1
|
Luo M, Zhang H, Fang F, Luo H. Reactivation of previous decisions repulsively biases sensory encoding but attractively biases decision-making. PLoS Biol 2025; 23:e3003150. [PMID: 40267167 PMCID: PMC12052181 DOI: 10.1371/journal.pbio.3003150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 05/05/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Automatic shaping of perception by past experiences is common in many cognitive functions, reflecting the exploitation of temporal regularities in environments. A striking example is serial dependence, i.e., current perception is biased by previous trials. However, the neural implementation of its operational circle in human brains remains unclear. In two experiments with electroencephalography (EEG)/magnetoencephalography (MEG) recordings and delayed-response tasks, we demonstrate a two-stage 'repulsive-then-attractive' past-present interaction mechanism underlying serial dependence. First, past-trial reports, instead of past stimuli, serve as a prior to be reactivated during both encoding and decision-making. Crucially, past reactivation interacts with current information processing in a two-stage manner: repelling and attracting the present during encoding and decision-making, and arising in the sensory cortex and prefrontal cortex, respectively. Finally, while the early stage occurs automatically, the late stage is modulated by task and predicts bias behavior. These findings might also illustrate general mechanisms of past-present influences in neural operations.
Collapse
Affiliation(s)
- Minghao Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Huihui Zhang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Huan Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| |
Collapse
|
2
|
Leow YN, Barlowe A, Luo C, Osako Y, Jazayeri M, Sur M. Sensory History Drives Adaptive Neural Geometry in LP/Pulvinar-Prefrontal Cortex Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623977. [PMID: 39605622 PMCID: PMC11601498 DOI: 10.1101/2024.11.16.623977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Prior expectations guide attention and support perceptual filtering for efficient processing during decision-making. Here we show that during a visual discrimination task, mice adaptively use prior stimulus history to guide ongoing choices by estimating differences in evidence between consecutive trials (| Δ Dir |). The thalamic lateral posterior (LP)/pulvinar nucleus provides robust inputs to the Anterior Cingulate Cortex (ACC), which has been implicated in selective attention and predictive processing, but the function of the LP-ACC projection is unknown. We found that optogenetic manipulations of LP-ACC axons disrupted animals' ability to effectively estimate and use information across stimulus history, leading to | Δ Dir |-dependent ipsilateral biases. Two-photon calcium imaging of LP-ACC axons revealed an engagement-dependent low-dimensional organization of stimuli along a curved manifold. This representation was scaled by | Δ Dir | in a manner that emphasized greater deviations from prior evidence. Thus, our work identifies the LP-ACC pathway as essential for selecting and evaluating stimuli relative to prior evidence to guide decisions.
Collapse
|
3
|
Vloeberghs R, Urai AE, Desender K, Linderman SW. A Bayesian Hierarchical Model of Trial-To-Trial Fluctuations in Decision Criterion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605869. [PMID: 39211219 PMCID: PMC11361103 DOI: 10.1101/2024.07.30.605869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Classical decision models assume that the parameters giving rise to choice behavior are stable, yet emerging research suggests these parameters may fluctuate over time. Such fluctuations, observed in neural activity and behavioral strategies, have significant implications for understanding decision-making processes. However, empirical studies on fluctuating human decision-making strategies have been limited due to the extensive data requirements for estimating these fluctuations. Here, we introduce hMFC (Hierarchical Model for Fluctuations in Criterion), a Bayesian framework designed to estimate slow fluctuations in the decision criterion from limited data. We first showcase the importance of considering fluctuations in decision criterion: incorrectly assuming a stable criterion gives rise to apparent history effects and underestimates perceptual sensitivity. We then present a hierarchical estimation procedure capable of reliably recovering the underlying state of the fluctuating decision criterion with as few as 500 trials per participant, offering a robust tool for researchers with typical human datasets. Critically, hMFC does not only accurately recover the state of the underlying decision criterion, it also effectively deals with the confounds caused by criterion fluctuations. Lastly, we provide code and a comprehensive demo at www.github.com/robinvloeberghs/hMFC to enable widespread application of hMFC in decision-making research.
