1
|
Long Y, Dai B, Chang C, Upreti N, Wei L, Zheng L, Zhuang S, Huang TJ, Zhang D. Seeing through arthropod eyes: An AI-assisted, biomimetic approach for high-resolution, multi-task imaging. SCIENCE ADVANCES 2025; 11:eadt3505. [PMID: 40397741 PMCID: PMC12094235 DOI: 10.1126/sciadv.adt3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/14/2025] [Indexed: 05/23/2025]
Abstract
Arthropods have intricate compound eyes and optic neuropils, exhibiting exceptional visual capabilities. Combining the strengths of digital imaging with the features of natural arthropod visual systems offers a promising approach to harness wide-angle vision and depth perception while addressing limitations like low resolving power. Here, we present an artificial intelligence-assisted biomimetic system modeled after arthropod vision. We developed a biomimetic compound eye camera with an effective pixel number of 4.3 megapixels capable of producing full-color panoramic images with a viewing angle of 165° and resolving power of 40 micrometers. Using rich visual information, our system achieves high-fidelity image reconstruction, precise 3D position prediction, high-accuracy classification, and pattern recognition through a multistage neural network. Moreover, our compact biomimetic visual system can simultaneously track the 3D motion of multiple miniature targets independently. The proof-of-concept biomimetic arthropod visual system offers a computational panoramic imaging solution, advancing applications in industry, medicine, and robotics.
Collapse
Affiliation(s)
- Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chenliang Chang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Neil Upreti
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27709, USA
| | - Li Wei
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27709, USA
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
2
|
Gong D, Roh Y, Lee JH, Hwang S, Kim C, Ji K, Kwon G, Back I, Shin D, Lim D, Hong I, Lee D, Koh JS, Kang D, Han S. A shape-reconfigurable electronic composite for stimulus customizable detection via neutral plane shifting. MATERIALS HORIZONS 2025; 12:1303-1313. [PMID: 39618339 DOI: 10.1039/d4mh01012d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Three-dimensional (3D) sensors selectively measure the applied force in a particular direction through the designed shape. However, such a fixed sensor design incurs a relatively low sensitivity and narrow measurement range to forces applied from other directions. Here, we report a shape-reconfigurable electronic composite based on a stiffness-tunable polymer and a crack-based strain sensor. The stiffness-tunable polymer allows a high degree of freedom (DOF) in modifying the shape of the electronic composite in its flexible state, enabling the formation of various 3D structures. This modification involves shifting the neutral plane toward the electrode to prevent fractures in the embedded sensors. After modifying the shape of the soft and flexible electronic composite, the dramatically increased stiffness of the stiffness-tunable polymer enables the maintenance of the reconfigured shape of the electronic composite and amplifies the mechanical signal from the external force of the targeted direction by returning the neutral plane to the original position. We validated the reversible modification of the shape of the electronic composite by demonstrating the increase in sensitivity and measured range for targeted external forces (bending, pressing, and stretching) via sequential changes in the designed shapes (wire, spiral, and spring) compared to the initial shape. This facile approach for shape modification will provide an opportunity to realize versatile shape changes in rigid electronics for user purpose.
Collapse
Affiliation(s)
- Dohyeon Gong
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Yeonwook Roh
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Jae-Hyun Lee
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Suhyeon Hwang
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Changhwan Kim
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Kyungbin Ji
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Gibeom Kwon
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Inryeol Back
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Dongwook Shin
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Daseul Lim
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Insic Hong
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Doohoe Lee
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Je-Sung Koh
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Daeshik Kang
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Seungyong Han
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
3
|
Arriaga-Dávila J, Rosero-Arias C, Jonker D, Córdova-Castro M, Zscheile J, Kirchner R, Aguirre-Soto A, Boyd R, De Leon I, Gardeniers H, Susarrey-Arce A. From Single to Multi-Material 3D Printing of Glass-Ceramics for Micro-Optics. SMALL METHODS 2025:e2401809. [PMID: 39901648 DOI: 10.1002/smtd.202401809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Feynman's statement, "There is plenty of room at the bottom", underscores vast potential at the atomic scale, envisioning microscopic machines. Today, this vision extends into 3D space, where thousands of atoms and molecules are volumetrically patterned to create light-driven technologies. To fully harness their potential, 3D designs must incorporate high-refractive-index elements with exceptional mechanical and chemical resilience. The frontier, however, lies in creating spatially patterned micro-optical architectures in glass and ceramic materials of dissimilar compositions. This multi-material capability enables novel ways of shaping light, leveraging the interaction between diverse interfaced chemical compositions to push optical boundaries. Specifically, it encompasses both multi-material integration within the same architectures and the use of different materials for distinct architectural features in an optical system. Integrating fluid handling systems with two-photon lithography (TPL) provides a promising approach for rapidly prototyping such complex components. This review examines single and multi-material TPL processes, discussing photoresin customization, essential physico-chemical conditions, and the need for cross-scale characterization to assess optical quality. It reflects on challenges in characterizing multi-scale architectures and outlines advancements in TPL for both single and spatially patterned multi-material structures. The roadmap provides a bridge between research and industry, emphasizing collaboration and contributions to advancing micro-optics.
