1
|
de Souza DN, Seas A, Blethen K, Feigal J, Shah BR, Grant GA, Harward SC. Focused ultrasound as an emerging therapy for neuropsychiatric disease: Historical perspectives and a review of current clinical data. Psychiatry Clin Neurosci 2025; 79:215-228. [PMID: 39936841 DOI: 10.1111/pcn.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Psychiatric disorders are a common source of disease morbidity with high rates of refractoriness to first-line treatments. As such, many have investigated the utility of neurosurgical interventions for treatment-resistant forms of these conditions. More recently among these, functional neurosurgical techniques using high- and low-intensity focused ultrasound (FUS) have emerged as promising options in this arena, largely due to their minimally-invasive nature and encouraging early safety and efficacy data. Existing clinical data have thus far demonstrated FUS to be a potentially useful intervention for treatment-refractory forms of obsessive-compulsive disorder, major depressive disorder, various anxiety disorders, substance-use disorder, and schizophrenia. This report presents a comprehensive review of existing clinical trial data, summarizing key findings, study specifications, and providing critical analysis. In addition to giving the most complete summary of modern clinical research on this topic to date, this report characterizes the current state of this body of literature using bibliometric analysis, succinctly highlighting the most investigated topics and the most promising areas of modern investigation. Based on our review of the literature, current work on this topic is highly heterogeneous with regard to specific treatment protocols and anatomic targets for FUS - targeting multiple nuclei at a wide variety of intensities. We recommend that future studies aim to clarify more precise therapeutic targets and specific treatment protocols which optimize the efficacy of these techniques.
Collapse
Affiliation(s)
- Daniel N de Souza
- Department of Neurosurgery, NYU Langone Health, New York City, New York, USA
| | - Andreas Seas
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
| | - Kathryn Blethen
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jacob Feigal
- Department of Psychiatry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bhavya R Shah
- Division of Neuroradiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gerald A Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephen C Harward
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Arnal LH, Gonçalves N. Rough is salient: a conserved vocal niche to hijack the brain's salience system. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240020. [PMID: 40176527 PMCID: PMC11966164 DOI: 10.1098/rstb.2024.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 04/04/2025] Open
Abstract
The propensity to communicate extreme emotional states and arousal through salient, non-referential vocalizations is ubiquitous among mammals and beyond. Screams, whether intended to warn conspecifics or deter aggressors, require a rapid increase of air influx through vocal folds to induce nonlinear distortions of the signal. These distortions contain salient, temporally patterned acoustic features in a restricted range of the audible spectrum. These features may have a biological significance, triggering fast behavioural responses in the receivers. We present converging neurophysiological and behavioural evidence from humans and animals supporting that the properties emerging from nonlinear vocal phenomena are ideally adapted to induce efficient sensory, emotional and behavioural responses. We argue that these fast temporal-rough-modulations are unlikely to be an epiphenomenon of vocal production but rather the result of selective evolutionary pressure on vocal warning signals to promote efficient communication. In this view, rough features may have been selected and conserved as an acoustic trait to recruit ancestral sensory salience pathways and elicit optimal reactions in the receiver. By exploring the impact of rough vocalizations at the receiver's end, we review the perceptual, behavioural and neural factors that may have shaped these signals to evolve as powerful communication tools.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.
Collapse
Affiliation(s)
- Luc H. Arnal
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnect, Paris75012, France
| | - Noémi Gonçalves
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnect, Paris75012, France
| |
Collapse
|
3
|
Yang L, Tang M, Nüssler AK, Liu L, Yang W. Regulation of PVT-CeA Circuit in Deoxynivalenol-Induced Anorexia and Aversive-Like Emotions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417068. [PMID: 40019402 PMCID: PMC12021098 DOI: 10.1002/advs.202417068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Neuronal plasticity in the central amygdala (CeA) is essential for modulating feeding behaviors and emotional responses, potentially influencing reactions to Deoxynivalenol (DON). Acute oral administration of DON elicits a dose-responsive reduction in food intake, accompanied by pronounced alterations in locomotor activity and feeding frequency. This study investigates circuitry adaptations that mediate DON's effects on feeding, by targeting of GABA neurons in the CeA. Following exposure to DON, an increase in connectivity between the paraventricular nucleus of the thalamus (PVT) and CeAGABA neurons is observed, suggesting the involvement of this pathway in DON's adverse effects on feeding and emotional states. Chemogenetic and optogenetic manipulations of CeAGABA neurons resulted in substantial alterations in mice's feeding and overall activity. These findings suggest that CeAGABA neurons are involved in DON-induced anorexia and aversive-like emotional responses. Additionally, the administration of the SCN10A antagonist (A-803467) effectively mitigated DON-induced anorexia and aversive-like emotions, highlighting the pivotal role of the PVT-CeA circuit and CeAGABA neurons in regulating the physiological and emotional impacts of DON. These findings have significant implications for public health and clinical interventions, offering potential therapeutic strategies to mitigate DON's adverse effects on human health.