Collapse
Affiliation(s)
| | - Anne E. Urai
- Cognitive Psychology, Leiden University, The Netherlands
| | | | - Scott W. Linderman
- Department of Statistics and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Ufer C, Blank H. Opposing serial effects of stimulus and choice in speech perception scale with context variability. iScience 2024; 27:110611. [PMID: 39252961 PMCID: PMC11382034 DOI: 10.1016/j.isci.2024.110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
In this study, we investigated serial effects on the perception of auditory vowel stimuli across three experimental setups with different degrees of context variability. Aligning with recent findings in visual perception, our results confirm the existence of two distinct processes in serial dependence: a repulsive sensory effect coupled with an attractive decisional effect. Importantly, our study extends these observations to the auditory domain, demonstrating parallel serial effects in audition. Furthermore, we uncover context variability effects, revealing a linear pattern for the repulsive perceptual effect and a quadratic pattern for the attractive decisional effect. These findings support the presence of adaptive sensory mechanisms underlying the repulsive effects, while higher-level mechanisms appear to govern the attractive decisional effect. The study provides valuable insights into the interplay of attractive and repulsive serial effects in auditory perception and contributes to our understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Carina Ufer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Brain School, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Helen Blank
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Brain School, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Paunov A, L’Hôtellier M, Guo D, He Z, Yu A, Meyniel F. Multiple and subject-specific roles of uncertainty in reward-guided decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587016. [PMID: 38585958 PMCID: PMC10996615 DOI: 10.1101/2024.03.27.587016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Decision-making in noisy, changing, and partially observable environments entails a basic tradeoff between immediate reward and longer-term information gain, known as the exploration-exploitation dilemma. Computationally, an effective way to balance this tradeoff is by leveraging uncertainty to guide exploration. Yet, in humans, empirical findings are mixed, from suggesting uncertainty-seeking to indifference and avoidance. In a novel bandit task that better captures uncertainty-driven behavior, we find multiple roles for uncertainty in human choices. First, stable and psychologically meaningful individual differences in uncertainty preferences actually range from seeking to avoidance, which can manifest as null group-level effects. Second, uncertainty modulates the use of basic decision heuristics that imperfectly exploit immediate rewards: a repetition bias and win-stay-lose-shift heuristic. These heuristics interact with uncertainty, favoring heuristic choices under higher uncertainty. These results, highlighting the rich and varied structure of reward-based choice, are a step to understanding its functional basis and dysfunction in psychopathology.
Collapse
Affiliation(s)
- Alexander Paunov
- INSERM-CEA Cognitive Neuroimaging Unit (UNICOG), NeuroSpin Center, CEA Paris-Saclay, Gif-sur-Yvette, France Université de Paris, Paris, France
- Institut de Neuromodulation, GHU Paris, Psychiatrie et Neurosciences, Centre Hospitalier Sainte-Anne, Pôle Hospitalo-Universitaire 15, Université Paris Cité, Paris, France
| | - Maëva L’Hôtellier
- INSERM-CEA Cognitive Neuroimaging Unit (UNICOG), NeuroSpin Center, CEA Paris-Saclay, Gif-sur-Yvette, France Université de Paris, Paris, France
| | - Dalin Guo
- Department of Cognitive Science, University of California San Diego, San Diego, CA, USA
| | - Zoe He
- Department of Cognitive Science, University of California San Diego, San Diego, CA, USA
| | - Angela Yu
- Department of Cognitive Science, University of California San Diego, San Diego, CA, USA
- Centre for Cognitive Science & Hessian AI Center, Technical University of Darmstadt, Germany
| | - Florent Meyniel
- INSERM-CEA Cognitive Neuroimaging Unit (UNICOG), NeuroSpin Center, CEA Paris-Saclay, Gif-sur-Yvette, France Université de Paris, Paris, France
- Institut de Neuromodulation, GHU Paris, Psychiatrie et Neurosciences, Centre Hospitalier Sainte-Anne, Pôle Hospitalo-Universitaire 15, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Park H, Arazi A, Talluri BC, Celotto M, Panzeri S, Stocker AA, Donner TH. Confirmation Bias through Selective Use of Evidence in Human Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600060. [PMID: 38979146 PMCID: PMC11230165 DOI: 10.1101/2024.06.21.600060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Decision-makers often process new evidence selectively, depending on their current beliefs about the world. We asked whether such confirmation biases result from biases in the encoding of sensory evidence in the brain, or alternatively in the utilization of encoded evidence for behavior. Human participants estimated the source of a sequence of visual-spatial evidence samples while we measured cortical population activity with magnetoencephalography (MEG). Halfway through the sequence, participants were prompted to judge the more likely source category. Their processing of subsequent evidence depended on its consistency with the previously chosen category, but the encoding of evidence in cortical activity did not. Instead, the encoded evidence in parietal and primary visual cortex contributed less to the estimation report when that evidence was inconsistent with the previous choice. We conclude that confirmation bias originates from the way in which decision-makers utilize information encoded in the brain. This provides room for deliberative control.