Collapse
Affiliation(s)
- Joel Arriaga-Dávila
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Cristian Rosero-Arias
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
- School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Dirk Jonker
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | | | - Josua Zscheile
- HETEROMERGE GmbH, Gostritzer Str. 61, 01217, Dresden, Germany
| | - Robert Kirchner
- HETEROMERGE GmbH, Gostritzer Str. 61, 01217, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Robert Boyd
- Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Physics, University of Rochester, Rochester, NY, 14627, USA
| | - Israel De Leon
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
- ASML Netherlands B.V., De Run 6501, DR Veldhoven, 5504, The Netherlands
| | - Han Gardeniers
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Arturo Susarrey-Arce
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
4
|
Mahmoud AM, Alghuthaymi MA, Shaban M, Rabia M. A promising eco-friendly and cost-effective photocatalytic rolled graphene oxide/poly(m-methylaniline) core-shell nanocomposite for antimicrobial action. Biotechnol Appl Biochem 2025; 72:43-57. [PMID: 39113229 DOI: 10.1002/bab.2645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/10/2024] [Indexed: 02/06/2025]
Abstract
A new and innovative rolled graphene oxide (roll-GO)/poly-m-methylaniline (PmMA) core-shell nanocomposite has been successfully synthesized using an in situ polymerization technique. This eco-friendly and cost-effective material shows great promise due to its antimicrobial properties. The characterization of the nanocomposite involved X-ray diffraction and Fourier transform infrared spectroscopy to analyze its structure and functional groups, whereas scanning electron microscopy and transmission electron microscopy (TEM) were utilized to examine its morphology. TEM analysis revealed the formation of roll-GO, forming multi-walled tubes with inner and outer diameters of 50 and 70 nm, respectively. Optical analysis demonstrated an enhanced bandgap in the nanocomposite, with bandgap values of 2.38 eV for PmMA, 2.67 eV for roll-GO, and 1.65 eV for roll-GO/PmMA. The antibacterial efficacy of the nanocomposite was tested against Gram-positive bacteria, including Bacillus subtilis and Staphylococcus aureus, as well as Gram-negative bacteria such as Escherichia coli and Salmonella sp. The well diffusion method was used to determine the inhibition zones, revealing that the nanocomposite demonstrated broad-spectrum antibacterial activity against all the pathogens tested. The largest inhibition zones were observed for B. subtilis, followed by S. aureus, E. coli, and Salmonella sp. Notably, the inhibition zones increased when the samples were exposed to light compared to dark conditions, with increases of 33 and 18 mm noted for B. subtilis. This enhanced activity under light exposure is attributed to the photocatalytic properties of the nanocomposite. The antibacterial mechanism is based on both adsorption and degradation processes. Moreover, antibacterial activity was found to increase with increasing concentrations of nanoparticles, ranging from 100 to 500 ppm. This suggests that the nanocomposite has potential as an alternative to antibiotics, especially considering the growing issue of bacterial resistance. The promising results obtained from the inhibition zones make these nanocomposites suitable for various applications. Currently, the research team is working on the development of a prototype utilizing these antimicrobial particles within commercial bottles for sterilization purposes in factories and companies.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | | - Mohamed Shaban
- Physics Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Calin BS, Popescu RC, Tanasa E, Paun IA. Laser-based 3D printing and optical characterization of optical micro-nanostructures inspired by nocturnal insects compound eyes. Sci Rep 2025; 15:3369. [PMID: 39870728 PMCID: PMC11772805 DOI: 10.1038/s41598-025-85829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems. Optimized computer-aided design and laser writing parameters enabled us to reproduce the entire complex architecture of moth compound eyes, with submicrometric spatial accuracy. As such, the laser-imprinted structures consisted in ommatidia-like microstructures with average diameter of about 14 μm, decorated with nipple-like nanopillars between 200 and 400 nm in height and average periodicity of around 450 nm. The dimensions of moth-eye inspired structures deviated by less than 10% from the natural corresponding structures. The optical properties of the moth eyes-inspired microlens arrays were investigated in the infrared (IR) range, between 1000 and 1700 nm. The optical transmission of microlens arrays with nanopillars was up to 17.55% higher than the transmission through microlens arrays without nanopillars. Moreover, the reflection of nanopillar-decorated microlens arrays was up to 0.91% lower than the reflection for microlenses without nanopillars. In addition, the focal spot diameter at 1/e2 for nanopillar-decorated microlens arrays was of 7.64 μm, representing and improvement of 16.5% of focal spot diameter as compared to microlens arrays without nanopillars. Similarly with the IR region, the reflection measured in the Visible range was higher for microlense arrays with nanopillars than the reflection through microlenses arrays without nanopillars. In contrast, in the Visible range the transmission of nanopillar-decorated microlens arrays was lower than the one for microlense arrays without nanopillars, which could be, most likely, assigned to diffraction losses on the nanopillars.
Collapse
Affiliation(s)
- Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Lasers, Plasma and Radiation Physics, Magurele-Ilfov, 077125, Romania
| | - Roxana Cristina Popescu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Bucharest, 060042, Romania
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, Magurele-Ilfov, 077125, Romania
| | - Eugenia Tanasa
- Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Bucharest, 060042, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Lasers, Plasma and Radiation Physics, Magurele-Ilfov, 077125, Romania.
- Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Bucharest, 060042, Romania.
| |
Collapse
|
6
|
Kim HK, Cha YG, Kwon JM, Bae SI, Kim K, Jang KW, Jo YJ, Kim MH, Jeong KH. Biologically inspired microlens array camera for high-speed and high-sensitivity imaging. SCIENCE ADVANCES 2025; 11:eads3389. [PMID: 39742496 DOI: 10.1126/sciadv.ads3389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Nocturnal and crepuscular fast-eyed insects often exploit multiple optical channels and temporal summation for fast and low-light imaging. Here, we report high-speed and high-sensitive microlens array camera (HS-MAC), inspired by multiple optical channels and temporal summation for insect vision. HS-MAC features cross-talk-free offset microlens arrays on a single rolling shutter CMOS image sensor and performs high-speed and high-sensitivity imaging by using channel fragmentation, temporal summation, and compressive frame reconstruction. The experimental results demonstrate that HS-MAC accurately measures the speed of a color disk rotating at 1950 rpm, recording fast sequences at 9120 fps with low noise equivalent irradiance (0.43 μW/cm2). Besides, HS-MAC visualizes the necking pinch-off of a pool fire flame in dim light conditions below one thousandth of a lux. The compact high-speed low-light camera can offer a distinct route for high-speed and low-light imaging in mobile, surveillance, and biomedical applications.
Collapse
Affiliation(s)
- Hyun-Kyung Kim
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Gil Cha
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Myeong Kwon
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang-In Bae
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kisoo Kim
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyung-Won Jang
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Jin Jo
- Unmanned Ground Systems Team, LIGNex1, 333 Pangyo-ro, Bundang-gu, Gyeonggi-do, Seongnam-si 13488, Republic of Korea
| | - Min H Kim
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Xu L, Gui X, Wang C, Wang X, Xue Y, Tao Y, Fan S, Li J, Chu J, Hu Y. Fiber-integrated hybrid achromatic microlenses by combined femtosecond laser 3D printing. OPTICS LETTERS 2024; 49:6849-6852. [PMID: 39602766 DOI: 10.1364/ol.540284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Compact achromats for visible wavelengths are crucial for miniaturized and lightweight full-color endoscopes. Emerging femtosecond laser 3D printing technology offers new possibilities for enhancing the optical performance of miniature imaging lenses on fibers. In this work, we combine refractive and diffractive elements with complementary dispersive properties to create thin, high-performance hybrid achromatic lenses within the visible spectrum, avoiding the use of different optical materials. Using a fiber-integrated hybrid achromatic lens array, clear images are captured across different wavelengths. The fabrication process is carried out using femtosecond laser direct writing (DLW) assisted by femtosecond projection lithography based on a digital micromirror device (DMD). Our work is expected to significantly contribute to the advancement of integrated and miniaturized biomedical imaging devices.
Collapse
|
8
|
Choi C, Lee GJ, Chang S, Song YM, Kim DH. Inspiration from Visual Ecology for Advancing Multifunctional Robotic Vision Systems: Bio-inspired Electronic Eyes and Neuromorphic Image Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412252. [PMID: 39402806 DOI: 10.1002/adma.202412252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Indexed: 11/29/2024]
Abstract
In robotics, particularly for autonomous navigation and human-robot collaboration, the significance of unconventional imaging techniques and efficient data processing capabilities is paramount. The unstructured environments encountered by robots, coupled with complex missions assigned to them, present numerous challenges necessitating diverse visual functionalities, and consequently, the development of multifunctional robotic vision systems has become indispensable. Meanwhile, rich diversity inherent in animal vision systems, honed over evolutionary epochs to meet their survival demands across varied habitats, serves as a profound source of inspirations. Here, recent advancements in multifunctional robotic vision systems drawing inspiration from natural ocular structures and their visual perception mechanisms are delineated. First, unique imaging functionalities of natural eyes across terrestrial, aerial, and aquatic habitats and visual signal processing mechanism of humans are explored. Then, designs and functionalities of bio-inspired electronic eyes are explored, engineered to mimic key components and underlying optical principles of natural eyes. Furthermore, neuromorphic image sensors are discussed, emulating functional properties of synapses, neurons, and retinas and thereby enhancing accuracy and efficiency of robotic vision tasks. Next, integration examples of electronic eyes with mobile robotic/biological systems are introduced. Finally, a forward-looking outlook on the development of bio-inspired electronic eyes and neuromorphic image sensors is provided.
Collapse
Affiliation(s)
- Changsoon Choi
- Center for Quantum Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gil Ju Lee
- School of Electrical and Electronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Liu SB, Liu XN, Fan WJ, Zhang MX, Li L. Compact biologically inspired camera with computational compound eye. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2879-2890. [PMID: 39634310 PMCID: PMC11501750 DOI: 10.1515/nanoph-2023-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/07/2024] [Indexed: 12/07/2024]
Abstract
The growing interests have been witnessed in the evolution and improvement of artificial compound eyes (CE) inspired by arthropods. However, the existing CE cameras are suffering from a defocusing problem due to the incompatibility with commercial CMOS cameras. Inspired by the CEs of South American Shrimps, we report a compact biologically inspired camera that enables wide-field-of-view (FOV), high-resolution imaging and sensitive 3D moving trajectory reconstruction. To overcome the defocusing problem, a deep learning architecture with distance regulation is proposed to achieve wide-range-clear imaging, without any hardware or complex front-end design, which greatly reduces system complexity and size. The architecture is composed of a variant of Unet and Pyramid-multi-scale attention, with designed short, middle and long distance regulation. Compared to the current competitive well-known models, our method is at least 2 dB ahead. Here we describe the high-resolution computational-CE camera with 271 ommatidia, with a weight of 5.4 g an area of 3 × 3 cm2 and 5-mm thickness, which achieves compatibility and integration of CE with commercial CMOS. The experimental result illustrates this computational-CE camera has competitive advantages in enhanced resolution and sensitive 3D live moving trajectory reconstruction. The compact camera has promising applications in nano-optics fields such as medical endoscopy, panoramic imaging and vision robotics.