Collapse
Affiliation(s)
- Liu‐Nan Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Mingmeng Tang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Andreas K. Nüssler
- Department of TraumatologyBG Trauma CenterUniversity of TübingenSchnarrenbergstr. 9572076TübingenGermany
| | - Liegang Liu
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Wei Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| |
Collapse
|
4
|
Borland JM. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front Neuroendocrinol 2025; 77:101175. [PMID: 39892577 DOI: 10.1016/j.yfrne.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
There is a lack of understanding of the neural mechanisms regulating the rewarding effects of social interactions. A significant contributor to this lack of clarity is the diversity of social behaviors and animal models utilized to investigate mechanisms. Other sources of the lack of clarity are the diversity of brain regions that can regulate social reward and the diversity of signaling pathways that regulate reward. To provide some clarity into the mechanisms of social reward, this review focused on the brain region most implicated in reward for multiple stimuli, the nucleus accumbens, and surveyed (systematically reviewed) studies that investigated the relationship between social interaction and five signaling systems implicated in the regulation of reward and social behavior: oxytocin, vasopressin, serotonin, opioids and endocannabinoids. Moreover, all of these studies were organized by the type of social behavior studied: affiliative interactions, play behavior, aggression, social defeat, sex behavior, pair-bonding, parental behavior and social isolation. From this survey and organization, this review concludes that oxytocin, endocannabinoids and mu-opioid receptors in the nucleus accumbens positively regulate the rewarding social behaviors, and kappa-opioid receptors negatively regulate the rewarding social behaviors. The opposite profile is observed for these signaling systems for the aversive social behaviors. More studies are needed to investigate the directional role of the serotonin system in the nucleus accumbens in the regulation of many types of social behaviors, and vasopressin likely does not act in the nucleus accumbens in the regulation of the valence of social behaviors. Many of these different signaling systems are also interdependent of one another in the regulation of different types of social behaviors. Finally, the interaction of these signaling systems with dopamine in the nucleus accumbens is briefly discussed.
Collapse
|
5
|
Cheng CN, Kozłowska A, Li WL, Wu CW, Wang YC, Huang ACW. NMDA-induced lesions of the nucleus accumbens core increase the innately rewarding saccharin solution intake and methamphetamine-induced conditioned place preference but not conditioned taste aversion in rats. Pharmacol Biochem Behav 2025; 248:173957. [PMID: 39814213 DOI: 10.1016/j.pbb.2025.173957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
The role of the nucleus accumbens (NAc) core in determining the valence of innately rewarding saccharin solution intake, methamphetamine (MAMPH)-induced conditioned taste aversion (CTA), and conditioned place preference (CPP) reward remains unclear. The present study utilized the "pre- and post-association" experimental paradigm (2010) to test whether the rewarding and aversive properties of MAMPH can be modulated by an N-methyl-D-aspartic acid (NMDA) lesion in the NAc core. Moreover, it tested how an NAc core NMDA lesion affected the innate reward of saccharin solution intake. The results demonstrate that MAMPH could simultaneously induce an aversive CTA and a rewarding CPP effect, supporting the paradoxical effect hypothesis of abused drugs, in particular amphetamine. Meanwhile, the NMDA-lesioned NAc core increased the reward effect of CPP but did not alter the aversive CTA effect. The NAc core NMDA lesion also enhanced the innate reward of saccharin solution intake. The NAc core therefore seemingly plays an inhibitory role in the innate reward of saccharin solution intake and in the CPP effect. The paradoxical effect hypothesis of abused drugs provides some explanations for the present data in the case of MAMPH administrations. The NAc core may play an essential role in modulating the rewarding but not the aversive properties of MAMPH. The present findings could contribute to the understanding and eventual advancement of clinical interventions for drug addiction and the development of novel pharmacological treatments.
