1
|
Urdy S, Hanke M, Toledo AI, Ratto N, Jacob E, Peyronnet E, Gourlet JB, Chaves SS, Thommes E, Coudeville L, Boissel JP, Courcelles E, Bruezière L. Multi-strain modeling of influenza vaccine effectiveness in older adults and its dependence on antigenic distance. Sci Rep 2024; 14:27190. [PMID: 39516205 PMCID: PMC11549341 DOI: 10.1038/s41598-024-72716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Influenza vaccine effectiveness (VE) varies seasonally due to host, virus and vaccine characteristics. To investigate how antigenic matching and dosage impact VE, we developed a mechanistic knowledge-based mathematical model. Immunization with a split vaccine is modeled for exposure to A/H1N1 or A/H3N2 virus strains. The model accounts for cross-reactivity of immune cells elicited during previous immunizations with new antigens. We simulated vaccine effectiveness (sVE) of high dose (HD) versus standard dose (SD) vaccines in the older population, from 2011 to 2022. We find that sVE is highly dependent on antigenic matching and that higher dosage improves immunogenicity, activation and memory formation of immune cells. In alignment with clinical observations, the HD vaccine performs better than the SD vaccine in all simulations, supporting the use of the HD vaccine in the older population. This model could be adapted to predict the impact of alternative virus strain selection on clinical outcomes in future influenza seasons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sandra S Chaves
- Modeling, Edpidemiology and Data Science (MEDS), Sanofi Vaccines, Lyon, France
| | - Edward Thommes
- Modeling, Edpidemiology and Data Science (MEDS), Sanofi Vaccines, Lyon, France
| | - Laurent Coudeville
- Modeling, Edpidemiology and Data Science (MEDS), Sanofi Vaccines, Lyon, France
| | | | | | | |
Collapse
|
2
|
Hong W, Lei H, Peng D, Huang Y, He C, Yang J, Zhou Y, Liu J, Pan X, Que H, Alu A, Chen L, Ai J, Qin F, Wang B, Ao D, Zeng Z, Hao Y, Zhang Y, Huang X, Ye C, Fu M, He X, Bi Z, Han X, Luo M, Hu H, Cheng W, Dong H, Lei J, Chen L, Zhou X, Wang W, Lu G, Shen G, Yang L, Yang J, Li J, Wang Z, Song X, Sun Q, Lu S, Wang Y, Cheng P, Wei X. A chimeric adenovirus-vectored vaccine based on Beta spike and Delta RBD confers a broad-spectrum neutralization against Omicron-included SARS-CoV-2 variants. MedComm (Beijing) 2024; 5:e539. [PMID: 38680520 PMCID: PMC11055958 DOI: 10.1002/mco2.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.
Collapse
|
3
|
Coria LM, Rodriguez JM, Demaria A, Bruno LA, Medrano MR, Castro CP, Castro EF, Del Priore SA, Hernando Insua AC, Kaufmann IG, Saposnik LM, Stone WB, Prado L, Notaro US, Amweg AN, Diaz PU, Avaro M, Ortega H, Ceballos A, Krum V, Zurvarra FM, Sidabra JE, Drehe I, Baqué JA, Li Causi M, De Nichilo AV, Payes CJ, Southard T, Vega JC, Auguste AJ, Álvarez DE, Flo JM, Pasquevich KA, Cassataro J. A Gamma-adapted subunit vaccine induces broadly neutralizing antibodies against SARS-CoV-2 variants and protects mice from infection. Nat Commun 2024; 15:997. [PMID: 38307851 PMCID: PMC10837449 DOI: 10.1038/s41467-024-45180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
In the context of continuous emergence of SARS-CoV-2 variants of concern (VOCs), one strategy to prevent the severe outcomes of COVID-19 is developing safe and effective broad-spectrum vaccines. Here, we present preclinical studies of a RBD vaccine derived from the Gamma SARS-CoV-2 variant adjuvanted with Alum. The Gamma-adapted RBD vaccine is more immunogenic than the Ancestral RBD vaccine in terms of inducing broader neutralizing antibodies. The Gamma RBD presents more immunogenic B-cell restricted epitopes and induces a higher proportion of specific-B cells and plasmablasts than the Ancestral RBD version. The Gamma-adapted vaccine induces antigen specific T cell immune responses and confers protection against Ancestral and Omicron BA.5 SARS-CoV-2 challenge in mice. Moreover, the Gamma RBD vaccine induces higher and broader neutralizing antibody activity than homologous booster vaccination in mice previously primed with different SARS-CoV-2 vaccine platforms. Our study indicates that the adjuvanted Gamma RBD vaccine is highly immunogenic and a broad-spectrum vaccine candidate.