Collapse
Affiliation(s)
- Shu-Bin Liu
- School of Electronics and Information Engineering, Sichuan University, Chengdu610065, China
| | - Xu-Ning Liu
- School of Electronics and Information Engineering, Sichuan University, Chengdu610065, China
| | - Wei-Jie Fan
- School of Electronics and Information Engineering, Sichuan University, Chengdu610065, China
| | - Meng-Xuan Zhang
- Faculty of Science, The University of Melbourne, Victoria, 3010, Australia
| | - Lei Li
- School of Electronics and Information Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
10
|
Singh P, Dosovitskiy G, Bekenstein Y. Bright Innovations: Review of Next-Generation Advances in Scintillator Engineering. ACS NANO 2024; 18:14029-14049. [PMID: 38781034 PMCID: PMC11155248 DOI: 10.1021/acsnano.3c12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
This review focuses on modern scintillators, the heart of ionizing radiation detection with applications in medical diagnostics, homeland security, research, and other areas. The conventional method to improve their characteristics, such as light output and timing properties, consists of improving in material composition and doping, etc., which are intrinsic to the material. On the contrary, we review recent advancements in cutting-edge approaches to shape scintillator characteristics via photonic and metamaterial engineering, which are extrinsic and introduce controlled inhomogeneity in the scintillator's surface or volume. The methods to be discussed include improved light out-coupling using photonic crystal (PhC) coating, dielectric architecture modification producing the Purcell effect, and meta-materials engineering based on energy sharing. These approaches help to break traditional bulk scintillators' limitations, e.g., to deal with poor light extraction efficiency from the material due to a typically large refractive index mismatch or improve timing performance compared to bulk materials. In the Outlook section, modern physical phenomena are discussed and suggested as the basis for the next generations of scintillation-based detectors and technology, followed by a brief discussion on cost-effective fabrication techniques that could be scalable.
Collapse
Affiliation(s)
- Pallavi Singh
- Solid
State Institute, Technion-Israel Institute
of Technology, Haifa 32000, Israel
| | - Georgy Dosovitskiy
- Solid
State Institute, Technion-Israel Institute
of Technology, Haifa 32000, Israel
| | - Yehonadav Bekenstein
- Solid
State Institute, Technion-Israel Institute
of Technology, Haifa 32000, Israel
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 32000, Israel
- The
Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
11
|
Park J, Kim MS, Kim J, Chang S, Lee M, Lee GJ, Song YM, Kim DH. Avian eye-inspired perovskite artificial vision system for foveated and multispectral imaging. Sci Robot 2024; 9:eadk6903. [PMID: 38809996 DOI: 10.1126/scirobotics.adk6903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Avian eyes have deep central foveae as a result of extensive evolution. Deep foveae efficiently refract incident light, creating a magnified image of the target object and making it easier to track object motion. These features are essential for detecting and tracking remote objects in dynamic environments. Furthermore, avian eyes respond to a wide spectrum of light, including visible and ultraviolet light, allowing them to efficiently distinguish the target object from complex backgrounds. Despite notable advances in artificial vision systems that mimic animal vision, the exceptional object detection and targeting capabilities of avian eyes via foveated and multispectral imaging remain underexplored. Here, we present an artificial vision system that capitalizes on these aspects of avian vision. We introduce an artificial fovea and vertically stacked perovskite photodetector arrays whose designs were optimized by theoretical simulations for the demonstration of foveated and multispectral imaging. The artificial vision system successfully identifies colored and mixed-color objects and detects remote objects through foveated imaging. The potential for use in uncrewed aerial vehicles that need to detect, track, and recognize distant targets in dynamic environments is also discussed. Our avian eye-inspired perovskite artificial vision system marks a notable advance in bioinspired artificial visions.
Collapse
Affiliation(s)
- Jinhong Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Joonsoo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Mincheol Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Gil Ju Lee
- Department of Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Wang X, Li L, Chi Y, Liu J, Yue J, Gao S, Yuan X, Yu Y. Research on key technology of cooled infrared bionic compound eye camera based on small lens array. Sci Rep 2024; 14:11094. [PMID: 38750028 PMCID: PMC11636899 DOI: 10.1038/s41598-024-61606-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 12/14/2024] Open
Abstract
Traditional 2D imaging technologies are limited by the need for a large field of view and their sensitivity to small target motion. Inspired by the characteristics of insect compound eye structure, we propose an infrared bionic compound eye camera based on a small lens array. The camera is composed of 61 small lens arrays mounted on a curved spherical shell and a relay optical system. The imaging device is a high-performance cooled mid-wave infrared detector. This is an innovative design for an infrared biomimetic compound eye camera system that provides a wide field of view and all-day detection capability. Aimed to meet the specified requirements. The optical system achieves a 100% cold-membrane match between the infrared optical system and the cooled detector, and the relay optical system optimizes the large-field aberration by introducing a higher-order aspheric surface and modifying the geometric surface of the lenses. Our entire system enables an observation field angle of108 ∘ × 108 ∘ . The experiments showed that the image quality of the system is high, each ommatidium was effective within the imaging range of the compound eye camera, resulting in an improved signal-to-noise ratio in various scenes.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200028, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
- Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai, 200028, China
| | - Linhan Li
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200028, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
- Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai, 200028, China
| | - Yinghao Chi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200028, China
- Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai, 200028, China
| | - Jie Liu
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200028, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
- Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai, 200028, China
| | - Juan Yue
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200028, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
- Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai, 200028, China
| | - Sili Gao
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200028, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
- Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai, 200028, China.