Collapse
Affiliation(s)
- Cai-N Cheng
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland
| | - Wei-Lun Li
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | - Chi-Wen Wu
- Department of Pharmacy, Keelung Hospital, Ministry of Health and Welfare, Keelung City, Taiwan
| | - Ying-Chou Wang
- Department of Clinical Psychology, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | |
Collapse
|
6
|
Engeln M, Ahmed SH. Remission from addiction: erasing the wrong circuits or making new ones? Nat Rev Neurosci 2025; 26:115-130. [PMID: 39663409 DOI: 10.1038/s41583-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Chronic relapse is a hallmark of substance-use disorders (SUDs), but many people with SUDs do recover and eventually enter remission. Many preclinical studies in this field aim to identify interventions that can precipitate recovery by reversing or erasing the neuronal circuit changes caused by chronic drug use. A better understanding of remission from SUDs can also come from preclinical studies that model factors known to influence recovery in humans, such as the negative consequences of drug use and positive environmental influences. In this Perspective we discuss human neuroimaging studies that have provided information about recovery from SUDs and highlight mechanisms identified in preclinical studies - such as the reconfiguration of neuronal circuits - that could contribute to remission. We also analyse how studies of memory and forgetting can provide insights into the mechanisms of remission. Overall, we propose that remission can be driven by the introduction of new neuronal changes (which outcompete those induced by drugs) as well as by the erasure of drug-induced changes.
Collapse
Affiliation(s)
- Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
7
|
Wang J, Zhang M, Sun Y, Su X, Hui R, Zhang L, Xie B, Cong B, Luo Y, Wen D, Ma C. The modulation of cholecystokinin receptor 1 in the NAc core input from VTA on METH-induced CPP acquisition. Life Sci 2025; 361:123290. [PMID: 39638282 DOI: 10.1016/j.lfs.2024.123290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Methamphetamine (METH) is a potent psychostimulant that interferes the functionality of various brain regions and nervous connections, leading to addiction. The nucleus accumbens core (NAcC), primarily composed of gamma-aminobutyric acid (GABAergic) neurons, serves as a critical nucleus intimately related to addictive behavior. Previous research has indicated the involvement of cholecystokinin (CCK) receptors in drug addiction, yet the precise function of CCK receptors within the neural circuitry mediating METH-induced addiction remains elusive. METHODS METH-induced conditioned place preference (CPP) model was established in mice. In CCK receptor 1 conditional knockout (CCK1Rflox/flox) or CCK receptor 2 conditional knockout (CCK2Rflox/flox) mice, we then utilized the adeno-associated virus (AAV) transfection system to knock out the specific CCK receptor subtype and explore the function of the CCK receptors in the ventral tegmental area (VTA) to NAcC circuit during METH-induced CPP acquisition. RESULTS During the acquisition of METH-induced CPP, the expression of CCK1R, but not CCK2R, was upregulated specifically in NAcC. Genetic disruption of either CCK1R in the NAcC effectively hindered METH-induced CPP acquisition and prevented the hyper-excitability of neurons triggered by METH. Furthermore, CCK is released by dopaminergic neurons in the VTA, projecting to the NAcC. Notably, specifically knocking out CCK1R in the VTADA → NAcCGABA circuit blocked the presynaptic release and synaptic plasticity enhancement induced by METH. CONCLUSIONS These discoveries highlight the critical effect of CCK1R in the VTADA → NAcCGABA circuit on METH-induced CPP acquisition and provide a more comprehensive understanding of the mechanisms underlying CCK receptors contributing to the METH-induced addictive behavior.
Collapse
Affiliation(s)
- Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China
| | - Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China; Department of Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang Province, China
| | - Yufei Sun
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China
| | - Xiaorui Su
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China
| | - Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China; Hainan Tropical Forensic Medicine Academician Workstation, Haikou, Hainan Province, China
| | - Yixiao Luo
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Hunan Province People's Hospital, Changsha, Hunan Province, China; The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, China; Hainan Tropical Forensic Medicine Academician Workstation, Haikou, Hainan Province, China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, China; Hainan Tropical Forensic Medicine Academician Workstation, Haikou, Hainan Province, China.