Collapse
Affiliation(s)
- Lorena M Coria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| | - Juan Manuel Rodriguez
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Agostina Demaria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Laura A Bruno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Mayra Rios Medrano
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Eliana F Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Sabrina A Del Priore
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Andres C Hernando Insua
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Ingrid G Kaufmann
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Lucas M Saposnik
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lineia Prado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Ulises S Notaro
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Ayelen N Amweg
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Pablo U Diaz
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Martin Avaro
- Servicio Virosis Respiratorias, Laboratorio de Referencia de Influenza, SARS-CoV-2 y otros Virus Respiratorios, Centro Nacional de Influenza de OPS/OMS, Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas - ANLIS "Dr. Carlos G. Malbrán". Ciudad Autónoma de Buenos Aires, Buenos Aires, C1282AFF, Argentina
| | - Hugo Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Ana Ceballos
- Facultad de Medicina UBA, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, INBIRS-CONICET, Buenos Aires, Argentina
| | - Valeria Krum
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Francisco M Zurvarra
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Johanna E Sidabra
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Ignacio Drehe
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Jonathan A Baqué
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Mariana Li Causi
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Analia V De Nichilo
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Cristian J Payes
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Teresa Southard
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Julio C Vega
- Laboratorio Pablo Cassará - I+D+i, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1408GBV, Argentina
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Diego E Álvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Juan M Flo
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Bruch EM, Zhu S, Szymkowicz L, Blake T, Kiss T, James DA, Rak A, Narayan K, Balmer MT, Chicz RM. Structural and biochemical rationale for Beta variant protein booster vaccine broad cross-neutralization of SARS-CoV-2. Sci Rep 2024; 14:2038. [PMID: 38263191 PMCID: PMC10805794 DOI: 10.1038/s41598-024-52499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, uses a surface expressed trimeric spike glycoprotein for cell entry. This trimer is the primary target for neutralizing antibodies making it a key candidate for vaccine development. During the global pandemic circulating variants of concern (VOC) caused several waves of infection, severe disease, and death. The reduced efficacy of the ancestral trimer-based vaccines against emerging VOC led to the need for booster vaccines. Here we present a detailed characterization of the Sanofi Beta trimer, utilizing cryo-EM for structural elucidation. We investigate the conformational dynamics and stabilizing features using orthogonal SPR, SEC, nanoDSF, and HDX-MS techniques to better understand how this antigen elicits superior broad neutralizing antibodies as a variant booster vaccine. This structural analysis confirms the Beta trimer preference for canonical quaternary structure with two RBD in the up position and the reversible equilibrium between the canonical spike and open trimer conformations. Moreover, this report provides a better understanding of structural differences between spike antigens contributing to differential vaccine efficacy.
