1
|
Pavani R, Tripathi V, Vrtis KB, Zong D, Chari R, Callen E, Pankajam AV, Zhen G, Matos-Rodrigues G, Yang J, Wu S, Reginato G, Wu W, Cejka P, Walter JC, Nussenzweig A. Structure and repair of replication-coupled DNA breaks. Science 2024; 385:eado3867. [PMID: 38900911 PMCID: PMC11620331 DOI: 10.1126/science.ado3867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Using CRISPR-Cas9 nicking enzymes, we examined the interaction between the replication machinery and single-strand breaks, one of the most common forms of endogenous DNA damage. We show that replication fork collapse at leading-strand nicks generates resected single-ended double-strand breaks (seDSBs) that are repaired by homologous recombination (HR). If these seDSBs are not promptly repaired, arrival of adjacent forks creates double-ended DSBs (deDSBs), which could drive genomic scarring in HR-deficient cancers. deDSBs can also be generated directly when the replication fork bypasses lagging-strand nicks. Unlike deDSBs produced independently of replication, end resection at nick-induced seDSBs and deDSBs is BRCA1-independent. Nevertheless, BRCA1 antagonizes 53BP1 suppression of RAD51 filament formation. These results highlight distinctive mechanisms that maintain replication fork stability.
Collapse
Affiliation(s)
- Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Veenu Tripathi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyle B. Vrtis
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ajith V. Pankajam
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gang Zhen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Jiajie Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuheng Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Giordano Reginato
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Wei Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Petr Cejka
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard University, Boston, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Tameni A, Mallia S, Manicardi V, Donati B, Torricelli F, Vitale E, Salviato E, Gambarelli G, Muccioli S, Zanelli M, Ascani S, Martino G, Sanguedolce F, Sauta E, Tamagnini I, Puccio N, Neri A, Ciarrocchi A, Fragliasso V. HELLS regulates transcription in T-cell lymphomas by reducing unscheduled R-loops and by facilitating RNAPII progression. Nucleic Acids Res 2024; 52:6171-6182. [PMID: 38597676 PMCID: PMC11194065 DOI: 10.1093/nar/gkae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Chromatin modifiers are emerging as major determinants of many types of cancers, including Anaplastic Large Cell Lymphomas (ALCL), a family of highly heterogeneous T-cell lymphomas for which therapeutic options are still limited. HELLS is a multifunctional chromatin remodeling protein that affects genomic instability by participating in the DNA damage response. Although the transcriptional function of HELLS has been suggested, no clues on how HELLS controls transcription are currently available. In this study, by integrating different multi-omics and functional approaches, we characterized the transcriptional landscape of HELLS in ALCL. We explored the clinical impact of its transcriptional program in a large cohort of 44 patients with ALCL. We demonstrated that HELLS, loaded at the level of intronic regions of target promoters, facilitates RNA Polymerase II (RNAPII) progression along the gene bodies by reducing the persistence of co-transcriptional R-loops and promoting DNA damage resolution. Importantly, selective knockdown of HELLS sensitizes ALCL cells to different chemotherapeutic agents, showing a synergistic effect. Collectively, our work unveils the role of HELLS in acting as a gatekeeper of ALCL genome stability providing a rationale for drug design.
Collapse
MESH Headings
- Humans
- RNA Polymerase II/metabolism
- R-Loop Structures
- Transcription, Genetic
- DNA Damage
- Cell Line, Tumor
- Genomic Instability/genetics
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Gene Expression Regulation, Neoplastic
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Promoter Regions, Genetic
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
Collapse
Affiliation(s)
- Annalisa Tameni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Selene Mallia
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Elisa Salviato
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Giulia Gambarelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Silvia Muccioli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Magda Zanelli
- Pathology Unit, Department of Oncology, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
- Institute of Hematology and CREO, University of Perugia, Perugia 06129, Italy
| | | | - Elisabetta Sauta
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Ione Tamagnini
- Pathology Unit, Department of Oncology, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Noemi Puccio
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, Viale Umberto I 50, 42123, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| |
Collapse
|
3
|
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu ZX. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol 2024; 15:1379166. [PMID: 38910895 PMCID: PMC11190371 DOI: 10.3389/fphar.2024.1379166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Trifault B, Mamontova V, Cossa G, Ganskih S, Wei Y, Hofstetter J, Bhandare P, Baluapuri A, Nieto B, Solvie D, Ade CP, Gallant P, Wolf E, Larsen DH, Munschauer M, Burger K. Nucleolar detention of NONO shields DNA double-strand breaks from aberrant transcripts. Nucleic Acids Res 2024; 52:3050-3068. [PMID: 38224452 PMCID: PMC11014278 DOI: 10.1093/nar/gkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54nrb marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.
