chemistry, Tianjin Normal University, 300387, Tianjin, China
| |
Collapse
|
26
|
Feng X, Lin R, Yang S, Xu Y, Zhang T, Chen S, Ji Y, Wang Z, Chen S, Zhu C, Gao Z, Zhao YS. Spatially Resolved Organic Whispering-Gallery-Mode Hetero-Microrings for High-Security Photonic Barcodes. Angew Chem Int Ed Engl 2023; 62:e202310263. [PMID: 37604784 DOI: 10.1002/anie.202310263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Whispering-gallery-mode (WGM) microcavities featuring distinguishable sharp peaks in a broadband exhibit enormous advantages in the field of miniaturized photonic barcodes. However, such kind of barcodes developed hitherto are primarily based on microcavities wherein multiple gain medias were blended into a single matrix, thus resulting in the limited and indistinguishable coding elements. Here, a surface tension assisted heterogeneous assembly strategy is proposed to construct the spatially resolved WGM hetero-microrings with multiple spatial colors along its circular direction. Through precisely regulating the charge-transfer (CT) strength, full-color microrings covering the entire visible range were effectively acquired, which exhibit a series of sharp and recognizable peaks and allow for the effective construction of high-quality photonic barcodes. Notably, the spatially resolved WGM hetero-microrings with multiple coding elements were finally acquired through heterogeneous nucleation and growth controlled by the directional diffusion between the hetero-emulsion droplets, thus remarkably promoting the security strength and coding capacity of the barcodes. The results would be useful to fabricate new types of organic hierarchical hybrid WGM heterostructures for optical information recording and security labels.
Collapse
Affiliation(s)
- Xingwei Feng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Ru Lin
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shuo Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yuyu Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Tongjin Zhang
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shunwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yingke Ji
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shiwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Chaofeng Zhu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
27
|
Wang D, Chen Y, Xia T, Claudino M, Melendez A, Ni X, Dong C, Liu Z, Yang J. Citric Acid-Based Intrinsic Band-Shifting Photoluminescent Materials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0152. [PMID: 37256199 PMCID: PMC10226408 DOI: 10.34133/research.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Citric acid, an important metabolite with abundant reactive groups, has been demonstrated as a promising starting material to synthesize diverse photoluminescent materials including small molecules, polymers, and carbon dots. The unique citrate chemistry enables the development of a series of citric acid-based molecules and nanomaterials with intriguing intrinsic band-shifting behavior, where the emission wavelength shifts as the excitation wavelength increases, ideal for chromatic imaging and many other applications. In this review, we discuss the concept of "intrinsic band-shifting photoluminescent materials", introduce the recent advances in citric acid-based intrinsic band-shifting materials, and discuss their potential applications such as chromatic imaging and multimodal sensing. It is our hope that the insightful and forward-thinking discussion in this review will spur the innovation and applications of the unique band-shifting photoluminescent materials.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Yizhu Chen
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Tunan Xia
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Mariana Claudino
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Allison Melendez
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Xingjie Ni
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
28
|
Xu CF, Liu YP, Yu Y, Meng XY, Zong H, Lv Q, Xia XY, Wang XD, Liao LS. Two-Dimensional Optical Waveguides at Telecom Wavelengths Based on Organic Single-Crystal Microsheets of a Charge Transfer Complex. J Phys Chem Lett 2023; 14:3047-3056. [PMID: 36946651 DOI: 10.1021/acs.jpclett.3c00417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic charge transfer (CT) cocrystals open a new door for the exploitation of low-dimensional near-infrared (NIR) emitters by a convenient self-assembly approach. However, research about the fabrication of sheet-like NIR-emitting microstructures that are significant for structural construction and integrated application is limited by the unidirectional molecular packing mode. Herein, via regulation of the biaxial intermolecular CT interaction, single-crystalline microsheets with remarkable NIR emission from 720 to 960 nm were synthesized via the solution self-assembly process of dithieno[3,2-b:2',3'-d]thiophene and 7,7,8,8-tetracyanoquinodimethane. The expected sheet-like structure is conducive to achieving a two-dimensional (2D) optical waveguide with an ultralow optical loss rate of 0.250 dB/μm at 860 nm. More significantly, these as-prepared organic microsheets with tunable thicknesses (h) from 100 to 1100 nm exhibit thickness-dependent NIR optical transportation performance. These findings could pave the way to a new class of low-dimensional NIR emitters for 2D photonics at telecom wavelengths.
Collapse
Affiliation(s)
- Chao-Fei Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yan-Ping Liu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yue Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xin-Yue Meng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hao Zong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qiang Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xing-Yu Xia
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
29
|
Chen YS, Wang CH, Hu YH, Lu CYD, Yang JS. An Elastic Organic Crystal Enables Macroscopic Photoinduced Crystal Elongation. J Am Chem Soc 2023; 145:6024-6028. [PMID: 36840927 DOI: 10.1021/jacs.2c13210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Among the various types of photomechanical deformations of organic crystals, photoinduced elongation of millimeter-scale crystals has yet to be demonstrated. Here we report that the millimeter-sized crystalline rods of an anthracene-pentiptycene hybrid organic π-system (1) are highly elastic and able to elongate up to 21.6% or 0.40 mm without fragmentation upon undergoing [4 + 4] photodimerization reactions. Both the mechanical and photomechanical effects reveal a strong cohesion of the system, even at the interface of 1 and its photodimer 2 and under the conditions of randomized molecular packing, representing a new class of mechanically adaptive organic crystals.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsuan Hu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Yi David Lu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
30
|
Efficient regulation of active layer morphology and interfacial charge-transfer process by porphyrin-based additive in organic solar cells. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Wu W, Chen K, Zhang X, Wang T, Li S, Zhao H, Zhou L, Huang X, Hao H. Organic Crystals with Response to Multiple Stimuli: Mechanical Bending, Acid-Induced Bending and Heating-Induced Jumping. Chemistry 2023; 29:e202202598. [PMID: 36214731 DOI: 10.1002/chem.202202598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 11/06/2022]
Abstract
Multiple stimuli-responsive molecular crystals are attracting extensive attentions due to their potential as smart materials, such as molecular machines, actuators, and sensors. However, the task of giving a single crystal multiple stimuli-responsive properties remains extremely challenging. Herein, we found two polymorphs (Form O and Form R) of a Schiff base compound, which could respond to multiple stimuli (external force, acid, heat). Form O and Form R have different elastic deformability, which can be attributed to the differences in the molecular conformation, structural packing and intermolecular interactions. Moreover, both polymorphs exhibit reversible bending driven by volatile acid vapor, which we hypothesize is caused by reversible protonation reaction of imines with formic acid. In addition, jumping can be triggered by heating due to the significant anisotropic expansion. The integration of reversible bending and jumping into one single crystal expands the application scope of stimuli-responsive crystalline materials.
Collapse
Affiliation(s)
- Wenbo Wu
- National Engineering Research Centre of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Kui Chen
- National Engineering Research Centre of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiunan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Ting Wang
- Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin, 300072, P. R. China.,National Engineering Research Centre of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuyu Li
- National Engineering Research Centre of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongtu Zhao
- National Engineering Research Centre of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lina Zhou
- Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin, 300072, P. R. China.,National Engineering Research Centre of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xin Huang
- Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin, 300072, P. R. China.,National Engineering Research Centre of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongxun Hao
- Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin, 300072, P. R. China.,National Engineering Research Centre of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|