Collapse
Affiliation(s)
- Hame Park
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Ayelet Arazi
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Bharath Chandra Talluri
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, USA
| | - Marco Celotto
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano Di Tecnologia, 38068, Rovereto, Italy
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Alan A Stocker
- Department of Psychology, University of Pennsylvania, 3710 Hamilton walk Philadelphia, PA 19106 USA
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-University Berlin, Philippstr. 13, Haus 6, 10115 Berlin
| |
Collapse
|
7
|
Weissman DH, Schmidt JR. Proactive response preparation contributes to contingency learning: novel evidence from force-sensitive keyboards. PSYCHOLOGICAL RESEARCH 2024; 88:1182-1202. [PMID: 38483575 DOI: 10.1007/s00426-024-01940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/11/2024] [Indexed: 06/02/2024]
Abstract
Contingency learning can involve learning that the identity of one stimulus in a sequence predicts the identity of the next stimulus. It remains unclear, however, whether such learning speeds responses to the next stimulus only by reducing the threshold for triggering the expected response after stimulus onset or also by preparing the expected response before stimulus onset. To distinguish between these competing accounts, we manipulated the probabilities with which each of two prime arrows (Left and Right) were followed by each of two probe arrows (Up and Down) in a prime-probe task while using force-sensitive keyboards to monitor sub-threshold finger force. Consistent with the response preparation account, two experiments revealed greater force just before probe onset on the response key corresponding to the direction in which the probe was more (versus less) likely to point (e.g., Up vs. Down). Furthermore, mirroring sequential contingency effects in behavior, this pre-probe force effect vanished after a single low-probability trial. These findings favor the response preparation account over the threshold only account. They also suggest the possibility that contingency learning in our tasks indexes trial-by-trial expectations regarding the utility of the prime for predicting the upcoming probe.
Collapse
Affiliation(s)
- Daniel H Weissman
- Department of Psychology, University of Michigan at Ann Arbor, 530 Church Street, Ann Arbor, MI, 48109, USA.
| | | |
Collapse
|
8
|
Braun A, Donner TH. Adaptive biasing of action-selective cortical build-up activity by stimulus history. eLife 2023; 12:RP86740. [PMID: 38054952 DOI: 10.7554/elife.86740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Decisions under uncertainty are often biased by the history of preceding sensory input, behavioral choices, or received outcomes. Behavioral studies of perceptual decisions suggest that such history-dependent biases affect the accumulation of evidence and can be adapted to the correlation structure of the sensory environment. Here, we systematically varied this correlation structure while human participants performed a canonical perceptual choice task. We tracked the trial-by-trial variations of history biases via behavioral modeling and of a neural signature of decision formation via magnetoencephalography (MEG). The history bias was flexibly adapted to the environment and exerted a selective effect on the build-up (not baseline level) of action-selective motor cortical activity during decision formation. This effect added to the impact of the current stimulus. We conclude that the build-up of action plans in human motor cortical circuits is shaped by dynamic prior expectations that result from an adaptive interaction with the environment.
Collapse
Affiliation(s)
- Anke Braun
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Weber J, Iwama G, Solbakk AK, Blenkmann AO, Larsson PG, Ivanovic J, Knight RT, Endestad T, Helfrich R. Subspace partitioning in the human prefrontal cortex resolves cognitive interference. Proc Natl Acad Sci U S A 2023; 120:e2220523120. [PMID: 37399398 PMCID: PMC10334727 DOI: 10.1073/pnas.2220523120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/31/2023] [Indexed: 07/05/2023] Open
Abstract
The human prefrontal cortex (PFC) constitutes the structural basis underlying flexible cognitive control, where mixed-selective neural populations encode multiple task features to guide subsequent behavior. The mechanisms by which the brain simultaneously encodes multiple task-relevant variables while minimizing interference from task-irrelevant features remain unknown. Leveraging intracranial recordings from the human PFC, we first demonstrate that competition between coexisting representations of past and present task variables incurs a behavioral switch cost. Our results reveal that this interference between past and present states in the PFC is resolved through coding partitioning into distinct low-dimensional neural states; thereby strongly attenuating behavioral switch costs. In sum, these findings uncover a fundamental coding mechanism that constitutes a central building block of flexible cognitive control.