| | - Xiupeng Yuan
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200028, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
- Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai, 200028, China.
| | - Yang Yu
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200028, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
- Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai, 200028, China.
| |
Collapse
|
13
|
Jing X, Li S, Zhu R, Ning X, Lin J. Miniature bioinspired artificial compound eyes: microfabrication technologies, photodetection and applications. Front Bioeng Biotechnol 2024; 12:1342120. [PMID: 38433824 PMCID: PMC10905626 DOI: 10.3389/fbioe.2024.1342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 03/05/2024] Open
Abstract
As an outstanding visual system for insects and crustaceans to cope with the challenges of survival, compound eye has many unique advantages, such as wide field of view, rapid response, infinite depth of field, low aberration and fast motion capture. However, the complex composition of their optical systems also presents significant challenges for manufacturing. With the continuous development of advanced materials, complex 3D manufacturing technologies and flexible electronic detectors, various ingenious and sophisticated compound eye imaging systems have been developed. This paper provides a comprehensive review on the microfabrication technologies, photoelectric detection and functional applications of miniature artificial compound eyes. Firstly, a brief introduction to the types and structural composition of compound eyes in the natural world is provided. Secondly, the 3D forming manufacturing techniques for miniature compound eyes are discussed. Subsequently, some photodetection technologies for miniature curved compound eye imaging are introduced. Lastly, with reference to the existing prototypes of functional applications for miniature compound eyes, the future development of compound eyes is prospected.
Collapse
Affiliation(s)
- Xian Jing
- College of Electronic Science and Engineering, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Shitao Li
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Rongxin Zhu
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Xiaochen Ning
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Jieqiong Lin
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| |
Collapse
|
14
|
Zhang S, Zhang G, Ding G, Liu Z, Wang B, Wu H, Wei G, Li J, Ye C, Yang S, Wang G. The Synergistic Effect on the Mimetic Optical Structure of Feline Eyes toward Household Health Monitoring of Acute and Chronic Diseases. ACS NANO 2024; 18:4944-4956. [PMID: 38301227 DOI: 10.1021/acsnano.3c10468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A breakthrough in the performance of bionic optical structures will only be achieved if we can obtain an in-depth understanding of the synergy mechanisms operating in natural optical structures and find ways to imitate them. In this work, inspired by feline eyes, an optical substrate that takes advantage of a synergistic effect that occurs between resonant and reflective structures was designed. The synergistic effect between the reflective and resonant components leads to a Raman enhancement factor (EF) of 1.16 × 107, which is much greater than that achieved using the reflective/resonant cavities on their own. Finite-difference time-domain (FDTD) simulations and experimental results together confirm that the mechanism of this synergistic effect is achieved by realizing multiple reflections and repeated absorptions of light, generating a strong local electric field. Thus, a 2-3 order of magnitude increase in sensitivity could be achieved. More importantly, with the homemade centrifugal device, above optical substrates were further used to develop a rapidly highly sensitive household health monitoring system (detection time <3 min). It can thus be used to give early warning of acute diseases with high risk (e.g., acute myocardial infarction (AMI) and cerebral peduncle). Due to the good reusability and storability (9% and 8% reduction in EF after washing 30 times and 9 months of storage, respectively) of the substrates, the substrates thus reduce detection costs (to ∼$1), making them much cheaper to use than the current gold-standard methods (e.g., ∼$16 for gout detection).
Collapse
Affiliation(s)
- Shan Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Guanglin Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zhiduo Liu
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bingkun Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Huijuan Wu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Genwang Wei
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
15
|
Feng X, Li C, Song J, He Y, Qu W, Li W, Guo K, Liu L, Yang B, Wei H. Differential perovskite hemispherical photodetector for intelligent imaging and location tracking. Nat Commun 2024; 15:577. [PMID: 38233400 PMCID: PMC10794423 DOI: 10.1038/s41467-024-44857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Advanced photodetectors with intelligent functions are expected to take an important role in future technology. However, completing complex detection tasks within a limited number of pixels is still challenging. Here, we report a differential perovskite hemispherical photodetector serving as a smart locator for intelligent imaging and location tracking. The high external quantum efficiency (~1000%) and low noise (10-13 A Hz-0.5) of perovskite hemispherical photodetector enable stable and large variations in signal response. Analysing the differential light response of only 8 pixels with the computer algorithm can realize the capability of colorful imaging and a computational spectral resolution of 4.7 nm in a low-cost and lensless device geometry. Through machine learning to mimic the differential current signal under different applied biases, one more dimensional detection information can be recorded, for dynamically tracking the running trajectory of an object in a three-dimensional space or two-dimensional plane with a color classification function.