| |
Collapse
|
8
|
Dahleh MMM, Muller SG, Klann IP, Marques LS, da Rosa JL, Fontoura MB, Burger ME, Nogueira CW, Prigol M, Boeira SP, Segat HJ. Chemistry to cognition: Therapeutic potential of (m-CF 3-PhSe) 2 targeting rats' striatum dopamine proteins in amphetamine dependence. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111238. [PMID: 39732316 DOI: 10.1016/j.pnpbp.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF3-PhSe)2] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF3-PhSe)2 is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research. Initially, in silico studies examined the affinity of AMPH and (m-CF3-PhSe)2 for dopamine 1, 2, and 3 receptors (D1R, D2R, D3R), and dopamine transporter (DAT). In our experimental design, male Wistar rats were divided into four groups: I) Control; II) (m-CF3-PhSe)2; III) AMPH; IV) (m-CF3-PhSe)2 + AMPH. Animals were administered (m-CF3-PhSe)2 (0.1 mg/kg, by gavage) or canola oil (vehicle) 30 min before AMPH (4.0 mg/kg, i.p.) administration. Drug administration occurred for 8 days in the conditioned place preference (CPP) paradigm. Twenty-four hours after the last CPP conditioning section, preference for the drug-compartment was assessed, with anxiety-related effects and working memory were evaluated using the Y-maze test. Finally, animals were euthanized for striatal dissection to quantify D1R, D2R, D3R, and DAT levels in western blot. In silico findings suggest that (m-CF3-PhSe)2 may prevent AMPH activation in DAT, interacting with Asp46 and Phe319, preventing possible addictive effects of AMPH in DAT. In vivo results showed that (m-CF3-PhSe)2 attenuated AMPH effects, reducing preference for the drug-compartment in CPP test. Furthermore, (m-CF3-PhSe)2 prevented AMPH-induced anxiogenic effects in the elevated plus maze (EPM) test, similarly to light/dark test. No differences in locomotion or working memory were observed among the experimental groups in the Y-maze test. Ex vivo western blot analyses of the entire striatum indicates that (m-CF3-PhSe)2 prevented the AMPH-induced increase in D1R levels and decrease in D2R and DAT levels, with no changes in D3R levels. Overall, our study suggests that (m-CF3-PhSe)2 may interact with DAT sites similarly to AMPH, reducing drug-compartment preference and anxiogenic behaviors while maintaining dopaminergic metabolism proteins in the striatum, a key region involved in the onset and perpetuation of addiction.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Sabrina Grendene Muller
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | - Luiza Souza Marques
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | | | | | - Cristina Wayne Nogueira
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Hecson Jesser Segat
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil.
| |
Collapse
|
9
|
Li J, Wei Y, Xiang J, Zhang D. Role of the ventral tegmental area in general anesthesia. Eur J Pharmacol 2025; 986:177145. [PMID: 39566814 DOI: 10.1016/j.ejphar.2024.177145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
The ventral tegmental area (VTA), located in the midbrain, plays a pivotal role in the regulation of many important behaviors, such as reward, addiction, aversion, memory, learning, and sleep-wakefulness cycles. The majority of VTA neurons are dopaminergic neurons, although there is a significant proportion of GABAergic neurons and few glutamatergic neurons. These neuronal types project to different brain regions, thus mediating various biological functions. Therefore, the diverse roles of the VTA might depend on its heterogeneous neuronal types and projecting circuits. General anesthesia and sleep-wakefulness cycles share the feature of reversible loss of consciousness, and several common neural mechanisms underlie these two conditions. In addition to the well-known regulatory role of VTA in sleep-wakefulness, emerging evidence has demonstrated that VTA activity is also associated with promoting emergence from general anesthesia. Herein, we reviewed the literature and summarized the evidence regarding the modulation of the VTA by general anesthesia in rodents, which will improve the understanding of the modulatory mechanism of the VTA in general anesthesia.
Collapse
Affiliation(s)
- Jia Li
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China.