Collapse
Affiliation(s)
- Jan Weber
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076Tübingen, Germany
| | - Gabriela Iwama
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076Tübingen, Germany
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, 8657Mosjøen, Norway
| | - Alejandro O. Blenkmann
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
| | - Pal G. Larsson
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
| | - Jugoslav Ivanovic
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA94720
- Department of Psychology, UC Berkeley, Berkeley, CA94720
| | - Tor Endestad
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
| | - Randolph Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
| |
Collapse
|
10
|
Bliss DP, Rahnev D, Mackey WE, Curtis CE, D'Esposito M. Stimulation along the anterior-posterior axis of lateral frontal cortex reduces visual serial dependence. J Vis 2023; 23:1. [PMID: 37395704 PMCID: PMC10324416 DOI: 10.1167/jov.23.7.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Serial dependence is an attractive pull that recent perceptual history exerts on current judgments. Theory suggests that this bias is due to a form of short-term plasticity prevalent specifically in the frontal lobe. We sought to test the importance of the frontal lobe to serial dependence by disrupting neural activity along its lateral surface during two tasks with distinct perceptual and motor demands. In our first experiment, stimulation of the lateral prefrontal cortex (LPFC) during an oculomotor delayed response task decreased serial dependence only in the first saccade to the target, whereas stimulation posterior to the LPFC decreased serial dependence only in adjustments to eye position after the first saccade. In our second experiment, which used an orientation discrimination task, stimulation anterior to, in, and posterior to the LPFC all caused equivalent decreases in serial dependence. In this experiment, serial dependence occurred only between stimuli at the same location; an alternation bias was observed across hemifields. Frontal stimulation had no effect on the alternation bias. Transcranial magnetic stimulation to parietal cortex had no effect on serial dependence in either experiment. In summary, our experiments provide evidence for both functional differentiation (Experiment 1) and redundancy (Experiment 2) in frontal cortex with respect to serial dependence.
Collapse
Affiliation(s)
- Daniel P Bliss
- Citizen Science Program, Bard College, Annandale-on-Hudson, NY, USA
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wayne E Mackey
- Department of Psychology, New York University, New York, NY, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
Lee H, Lee HJ, Choe KW, Lee SH. Neural Evidence for Boundary Updating as the Source of the Repulsive Bias in Classification. J Neurosci 2023; 43:4664-4683. [PMID: 37286349 PMCID: PMC10286949 DOI: 10.1523/jneurosci.0166-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Binary classification, an act of sorting items into two classes by setting a boundary, is biased by recent history. One common form of such bias is repulsive bias, a tendency to sort an item into the class opposite to its preceding items. Sensory-adaptation and boundary-updating are considered as two contending sources of the repulsive bias, yet no neural support has been provided for either source. Here, we explored human brains of both men and women, using functional magnetic resonance imaging (fMRI), to find such support by relating the brain signals of sensory-adaptation and boundary-updating to human classification behavior. We found that the stimulus-encoding signal in the early visual cortex adapted to previous stimuli, yet its adaptation-related changes were dissociated from current choices. Contrastingly, the boundary-representing signals in the inferior-parietal and superior-temporal cortices shifted to previous stimuli and covaried with current choices. Our exploration points to boundary-updating, rather than sensory-adaptation, as the origin of the repulsive bias in binary classification.SIGNIFICANCE STATEMENT Many animal and human studies on perceptual decision-making have reported an intriguing history effect called "repulsive bias," a tendency to classify an item as the opposite class of its previous item. Regarding the origin of repulsive bias, two contending ideas have been proposed: "bias in stimulus representation because of sensory adaptation" versus "bias in class-boundary setting because of belief updating." By conducting model-based neuroimaging experiments, we verified their predictions about which brain signal should contribute to the trial-to-trial variability in choice behavior. We found that the brain signal of class boundary, but not stimulus representation, contributed to the choice variability associated with repulsive bias. Our study provides the first neural evidence supporting the boundary-based hypothesis of repulsive bias.