Collapse
|
5
|
Lien CE, Liu MC, Wang NC, Liu LTC, Wu CC, Tang WH, Lian WC, Huang KYA, Chen C. Safety, Tolerability, and Immunogenicity of Booster Dose with MVC-COV1901 or MVC-COV1901-Beta SARS-CoV-2 Vaccine in Adults: A Phase I, Prospective, Randomized, Open-Labeled Study. Vaccines (Basel) 2023; 11:1798. [PMID: 38140202 PMCID: PMC10748207 DOI: 10.3390/vaccines11121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines based on variant strains have been in use as booster doses to update immunity against circulating variants. Here we present the results of a phase one prospective, randomized, and open-labeled trial to study the safety and immunogenicity of a booster dose consisting of a subunit vaccine based on the stabilized prefusion SARS-CoV-2 spike protein, MVC-COV1901, or its Beta version, MVC-COV1901-Beta. Participants aged ≥18 and <55 years who received two or three prior doses of MVC-COV1901 vaccines were enrolled and were to receive a booster dose of either 15 mcg of MVC-COV1901, 15 mcg, or 25 mcg of MVC-COV1901-Beta in a 1:1:1 ratio. Adverse reactions after either MVC-COV1901 or MVC-COV1901-Beta booster doses after two or three doses of MVC-COV1901 were comparable and mostly mild and transient. At four weeks after the booster dose, participants with two prior doses of MVC-COV1901 had higher levels of neutralizing antibodies against ancestral SARS-CoV-2, Beta, and Omicron variants than participants with three prior doses of MVC-COV1901, regardless of the type of booster used. MVC-COV1901 and MVC-COV1901-Beta can both be effectively used as booster doses against SARS-CoV-2, including the BA.4/BA.5 Omicron variants.
Collapse
Affiliation(s)
- Chia En Lien
- Medigen Vaccine Biologics Corporation, Taipei 114, Taiwan
- Institute of Public Health, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Che Liu
- Clinical Research Centre, Taipei Medical University Hospital Taipei, Taipei 110, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | - Chung-Chin Wu
- Medigen Vaccine Biologics Corporation, Taipei 114, Taiwan
| | - Wei-Hsuan Tang
- Medigen Vaccine Biologics Corporation, Taipei 114, Taiwan
| | - Wei-Cheng Lian
- Medigen Vaccine Biologics Corporation, Taipei 114, Taiwan
| | - Kuan-Ying A. Huang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Charles Chen
- Medigen Vaccine Biologics Corporation, Taipei 114, Taiwan
- College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
6
|
Deng Y, Atyeo C, Yuan D, Chicz TM, Tibbitts T, Gorman M, Taylor S, Lecouturier V, Lauffenburger DA, Chicz RM, Alter G, McNamara RP. Beta-spike-containing boosters induce robust and functional antibody responses to SARS-CoV-2 in macaques primed with distinct vaccines. Cell Rep 2023; 42:113292. [PMID: 38007686 PMCID: PMC11289877 DOI: 10.1016/j.celrep.2023.113292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 11/27/2023] Open
Abstract
The reduced effectiveness of COVID-19 vaccines due to the emergence of variants of concern (VOCs) necessitated the use of vaccine boosters to bolster protection against disease. However, it remains unclear how boosting expands protective breadth when primary vaccine platforms are distinct and how boosters containing VOC spike(s) broaden humoral responses. Here, we report that boosters composed of recombinant spike antigens of ancestral (prototype) and Beta VOCs elicit a robust, pan-VOC, and multi-functional humoral response in non-human primates largely independent of the primary vaccine series platform. Interestingly, Beta-spike-containing boosters stimulate immunoglobulin A (IgA) with a greater breadth of recognition in protein-primed recipients when administered with adjuvant system 03 (AS03). Our results highlight the utility of a component-based booster strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for broad humoral recognition, independent of primary vaccine series. This is of high global health importance given the heterogeneity of primary vaccination platforms distributed.