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518100, China
| | - Jiaxin Xiang
- Department of Anesthesiology, Weill Cornell Medicine, New York, 10065, USA
| | - Donghang Zhang
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Chen Z, Tang S, Xiao X, Hong Y, Fu B, Li X, Shao Y, Chen L, Yuan D, Long Y, Wang H, Hong H. Adiponectin receptor 1-mediated basolateral amygdala-prelimbic cortex circuit regulates methamphetamine-associated memory. Cell Rep 2024; 43:115074. [PMID: 39661515 DOI: 10.1016/j.celrep.2024.115074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
The association between drug-induced rewards and environmental cues represents a promising strategy to address addiction. However, the neural networks and molecular mechanisms orchestrating methamphetamine (MA)-associated memories remain incompletely characterized. In this study, we demonstrated that AdipoRon (AR), a specific adiponectin receptor (AdipoR) agonist, inhibits the formation of MA-induced conditioned place preference (CPP) in MA-conditioned mice, accompanied by suppression of basolateral amygdala (BLA) CaMKIIα neuron activity. Furthermore, we identified an association between the excitatory circuit from the BLA to the prelimbic cortex (PrL) and the integration of MA-induced rewards with environmental cues. We also determined that the phosphorylated AMPK (p-AMPK)/Cav1.3 signaling pathway mediates the modulatory effects of AdipoR1 in PrL-projecting BLA CaMKIIα neurons on the formation of MA reward memories, a process influenced by physical exercise. These findings highlight the critical function of AdipoR1 in the BLACaMKIIα→PrLCaMKIIα circuit in regulating MA-related memory formation, suggesting a potential target for managing MA use disorders.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Susu Tang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyi Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yizhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Boli Fu
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuyi Li
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuwei Shao
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danhua Yuan
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine/Nanhu Brain-computer Interface Institute, Hangzhou 310013, China.
| | - Hao Hong
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
Niitani K, Nishida R, Futami Y, Nishitani N, Deyama S, Kaneda K. Activation of ventral pallidum-projecting neurons in the nucleus accumbens via 5-HT 2C receptor stimulation regulates motivation for wheel running in male mice. Neuropharmacology 2024; 261:110181. [PMID: 39393590 DOI: 10.1016/j.neuropharm.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Rodents have a strong motivation for wheel running; however, the neural mechanisms that regulate their motivation remain unknown. We investigated the possible involvement of serotonin (5-HT) systems in regulating motivation for wheel running in male mice. Systemic administration of a 5-HT1A receptor antagonist (WAY100635) increased the number of wheel rotations, whereas administration of a 5-HT2A or 5-HT2C receptor antagonist (volinanserin or SB242084, respectively) decreased it. In the open field test, neither WAY100635 nor volinanserin affected locomotor activity, whereas SB242084 increased locomotor activity. To identify the brain regions on which these antagonists act, we locally injected these into the motivational circuitry, including the nucleus accumbens (NAc), dorsomedial striatum (DM-Str), and medial prefrontal cortex (mPFC). Injection of SB242084 into the NAc, but not the DM-Str or mPFC, reduced the number of wheel rotations without altering locomotor activity. The local administration of WAY100635 or volinanserin to these brain regions did not affect the number of wheel rotations. Immunohistochemical analyses revealed that wheel running increased the number of c-Fos-positive cells in the NAc medial shell (NAc-MS), which was reduced by systemic SB242084 administration. In vitro slice whole-cell recordings showed that bath application of the 5-HT2C receptor agonist lorcaserin increased the frequency of spontaneous excitatory and inhibitory postsynaptic currents in the ventral tegmental area (VTA)-projecting neurons, whereas it only increased the frequency of spontaneous excitatory postsynaptic currents in ventral pallidum (VP)-projecting neurons in the NAc-MS. These findings suggest that the activation of VP-projecting NAc-MS neurons via 5-HT2C receptor stimulation regulates motivation for wheel running.
Collapse
Affiliation(s)
- Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ryoma Nishida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yusaku Futami
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
12
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
13
|
Hulsman AM, Klaassen FH, de Voogd LD, Roelofs K, Klumpers F. How Distributed Subcortical Integration of Reward and Threat May Inform Subsequent Approach-Avoidance Decisions. J Neurosci 2024; 44:e0794242024. [PMID: 39379152 PMCID: PMC11604143 DOI: 10.1523/jneurosci.0794-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/19/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Healthy and successful living involves carefully navigating rewarding and threatening situations by balancing approach and avoidance behaviors. Excessive avoidance to evade potential threats often leads to forfeiting potential rewards. However, little is known about how reward and threat information is integrated neurally to inform approach or avoidance. In this preregistered study, participants (N behavior = 31, 17F; N MRI = 28, 15F) made approach-avoidance decisions under varying reward (monetary gains) and threat (electrical stimulations) prospects during functional MRI scanning. In contrast to theorized parallel subcortical processing of reward and threat information before cortical integration, Bayesian multivariate multilevel analyses revealed subcortical reward and threat integration prior to indicating approach-avoidance decisions. This integration occurred in the ventral striatum, thalamus, and bed nucleus of the stria terminalis (BNST). When reward was low, risk-diminishing avoidance decisions dominated, which was linked to more positive tracking of threat magnitude prior to indicating avoidance than approach decisions. In contrast, the amygdala exhibited dual sensitivity to reward and threat. While anticipating outcomes of risky approach decisions, we observed positive tracking of threat magnitude within the salience network (dorsal anterior cingulate cortex, thalamus, periaqueductal gray, BNST). Conversely, after risk-diminishing avoidance, characterized by reduced reward prospects, we observed more negative tracking of reward magnitude in the ventromedial prefrontal cortex and ventral striatum. These findings shed light on the temporal dynamics of approach-avoidance decision-making. Importantly, they demonstrate the role of subcortical integration of reward and threat information in balancing approach and avoidance, challenging theories positing predominantly separate subcortical processing prior to cortical integration.