Collapse
Affiliation(s)
- Xiaopeng Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jinmei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yuhong He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Wei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Weijun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Keke Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Lulu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, P.R. China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, P.R. China.
| |
Collapse
|
16
|
Choi C, Lee GJ, Chang S, Song YM, Kim DH. Nanomaterial-Based Artificial Vision Systems: From Bioinspired Electronic Eyes to In-Sensor Processing Devices. ACS NANO 2024; 18:1241-1256. [PMID: 38166167 DOI: 10.1021/acsnano.3c10181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
High-performance robotic vision empowers mobile and humanoid robots to detect and identify their surrounding objects efficiently, which enables them to cooperate with humans and assist human activities. For error-free execution of these robots' tasks, efficient imaging and data processing capabilities are essential, even under diverse and complex environments. However, conventional technologies fall short of meeting the high-standard requirements of robotic vision under such circumstances. Here, we discuss recent progress in artificial vision systems with high-performance imaging and data processing capabilities enabled by distinctive electrical, optical, and mechanical characteristics of nanomaterials surpassing the limitations of traditional silicon technologies. In particular, we focus on nanomaterial-based electronic eyes and in-sensor processing devices inspired by biological eyes and animal visual recognition systems, respectively. We provide perspectives on key nanomaterials, device components, and their functionalities, as well as explain the remaining challenges and future prospects of the artificial vision systems.
Collapse
Affiliation(s)
- Changsoon Choi
- Center for Optoelectronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gil Ju Lee
- Department of Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Jing X, Zhao P, Wang F, Han M, Lin J. Precise Focal Spot Positioning on an Opaque Substrate Based on the Diffraction Phenomenon in Laser Microfabrication. MICROMACHINES 2023; 14:2256. [PMID: 38138424 PMCID: PMC10745451 DOI: 10.3390/mi14122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The precise positioning of the laser focal spot on the substrate is an important issue for laser microfabrication. In this work, a diffraction pattern-based focal spot positioning method (DFSPM) is proposed to achieve the precise positioning of the laser focal spot on opaque substrates. A series of diffraction patterns of laser focus under-positioning, exact positioning and over-positioning were obtained to investigate the cross-section light distribution of the laser focal spot. According to the monotonic tendency of FWHM to exhibit light intensity at the focal spot cross-section away from the focal plane, the FWHM threshold of polynomial fitted curves was used to determine the exact positioning of laser focus. The ascending scanning method was used to obtain the diffraction patterns at various vertical positions and the FWHM threshold of light distribution at the exact position. The polynomial fitted curves verify the FWHM monotonic tendency of light intensity distribution at the focal spot cross-section along the optical axis. Precise positioning can be achieved with a 100 nm adjustment resolution. This work was expected to provide references for laser microfabrication on opaque materials.
Collapse
Affiliation(s)
- Xian Jing
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Pengju Zhao
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Fuzeng Wang
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Mingkun Han
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Jieqiong Lin
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
18
|
Leng RZ, Yun B, Chen ZH, Chai C, Xu WW, Yu YH, Wang L. High-Transmission Biomimetics Structural Surfaces Produced via Ultrafast Laser Manufacturing. Biomimetics (Basel) 2023; 8:586. [PMID: 38132525 PMCID: PMC10742336 DOI: 10.3390/biomimetics8080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Inspired by periodically aligned micro/nanostructures on biological surfaces, researchers have been fabricating biomimetic structures with superior performance. As a promising and versatile tool, an ultrafast laser combined with other forms of processing technology has been utilized to manufacture functional structures, e.g., the biomimetic subwavelength structures to restrain the surface Fresnel reflectance. In this review paper, we interpret the biomimetic mechanism of antireflective subwavelength structures (ARSSs) for high-transmission windows. Recent advances in the fabrication of ARSSs with an ultrafast laser are summarized and introduced. The limitations and challenges of laser processing technology are discussed, and the future prospects for advancement are outlined, too.
Collapse
Affiliation(s)
- Rui-Zhe Leng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| | - Bi Yun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| | - Zhi-Hao Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| | - Chen Chai
- GRINM Guojing Advanced Materials Co., Ltd., Langfang 065001, China;
| | - Wei-Wei Xu
- School of Electrical and Information Engineering, Jilin Engineering Normal University, Changchun 130052, China;
| | - Yan-Hao Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| |
Collapse
|
19
|
Li L, Shen G. MXene based flexible photodetectors: progress, challenges, and opportunities. MATERIALS HORIZONS 2023; 10:5457-5473. [PMID: 37818551 DOI: 10.1039/d3mh01362f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The growing interest in applying 2D transition-metal carbides and nitrides (MXenes) to diverse application fields such as energy storage and harvesters, catalysts, sensors, optoelectronics, electromagnetic interference shielding and antennas since its first discovery in 2011 is clearly evident. Their intrinsic high conductivity limits the development of MXenes in photodetectors that rely on the semiconducting properties of active materials, while the abundant functional groups on the surface of MXenes provide opportunities for using MXenes as sensing materials in the fabrication of flexible photodetectors. Considerable studies on MXene based photodetectors have been carried out, but the main obstacles include seeking novel semiconducting materials in MXene families, the manufacturing technology, etc. This review highlights the progress, challenges and opportunities in MXene based flexible photodetectors and discusses novel materials, architectures, and approaches that capitalize on our growing understanding of MXenes.