Collapse
Affiliation(s)
- Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Matthew Gorman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sabian Taylor
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
de Bruyn G, Wang J, Purvis A, Ruiz MS, Adhikarla H, Alvi S, Bonaparte MI, Brune D, Bueso A, Canter RM, Ceregido MA, Deshmukh S, Diemert D, Finn A, Forrat R, Fu B, Gallais J, Griffin P, Grillet MH, Haney O, Henderson JA, Koutsoukos M, Launay O, Torres FM, Masotti R, Michael NL, Park J, Rivera-Medina DM, Romanyak N, Rook C, Schuerman L, Sher LD, Tavares-Da-Silva F, Whittington A, Chicz RM, Gurunathan S, Savarino S, Sridhar S. Safety and immunogenicity of a variant-adapted SARS-CoV-2 recombinant protein vaccine with AS03 adjuvant as a booster in adults primed with authorized vaccines: a phase 3, parallel-group study. EClinicalMedicine 2023; 62:102109. [PMID: 37533419 PMCID: PMC10391925 DOI: 10.1016/j.eclinm.2023.102109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Background In a parallel-group, international, phase 3 study (ClinicalTrials.govNCT04762680), we evaluated prototype (D614) and Beta (B.1.351) variant recombinant spike protein booster vaccines with AS03-adjuvant (CoV2 preS dTM-AS03). Methods Adults, previously primed with mRNA (BNT162b2, mRNA-1273), adenovirus-vectored (Ad26.CoV2.S, ChAdOx1nCoV-19) or protein (CoV2 preS dTM-AS03 [monovalent D614; MV(D614)]) vaccines were enrolled between 29 July 2021 and 22 February 2022. Participants were stratified by age (18-55 and ≥ 56 years) and received one of the following CoV2 preS dTM-AS03 booster formulations: MV(D614) (n = 1285), MV(B.1.351) (n = 707) or bivalent D614 + B.1.351 (BiV; n = 625). Unvaccinated adults who tested negative on a SARS-CoV-2 rapid diagnostic test (control group, n = 479) received two primary doses, 21 days apart, of MV(D614). Anti-D614G and anti-B.1.351 antibodies were evaluated using validated pseudovirus (lentivirus) neutralization (PsVN) assay 14 days post-booster (day [D]15) in 18-55-year-old BNT162b2-primed participants and compared with those pre-booster (D1) and on D36 in 18-55-year-old controls (primary immunogenicity endpoints). PsVN titers to Omicron BA.1, BA.2 and BA.4/5 subvariants were also evaluated. Safety was evaluated over a 12-month follow-up period. Planned interim analyses are presented up to 14 days post-last vaccination for immunogenicity and over a median duration of 5 months for safety. Findings All three boosters elicited robust anti-D614G or -B.1.351 PsVN responses for mRNA, adenovirus-vectored and protein vaccine-primed groups. Among BNT162b2-primed adults (18-55 years), geometric means of the individual post-booster versus pre-booster titer ratio (95% confidence interval [CI]) were: for MV (D614), 23.37 (18.58-29.38) (anti-D614G); for MV(B.1.351), 35.41 (26.71-46.95) (anti-B.1.351); and for BiV, 14.39 (11.39-18.28) (anti-D614G) and 34.18 (25.84-45.22 (anti-B.1.351). GMT ratios (98.3% CI) versus post-primary vaccination GMTs in controls, were: for MV(D614) booster, 2.16 (1.69; 2.75) [anti-D614G]; for MV(B.1.351), 1.96 (1.54; 2.50) [anti-B.1.351]; and for BiV, 2.34 (1.84; 2.96) [anti-D614G] and 1.39 (1.09; 1.77) [anti-B.1.351]. All booster formulations elicited cross-neutralizing antibodies against Omicron BA.2 (across priming vaccine subgroups), Omicron BA.1 (BNT162b2-primed participants) and Omicron BA.4/5 (BNT162b2-primed participants and MV D614-primed participants). Similar patterns in antibody responses were observed for participants aged ≥56 years. Reactogenicity tended to be transient and mild-to-moderate severity in all booster groups. No safety concerns were identified. Interpretation CoV2 preS dTM-AS03 boosters demonstrated acceptable safety and elicited robust neutralizing antibodies against multiple variants, regardless of priming vaccine. Funding Sanofi and Biomedical Advanced Research and Development Authority (BARDA).