Collapse
Affiliation(s)
- Anneloes M Hulsman
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Felix H Klaassen
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Lycia D de Voogd
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, 2333 AK Leiden, The Netherlands
| | - Karin Roelofs
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Floris Klumpers
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
14
|
Olaitan GO, Lynch WJ, Venton BJ. The therapeutic potential of low-intensity focused ultrasound for treating substance use disorder. Front Psychiatry 2024; 15:1466506. [PMID: 39628494 PMCID: PMC11612502 DOI: 10.3389/fpsyt.2024.1466506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
Substance use disorder (SUD) is a persistent public health issue that necessitates the exploration of novel therapeutic interventions. Low-intensity focused ultrasound (LIFU) is a promising modality for precise and invasive modulation of brain activity, capable of redefining the landscape of SUD treatment. The review overviews effective LIFU neuromodulatory parameters and molecular mechanisms, focusing on the modulation of reward pathways in key brain regions in animal and human models. Integration of LIFU with established therapeutics holds promise for augmenting treatment outcomes in SUD. The current research examines LIFU's efficacy in reducing cravings and withdrawal symptoms. LIFU shows promise for reducing cravings, modulating reward circuitry, and addressing interoceptive dysregulation and emotional distress. Selecting optimal parameters, encompassing frequency, burst patterns, and intensity, is pivotal for balancing therapeutic efficacy and safety. However, inconsistencies in empirical findings warrant further research on optimal treatment parameters, physiological action mechanisms, and long-term effects. Collaborative interdisciplinary investigations are imperative to fully realize LIFU's potential in revolutionizing SUD treatment paradigms and enhancing patient outcomes.
Collapse
Affiliation(s)
- Greatness O. Olaitan
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Wendy J. Lynch
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Ruffini G, Castaldo F, Lopez-Sola E, Sanchez-Todo R, Vohryzek J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:953. [PMID: 39593898 PMCID: PMC11592617 DOI: 10.3390/e26110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Major Depressive Disorder (MDD) is a complex, heterogeneous condition affecting millions worldwide. Computational neuropsychiatry offers potential breakthroughs through the mechanistic modeling of this disorder. Using the Kolmogorov theory (KT) of consciousness, we developed a foundational model where algorithmic agents interact with the world to maximize an Objective Function evaluating affective valence. Depression, defined in this context by a state of persistently low valence, may arise from various factors-including inaccurate world models (cognitive biases), a dysfunctional Objective Function (anhedonia, anxiety), deficient planning (executive deficits), or unfavorable environments. Integrating algorithmic, dynamical systems, and neurobiological concepts, we map the agent model to brain circuits and functional networks, framing potential etiological routes and linking with depression biotypes. Finally, we explore how brain stimulation, psychotherapy, and plasticity-enhancing compounds such as psychedelics can synergistically repair neural circuits and optimize therapies using personalized computational models.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Francesca Castaldo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| |
Collapse
|
16
|
Pan G, Zhao B, Zhang M, Guo Y, Yan Y, Dai D, Zhang X, Yang H, Ni J, Huang Z, Li X, Duan S. Nucleus Accumbens Corticotropin-Releasing Hormone Neurons Projecting to the Bed Nucleus of the Stria Terminalis Promote Wakefulness and Positive Affective State. Neurosci Bull 2024; 40:1602-1620. [PMID: 38980648 PMCID: PMC11607243 DOI: 10.1007/s12264-024-01233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/02/2024] [Indexed: 07/10/2024] Open
Abstract
The nucleus accumbens (NAc) plays an important role in various emotional and motivational behaviors that rely on heightened wakefulness. However, the neural mechanisms underlying the relationship between arousal and emotion regulation in NAc remain unclear. Here, we investigated the roles of a specific subset of inhibitory corticotropin-releasing hormone neurons in the NAc (NAcCRH) in regulating arousal and emotional behaviors in mice. We found an increased activity of NAcCRH neurons during wakefulness and rewarding stimulation. Activation of NAcCRH neurons converts NREM or REM sleep to wakefulness, while inhibition of these neurons attenuates wakefulness. Remarkably, activation of NAcCRH neurons induces a place preference response (PPR) and decreased basal anxiety level, whereas their inactivation induces a place aversion response and anxious state. NAcCRH neurons are identified as the major NAc projection neurons to the bed nucleus of the stria terminalis (BNST). Furthermore, activation of the NAcCRH-BNST pathway similarly induced wakefulness and positive emotional behaviors. Taken together, we identified a basal forebrain CRH pathway that promotes the arousal associated with positive affective states.