Collapse
Affiliation(s)
- La Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
20
|
Li M, Yue L, Rajan AC, Yu L, Sahu H, Montgomery SM, Ramprasad R, Qi HJ. Low-temperature 3D printing of transparent silica glass microstructures. SCIENCE ADVANCES 2023; 9:eadi2958. [PMID: 37792949 PMCID: PMC10550221 DOI: 10.1126/sciadv.adi2958] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Transparent silica glass is one of the most essential materials used in society and industry, owing to its exceptional optical, thermal, and chemical properties. However, glass is extremely difficult to shape, especially into complex and miniaturized structures. Recent advances in three-dimensional (3D) printing have allowed for the creation of glass structures, but these methods involve time-consuming and high-temperature processes. Here, we report a photochemistry-based strategy for making glass structures of micrometer size under mild conditions. Our technique uses a photocurable polydimethylsiloxane resin that is 3D printed into complex structures and converted to silica glass via deep ultraviolet (DUV) irradiation in an ozone environment. The unique DUV-ozone conversion process for silica microstructures is low temperature (~220°C) and fast (<5 hours). The printed silica glass is highly transparent with smooth surface, comparable to commercial fused silica glass. This work enables the creation of arbitrary structures in silica glass through photochemistry and opens opportunities in unexplored territories for glass processing techniques.
Collapse
Affiliation(s)
- Mingzhe Li
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Arunkumar Chitteth Rajan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Harikrishna Sahu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - S. Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - H. Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Wang JY, Jin F, Dong XZ, Liu J, Zhou MX, Li T, Zheng ML. Dual-Stimuli Cooperative Responsive Hydrogel Microactuators Via Two-Photon Lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303166. [PMID: 37264716 DOI: 10.1002/smll.202303166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Indexed: 06/03/2023]
Abstract
With the development of bionics as well as materials science, intelligent soft actuators have shown promising applications in many fields such as soft robotics, sensing, and remote manipulation. Microfabrication technologies have enabled the reduction of the size of responsive soft actuators to the micron level. However, it is still challenging to construct microscale actuators capable of responding to different external stimuli in complex and diverse conditions. Here, this work demonstrates a dual-stimuli cooperative responsive hydrogel microactuator by asymmetric fabrication via femtosecond laser direct writing. The dual response of the hydrogel microstructure is achieved by employing responsive hydrogel with functional monomer 2-(dimethylamino)ethyl methacrylate. Raman spectra of the hydrogel microstructures suggest that the pH and temperature response of the hydrogel is generated by the changes in tertiary amine groups and hydrogen bonds, respectively. The asymmetric hydrogel microstructures show opposite bending direction when being heated to high temperature or exposed to acid solution, and can independently accomplish the grasp of polystyrene microspheres. Moreover, this work depicts the cooperative response of the hydrogel microactuator to pH and temperature at the same time. The dual-stimuli cooperative responsive hydrogel microactuators will provide a strategy for designing and fabricating controllable microscale actuators with promising applications in microrobotics and microfluidics.
Collapse
Affiliation(s)
- Jian-Yu Wang
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Ming-Xia Zhou
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
22
|
Wang J, Zhou W, Liu Y, He G, Yang Y. Biomimetic Compound Eyes with Gradient Ommatidium Arrays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44503-44512. [PMID: 37675845 DOI: 10.1021/acsami.3c08063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Compound eyes are high-performing natural optical perception systems with compact configurations, generating extensive research interest. Existing compound eye systems are often combinations of simple uniform microlens arrays; there are still challenges in making more ommatidia on the compound eye surface to focus to the same plane. Here, a biomimetic gradient compound eye is presented by artificially mimicking dragonflies. The multiple replication process efficiently endows compound eyes with the gradient characteristics of dragonfly compound eyes. Experimental results show that the manufactured compound eye allows multifocus imaging by virtue of the gradient ommatidium array arranged closely in a honeycomb pattern while ensuring excellent optical properties and compact configurations. Thousands of ommatidia showing a gradient trend at the millimeter scale while remaining relatively uniform at the micron scale have gradient focal lengths ranging from 260 to 450 μm. This gradient compound eye allows more ommatidia to focus on the same plane than traditional uniform compound eyes, which have experimentally been shown to capture more than 1100 in-plane clear images simultaneously, promising potential applications in micro-optical devices, optical imaging, and biochemical sensing.