Collapse
Affiliation(s)
- Barbara Trifault
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Victoria Mamontova
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Giacomo Cossa
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sabina Ganskih
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Yuanjie Wei
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Blanca Nieto
- Nucleolar Stress and Disease Group, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
| | - Daniel Solvie
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
| | - Mathias Munschauer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
5
|
Chaturvedi G, Sarusi-Portuguez A, Loza O, Shimoni-Sebag A, Yoron O, Lawrence YR, Zach L, Hakim O. Dose-Dependent Transcriptional Response to Ionizing Radiation Is Orchestrated with DNA Repair within the Nuclear Space. Int J Mol Sci 2024; 25:970. [PMID: 38256047 PMCID: PMC10815587 DOI: 10.3390/ijms25020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Radiation therapy is commonly used to treat glioblastoma multiforme (GBM) brain tumors. Ionizing radiation (IR) induces dose-specific variations in transcriptional programs, implicating that they are tightly regulated and critical components in the tumor response and survival. Yet, our understanding of the downstream molecular events triggered by effective vs. non-effective IR doses is limited. Herein, we report that variations in the genetic programs are positively and functionally correlated with the exposure to effective or non-effective IR doses. Genome architecture analysis revealed that gene regulation is spatially and temporally coordinated with DNA repair kinetics. The radiation-activated genes were pre-positioned in active sub-nuclear compartments and were upregulated following the DNA damage response, while the DNA repair activity shifted to the inactive heterochromatic spatial compartments. The IR dose affected the levels of DNA damage repair and transcription modulation, but not the order of the events, which was linked to their spatial nuclear positioning. Thus, the distinct coordinated temporal dynamics of DNA damage repair and transcription reprogramming in the active and inactive sub-nuclear compartments highlight the importance of high-order genome organization in synchronizing the molecular events following IR.
Collapse
Affiliation(s)
- Garima Chaturvedi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Avital Sarusi-Portuguez
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Ariel Shimoni-Sebag
- Institute of Oncology, Sheba Medical Center, Ramat Gan 5262000, Israel; (A.S.-S.)
| | - Orly Yoron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | | | - Leor Zach
- Institute of Oncology, Tel Aviv Soraski Medical Center, Tel Aviv 6423906, Israel
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| |
Collapse
|
6
|
Jiao X, Di Sante G, Casimiro MC, Tantos A, Ashton AW, Li Z, Quach Y, Bhargava D, Di Rocco A, Pupo C, Crosariol M, Lazar T, Tompa P, Wang C, Yu Z, Zhang Z, Aldaaysi K, Vadlamudi R, Mann M, Skordalakes E, Kossenkov A, Du Y, Pestell RG. A cyclin D1 intrinsically disordered domain accesses modified histone motifs to govern gene transcription. Oncogenesis 2024; 13:4. [PMID: 38191593 PMCID: PMC10774418 DOI: 10.1038/s41389-023-00502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.
Collapse
Affiliation(s)
- Xuanmao Jiao
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | | | - Mathew C Casimiro
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
- Department of Science and Mathematics, Abraham Baldwin Agricultural College, Tifton, GA, 31794, USA
| | - Agnes Tantos
- Institute of Enzymology, Hun-Ren Research Centre for Natural Sciences, Budapest, Hungary
| | - Anthony W Ashton
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, 19003, USA
| | - Zhiping Li
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Yen Quach
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | | | | | - Claudia Pupo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Marco Crosariol
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Peter Tompa
- Institute of Enzymology, Hun-Ren Research Centre for Natural Sciences, Budapest, Hungary
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Chenguang Wang
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhao Zhang
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
| | - Kawthar Aldaaysi
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Ratna Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Monica Mann
- Department of Obstetrics and Gynecology, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | | | | | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
| | - Richard G Pestell
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba.