Collapse
Affiliation(s)
- Gaojie Pan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bing Zhao
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Mutian Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, and Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Yanan Guo
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Yuhua Yan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Dan Dai
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoxi Zhang
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hui Yang
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinfei Ni
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, and Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Xia Li
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| | - Shumin Duan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310030, China.
| |
Collapse
|
17
|
Krystal S, Gracia L, Piguet C, Henry C, Alonso M, Polosan M, Savatovsky J, Houenou J, Favre P. Functional connectivity of the amygdala subnuclei in various mood states of bipolar disorder. Mol Psychiatry 2024; 29:3344-3355. [PMID: 38724567 DOI: 10.1038/s41380-024-02580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 11/08/2024]
Abstract
Amygdala functional dysconnectivity lies at the heart of the pathophysiology of bipolar disorder (BD). Recent preclinical studies suggest that the amygdala is a heterogeneous group of nuclei, whose specific connectivity could drive positive or negative emotional valence. We investigated functional connectivity (FC) changes within these circuits emerging from each amygdala's subdivision in 127 patients with BD in different mood states and 131 healthy controls (HC), who underwent resting-state functional MRI. FC was evaluated between lateral and medial nuclei of amygdalae, and key subcortical regions of the emotion processing network: anterior and posterior parts of the hippocampus, and core and shell parts of the nucleus accumbens. FC was compared across groups, and subgroups of patients depending on their mood states, using linear mixed models. We also tested correlations between FC and depression (MADRS) and mania (YMRS) scores. We found no difference between the whole sample of BD patients vs. HC but a significant correlation between MADRS and right lateral amygdala /right anterior hippocampus, right lateral amygdala/right posterior hippocampus and right lateral amygdala/left anterior hippocampus FC (r = -0.44, r = -0.32, r = -0.27, respectively, all pFDR<0.05). Subgroup analysis revealed decreased right lateral amygdala/right anterior hippocampus and right lateral amygdala/right posterior hippocampus FC in depressed vs. non-depressed patients and increased left medial amygdala/shell part of the left nucleus accumbens FC in manic vs non-manic patients. These results demonstrate that acute mood states in BD concur with FC changes in individual nuclei of the amygdala implicated in distinct emotional valence processing. Overall, our data highlight the importance to consider the amygdala subnuclei separately when studying its FC patterns including patients in distinct homogeneous mood states.
Collapse
Affiliation(s)
- Sidney Krystal
- Neurospin, UNIACT lab, PsyBrain team, CEA Paris-Saclay, Gif-sur-Yvette, France
- Hôpital Fondation Adolphe de Rothschild, Radiology Department, Paris, France
- CHU Lille, Neuroradiology Department, Lille, France
- Translational Neuropsychiatry team, Université Paris-Est Créteil, INSERM U955, Créteil, France
| | - Laure Gracia
- Hôpital Fondation Adolphe de Rothschild, Radiology Department, Paris, France
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chantal Henry
- Université Paris Cité, Paris, France
- GHU psychiatrie & neurosciences, Paris, France
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Mariana Alonso
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Mircea Polosan
- CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1216, 38000, Grenoble, France
- Fondation FondaMental, Créteil, France
| | - Julien Savatovsky
- Hôpital Fondation Adolphe de Rothschild, Radiology Department, Paris, France
| | - Josselin Houenou
- Neurospin, UNIACT lab, PsyBrain team, CEA Paris-Saclay, Gif-sur-Yvette, France
- Translational Neuropsychiatry team, Université Paris-Est Créteil, INSERM U955, Créteil, France
- Fondation FondaMental, Créteil, France
- DMU IMPACT de Psychiatrie et d'Addictologie, Faculté de Médecine de Créteil, APHP, Hôp Universitaires Mondor, Créteil, France
| | - Pauline Favre
- Neurospin, UNIACT lab, PsyBrain team, CEA Paris-Saclay, Gif-sur-Yvette, France.