Collapse
Affiliation(s)
- Jian Wang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Wenna Zhou
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Guoqing He
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
23
|
Kim HW, Cho M, Lee MC. Three-Dimensional (3D) Visualization under Extremely Low Light Conditions Using Kalman Filter. SENSORS (BASEL, SWITZERLAND) 2023; 23:7571. [PMID: 37688025 PMCID: PMC10490719 DOI: 10.3390/s23177571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
In recent years, research on three-dimensional (3D) reconstruction under low illumination environment has been reported. Photon-counting integral imaging is one of the techniques for visualizing 3D images under low light conditions. However, conventional photon-counting integral imaging has the problem that results are random because Poisson random numbers are temporally and spatially independent. Therefore, in this paper, we apply a technique called Kalman filter to photon-counting integral imaging, which corrects data groups with errors, to improve the visual quality of results. The purpose of this paper is to reduce randomness and improve the accuracy of visualization for results by incorporating the Kalman filter into 3D reconstruction images under extremely low light conditions. Since the proposed method has better structure similarity (SSIM), peak signal-to-noise ratio (PSNR) and cross-correlation values than the conventional method, it can be said that the visualization of low illuminated images can be accurate. In addition, the proposed method is expected to accelerate the development of autonomous driving technology and security camera technology.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
| | - Myungjin Cho
- School of ICT, Robotics, and Mechanical Engineering, Hankyong National University, IITC, 327 Chungang-ro, Anseong 17579, Kyonggi-do, Republic of Korea
| | - Min-Chul Lee
- Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
| |
Collapse
|
24
|
Elsayed AM, Alkallas FH, Trabelsi ABG, Rabia M. Highly Uniform Spherical MoO 2-MoO 3/Polypyrrole Core-Shell Nanocomposite as an Optoelectronic Photodetector in UV, Vis, and IR Domains. MICROMACHINES 2023; 14:1694. [PMID: 37763857 PMCID: PMC10534459 DOI: 10.3390/mi14091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
A highly uniform spherical MoO2-MoO3/polypyrrole core-shell nanocomposite has been successfully synthesized as an optoelectronic photon sensing material, capable of detecting light in the UV, Vis, and IR domains. The nanocomposite is prepared through the oxidation of pyrrole using Na2MoO4, resulting in a uniform spherical morphology that has been confirmed by TEM, theoretical modeling, and SEM analyses. This morphology contributes to its promising optical behavior, characterized by a small bandgap of 1.36 eV. The optoelectronic photosensing capability of the nanocomposite has been evaluated across the UV, Vis, and IR spectra, demonstrating high efficiency. The photoresponsivity R values indicate the ability of the nanocomposite to generate hot electrons in response to incident photons. With an R value of 4.15 mA·W-1 at 440 nm, this optoelectronic device exhibits considerable promise for integration into an advanced technological apparatus. The detection (D) value of 9.30 × 108 Jones at 440 nm further confirms the high sensitivity in the Vis region. The excellent stability of the device can be attributed to the inherent MoO2-MoO3 oxide and Ppy polymer materials. This stability has been demonstrated through reproducibility studies and current-voltage measurements under various optical conditions. The combination of stability, efficiency, and sensitivity makes this optoelectronic device well suited for light sensing applications in both industrial and commercial settings. Its promising performance opens up opportunities for advancements in various fields requiring accurate and reliable light detection.
Collapse
Affiliation(s)
- Asmaa M. Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
25
|
Liu J, Chu J, Zhang R, Liu R, Fu J. Wide field of view and full Stokes polarization imaging using metasurfaces inspired by the stomatopod eye. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1137-1146. [PMID: 39634926 PMCID: PMC11501549 DOI: 10.1515/nanoph-2022-0712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 12/07/2024]
Abstract
Wide field of view and polarization imaging capabilities are crucial for implementation of advanced imaging devices. However, there are still great challenges in the integration of such optical systems. Here, we report a bionic compound eye metasurface that can realize full Stokes polarization imaging in a wide field of view. The bionic compound eye metasurface consists of a bifocal metalens array in which every three bifocal metalenses form a subeye. The phase of the bifocal metalens is composed of gradient phase and hyperbolic phase. Numerical simulations show that the bifocal metalens can not only improve the focusing efficiency in the oblique light but also correct the aberration caused by the oblique incident light. And the field of view of the bionic compound eye metasurface can reach 120° × 120°. We fabricated a bionic compound eye metasurface which consists of three subeyes. Experiments show that the bionic compound eye metasurface can perform near diffraction-limited polarization focusing and imaging in a large field of view. The design method is generic and can be used to design metasurfaces with different materials and wavelengths. It has great potential in the field of robot polarization vision and polarization detection.
Collapse
Affiliation(s)
- Jianying Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jinkui Chu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Rui Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jiaxin Fu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| |
Collapse
|
26
|
Wu Q, Zhang S, Liao W, Xu W, Wang T, Zhang H, Shi C. Heterogeneous compound eye camera for dual-scale imaging in a large field of view. OPTICS EXPRESS 2022; 30:45143-45155. [PMID: 36522923 DOI: 10.1364/oe.477391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Multi-scale imaging with large field of view is pivotal for fast motion detection and target identification. However, existing single camera systems are difficult to achieve snapshot multi-scale imaging with large field of view. To solve this problem, we propose a design method for heterogeneous compound eye, and fabricate a prototype of heterogeneous compound eye camera (HeCECam). This prototype which consists of a heterogeneous compound eye array, an optical relay system and a CMOS sensor, is capable of dual-scale imaging in large field of view (360°×141°). The heterogeneous compound eye array is composed of 31 wide-angle (WA) subeyes and 226 high-definition (HD) subeyes. An optical relay system is introduced to re-image the curved focal surface formed by the heterogeneous compound eye array on a CMOS sensor, resulting in a heterogeneous compound eye image containing dual-scale subimages. To verify the imaging characteristics of this prototype, a series of experiments, such as large field of view imaging, imaging performance, and real-world scene imaging, were conducted. The experiment results show that this prototype can achieve dual-scale imaging in large field of view and has excellent imaging performance. This makes the HeCECam has great potential for UAV navigation, wide-area surveillance, and location tracking, and paves the way for the practical use of bio-inspired compound eye cameras.
Collapse
|