Collapse
Affiliation(s)
| | | | | | | | | | - Saad Alvi
- Chicago Clinical Research Institute, IL, USA
| | | | | | | | | | | | | | - David Diemert
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Adam Finn
- Bristol Vaccine Centre, Schools of Population Health Sciences and of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Bo Fu
- Sanofi, Swiftwater, PA, USA
| | | | - Paul Griffin
- Mater Health, Brisbane, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | - Odile Launay
- Université Paris Cité; Inserm, F-CRIN I REIVAC, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Federico Martinon Torres
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain
- Genetics, Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pavot V, Berry C, Kishko M, Anosova NG, Li L, Tibbitts T, Huang D, Raillard A, Gautheron S, Gutzeit C, Koutsoukos M, Chicz RM, Lecouturier V. Beta variant COVID-19 protein booster vaccine elicits durable cross-neutralization against SARS-CoV-2 variants in non-human primates. Nat Commun 2023; 14:1309. [PMID: 36894558 PMCID: PMC9998256 DOI: 10.1038/s41467-023-36908-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid spread of the SARS-CoV-2 Omicron subvariants, despite the implementation of booster vaccination, has raised questions about the durability of protection conferred by current vaccines. Vaccine boosters that can induce broader and more durable immune responses against SARS-CoV-2 are urgently needed. We recently reported that our Beta-containing protein-based SARS-CoV-2 spike booster vaccine candidates with AS03 adjuvant (CoV2 preS dTM-AS03) elicited robust cross-neutralizing antibody responses at early timepoints against SARS-CoV-2 variants of concern in macaques primed with mRNA or protein-based subunit vaccine candidates. Here we demonstrate that the monovalent Beta vaccine with AS03 adjuvant induces durable cross-neutralizing antibody responses against the prototype strain D614G as well as variants Delta (B.1.617.2), Omicron (BA.1 and BA.4/5) and SARS-CoV-1, that are still detectable in all macaques 6 months post-booster. We also describe the induction of consistent and robust memory B cell responses, independent of the levels measured post-primary immunization. These data suggest that a booster dose with a monovalent Beta CoV2 preS dTM-AS03 vaccine can induce robust and durable cross-neutralizing responses against a broad spectrum of variants.
Collapse
Affiliation(s)
| | | | | | | | - Lu Li
- Sanofi, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Balasubramaniyam A, Ryan E, Brown D, Hamza T, Harrison W, Gan M, Sankhala RS, Chen WH, Martinez EJ, Jensen JL, Dussupt V, Mendez-Rivera L, Mayer S, King J, Michael NL, Regules J, Krebs S, Rao M, Matyas GR, Joyce MG, Batchelor AH, Gromowski GD, Dutta S. Unglycosylated Soluble SARS-CoV-2 Receptor Binding Domain (RBD) Produced in E. coli Combined with the Army Liposomal Formulation Containing QS21 (ALFQ) Elicits Neutralizing Antibodies against Mismatched Variants. Vaccines (Basel) 2022; 11:vaccines11010042. [PMID: 36679887 PMCID: PMC9864931 DOI: 10.3390/vaccines11010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of novel potentially pandemic pathogens necessitates the rapid manufacture and deployment of effective, stable, and locally manufacturable vaccines on a global scale. In this study, the ability of the Escherichia coli expression system to produce the receptor binding domain (RBD) of the SARS-CoV-2 spike protein was evaluated. The RBD of the original Wuhan-Hu1 variant and of the Alpha and Beta variants of concern (VoC) were expressed in E. coli, and their biochemical and immunological profiles were compared to RBD produced in mammalian cells. The E. coli-produced RBD variants recapitulated the structural character of mammalian-expressed RBD and bound to human angiotensin converting enzyme (ACE2) receptor and a panel of neutralizing SARS-CoV-2 monoclonal antibodies. A pilot vaccination in mice with bacterial RBDs formulated with a novel liposomal adjuvant, Army Liposomal Formulation containing QS21 (ALFQ), induced polyclonal antibodies that inhibited RBD association to ACE2 in vitro and potently neutralized homologous and heterologous SARS-CoV-2 pseudoviruses. Although all vaccines induced neutralization of the non-vaccine Delta variant, only the Beta RBD vaccine produced in E. coli and mammalian cells effectively neutralized the Omicron BA.1 pseudovirus. These outcomes warrant further exploration of E. coli as an expression platform for non-glycosylated, soluble immunogens for future rapid response to emerging pandemic pathogens.
Collapse
Affiliation(s)
- Arasu Balasubramaniyam
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Emma Ryan
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dallas Brown
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Therwa Hamza
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - William Harrison
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Michael Gan
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rajeshwer S. Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Elizabeth J. Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jaime L. Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Letzibeth Mendez-Rivera
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sandra Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jason Regules
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shelly Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Adrian H. Batchelor
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sheetij Dutta
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-301-319-9154
| |
Collapse
|