- The Wistar Institute, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Li Z, Liao Y, Tang C, Xu L, Peng B, Xu X. RBM14 promotes DNA end resection during homologous recombination repair. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1864-1873. [PMID: 37559455 PMCID: PMC10753362 DOI: 10.3724/abbs.2023104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 08/11/2023] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is crucial for the maintenance of genome stability and integrity. In this study, we aim to identify novel RNA binding proteins (RBPs) involved in HR repair because little is known about RBP function in HR. For this purpose, we carry out pulldown assays using a synthetic ssDNA/dsDNA structure coated with replication protein A (RPA) to mimic resected DNA, a crucial intermediate in HR-mediated DSB repair. Using this approach, we identify RNA-binding motif protein 14 (RBM14) as a potential binding partner. We further show that RBM14 interacts with an essential HR repair factor, CtIP. RBM14 is crucial for CtIP recruitment to DSB sites and for subsequent RPA coating and RAD51 replacement, facilitating efficient HR repair. Moreover, inhibition of RBM14 expression sensitizes cancer cells to X-ray irradiation. Together, our results demonstrate that RBM14 promotes DNA end resection to ensure HR repair and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zheng Li
- College of Life SciencesCapital Normal UniversityBeijing100048China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Yanting Liao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Chen Tang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100091China
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM)Dehua HospitalDehua362500China
| | - Linli Xu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| |
Collapse
|
8
|
Gómez-González B, Aguilera A. Break-induced RNA-DNA hybrids (BIRDHs) in homologous recombination: friend or foe? EMBO Rep 2023; 24:e57801. [PMID: 37818834 DOI: 10.15252/embr.202357801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
9
|
Liu Y, Zhang C, Feng J, Wang X, Ding Z, He L, Zhang Q, Chen J, Yin Y. Integrated Photochromic-Photothermal Processes for Catalytic Plastic Upcycling. Angew Chem Int Ed Engl 2023; 62:e202308930. [PMID: 37527972 DOI: 10.1002/anie.202308930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Incorporating high-energy ultraviolet (UV) photons into photothermal catalytic processes may enable photothermal-photochemical synergistic catalysis, which represents a transformative technology for waste plastic recycling. The major challenge is avoiding side reactions and by-products caused by these energetic photons. Here, we break through the limitation of the existing photothermal conversion mechanism and propose a photochromic-photothermal catalytic system based on polyol-ligated TiO2 nanocrystals. Upon UV or sunlight irradiation, the chemically bonded polyols can rapidly capture holes generated by TiO2 , enabling photogenerated electrons to reduce Ti4+ to Ti3+ and produce oxygen vacancies. The resulting abundant defect energy levels boost sunlight-to-heat conversion efficiency, and simultaneously the oxygen vacancies facilitate polyester glycolysis by activating the nucleophilic addition-elimination process. As a result, compared to commercial TiO2 (P25), we achieve 6-fold and 12.2-fold performance enhancements under thermal and photothermal conditions, respectively, while maintaining high selectivity to high-valued monomers. This paradigm-shift strategy directs energetic UV photons for activating catalysts and avoids their interaction with reactants, opening the possibility of substantially elevating the efficiency of more solar-driven catalysis.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Congyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
10
|
Deshpande RA, Marin-Gonzalez A, Barnes HK, Woolley PR, Ha T, Paull TT. Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice. Nat Commun 2023; 14:5759. [PMID: 37717054 PMCID: PMC10505227 DOI: 10.1038/s41467-023-41544-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex recognizes and processes DNA double-strand breaks for homologous recombination by performing short-range removal of 5' strands. Endonucleolytic processing by MRN requires a stably bound protein at the break site-a role we postulate is played by DNA-dependent protein kinase (DNA-PK) in mammals. Here we interrogate sites of MRN-dependent processing by identifying sites of CtIP association and by sequencing DNA-PK-bound DNA fragments that are products of MRN cleavage. These intermediates are generated most efficiently when DNA-PK is catalytically blocked, yielding products within 200 bp of the break site, whereas DNA-PK products in the absence of kinase inhibition show greater dispersal. Use of light-activated Cas9 to induce breaks facilitates temporal resolution of DNA-PK and Mre11 binding, showing that both complexes bind to DNA ends before release of DNA-PK-bound products. These results support a sequential model of double-strand break repair involving collaborative interactions between homologous and non-homologous repair complexes.
Collapse
Affiliation(s)
| | - Alberto Marin-Gonzalez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Hannah K Barnes
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Phillip R Woolley
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|