Collapse
Affiliation(s)
- Heeseung Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyang-Jung Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Whan Choe
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Benwell CSY, Beyer R, Wallington F, Ince RAA. History biases reveal novel dissociations between perceptual and metacognitive decision-making. J Vis 2023; 23:14. [PMID: 37200046 PMCID: PMC10207958 DOI: 10.1167/jov.23.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/19/2023] Open
Abstract
Human decision-making and self-reflection often depend on context and internal biases. For instance, decisions are often influenced by preceding choices, regardless of their relevance. It remains unclear how choice history influences different levels of the decision-making hierarchy. We used analyses grounded in information and detection theories to estimate the relative strength of perceptual and metacognitive history biases and to investigate whether they emerge from common/unique mechanisms. Although both perception and metacognition tended to be biased toward previous responses, we observed novel dissociations that challenge normative theories of confidence. Different evidence levels often informed perceptual and metacognitive decisions within observers, and response history distinctly influenced first- (perceptual) and second- (metacognitive) order decision-parameters, with the metacognitive bias likely to be strongest and most prevalent in the general population. We propose that recent choices and subjective confidence represent heuristics, which inform first- and second-order decisions in the absence of more relevant evidence.
Collapse
Affiliation(s)
- Christopher S Y Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| | - Rachael Beyer
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Francis Wallington
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Robin A A Ince
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Li B, Wang B, Zaidel A. Modality-specific sensory and decisional carryover effects in duration perception. BMC Biol 2023; 21:48. [PMID: 36882836 PMCID: PMC9993637 DOI: 10.1186/s12915-023-01547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The brain uses recent history when forming perceptual decisions. This results in carryover effects in perception. Although separate sensory and decisional carryover effects have been shown in many perceptual tasks, their existence and nature in temporal processing are unclear. Here, we investigated whether and how previous stimuli and previous choices affect subsequent duration perception, in vision and audition. RESULTS In a series of three experiments, participants were asked to classify visual or auditory stimuli into "shorter" or "longer" duration categories. In experiment 1, visual and auditory stimuli were presented in separate blocks. Results showed that current duration estimates were repelled away from the previous trial's stimulus duration, but attracted towards the previous choice, in both vision and audition. In experiment 2, visual and auditory stimuli were pseudorandomly presented in one block. We found that sensory and decisional carryover effects occurred only when previous and current stimuli were from the same modality. Experiment 3 further investigated the stimulus dependence of carryover effects within each modality. In this experiment, visual stimuli with different shape topologies (or auditory stimuli with different audio frequencies) were pseudorandomly presented in one visual (or auditory) block. Results demonstrated sensory carryover (within each modality) despite task-irrelevant differences in visual shape topology or audio frequency. By contrast, decisional carryover was reduced (but still present) across different visual topologies and completely absent across different audio frequencies. CONCLUSIONS These results suggest that serial dependence in duration perception is modality-specific. Moreover, repulsive sensory carryover effects generalize within each modality, whereas attractive decisional carryover effects are contingent on contextual details.
Collapse
Affiliation(s)
- Baolin Li
- School of Psychology, Shaanxi Normal University, 199 Chang'an South Road, Yanta District, Xi'an, 710062, China.
| | - Biyao Wang
- School of Psychology, Shaanxi Normal University, 199 Chang'an South Road, Yanta District, Xi'an, 710062, China
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| |
Collapse
|
14
|
Guseva M, Bogler C, Allefeld C, Haynes JD. Instruction effects on randomness in sequence generation. Front Psychol 2023; 14:1113654. [PMID: 37034908 PMCID: PMC10075230 DOI: 10.3389/fpsyg.2023.1113654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Randomness is a fundamental property of human behavior. It occurs both in the form of intrinsic random variability, say when repetitions of a task yield slightly different behavioral outcomes, or in the form of explicit randomness, say when a person tries to avoid being predicted in a game of rock, paper and scissors. Randomness has frequently been studied using random sequence generation tasks (RSG). A key finding has been that humans are poor at deliberately producing random behavior. At the same time, it has been shown that people might be better randomizers if randomness is only an implicit (rather than an explicit) requirement of the task. We therefore hypothesized that randomization performance might vary with the exact instructions with which randomness is elicited. To test this, we acquired data from a large online sample (n = 388), where every participant made 1,000 binary choices based on one of the following instructions: choose either randomly, freely, irregularly, according to an imaginary coin toss or perform a perceptual guessing task. Our results show significant differences in randomness between the conditions as quantified by conditional entropy and estimated Markov order. The randomization scores were highest in the conditions where people were asked to be irregular or mentally simulate a random event (coin toss) thus yielding recommendations for future studies on randomization behavior.
Collapse
Affiliation(s)
- Maja Guseva
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
- *Correspondence: Maja Guseva,
| | - Carsten Bogler
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Allefeld
- Department of Psychology, City University of London, London, United Kingdom
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, City University of London, London, United Kingdom
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|