- Translational Neuropsychiatry team, Université Paris-Est Créteil, INSERM U955, Créteil, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
18
|
Pirník Z, Szadvári I, Borbélyová V, Tomova A. Altered sex differences related to food intake, hedonic preference, and FosB/deltaFosB expression within central neural circuit involved in homeostatic and hedonic food intake regulation in Shank3B mouse model of autism spectrum disorder. Neurochem Int 2024; 181:105895. [PMID: 39461669 DOI: 10.1016/j.neuint.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by narrow interests, difficulties in communication and social interaction, and repetitive behavior. In addition, ASD is frequently associated with eating and feeding problems. Although the symptoms of ASD are more likely to be observed in boys, the prevalence of eating disorders is more common in females. The ingestive behavior is regulated by the integrative system of the brain, which involves both homeostatic and hedonic neural circuits. Sex differences in the physiology of food intake depend on sex hormones regulating the expression of the ASD-associated Shank genes. Shank3 mutation leads to ASD-like traits and Shank3B -/- mice have been established as an animal model to study the neurobiology of ASD. Therefore, the long-lasting neuronal activity in the central neural circuit related to the homeostatic and hedonic regulation of food intake was evaluated in both sexes of Shank3B mice, followed by the evaluation of the food intake and preference. In the Shank3B +/+ genotype, well-preserved relationships in the tonic activity within the homeostatic neural network together with the relationships between ingestion and hedonic preference were observed in males but were reduced in females. These interrelations were partially or completely lost in the mice with the Shank3B -/- genotype. A decreased hedonic preference for the sweet taste but increased total food intake was found in the Shank3B -/- mice. In the Shank3B -/- group, there were altered sex differences related to the amount of tonic cell activity in the hedonic and homeostatic neural networks, together with altered sex differences in sweet and sweet-fat solution intake. Furthermore, the Shank3B -/- females exhibited an increased intake and preference for cheese compared to the Shank3B +/+ ones. The obtained data indicate altered functional crosstalk between the central homeostatic and hedonic neural circuits involved in the regulation of food intake in ASD.
Collapse
Affiliation(s)
- Zdenko Pirník
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Szadvári
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Aleksandra Tomova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
19
|
Bigot M, De Badts CH, Benchetrit A, Vicq É, Moigneu C, Meyrel M, Wagner S, Hennrich AA, Houenou J, Lledo PM, Henry C, Alonso M. Disrupted basolateral amygdala circuits supports negative valence bias in depressive states. Transl Psychiatry 2024; 14:382. [PMID: 39300117 DOI: 10.1038/s41398-024-03085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Negative bias is an essential characteristic of depressive episodes leading patients to attribute more negative valence to environmental cues. This negative bias affects all levels of information processing including emotional response, attention and memory, leading to the development and maintenance of depressive symptoms. In this context, pleasant stimuli become less attractive and unpleasant ones more aversive, yet the related neural circuits underlying this bias remain largely unknown. By studying a mice model for depression chronically receiving corticosterone (CORT), we showed a negative bias in valence attribution to olfactory stimuli that responds to antidepressant drug. This result paralleled the alterations in odor value assignment we observed in bipolar depressed patients. Given the crucial role of amygdala in valence coding and its strong link with depression, we hypothesized that basolateral amygdala (BLA) circuits alterations might support negative shift associated with depressive states. Contrary to humans, where limits in spatial resolution of imaging tools impair easy amygdala segmentation, recently unravelled specific BLA circuits implicated in negative and positive valence attribution could be studied in mice. Combining CTB and rabies-based tracing with ex vivo measurements of neuronal activity, we demonstrated that negative valence bias is supported by disrupted activity of specific BLA circuits during depressive states. Chronic CORT administration induced decreased recruitment of BLA-to-NAc neurons preferentially involved in positive valence encoding, while increasing recruitment of BLA-to-CeA neurons preferentially involved in negative valence encoding. Importantly, this dysfunction was dampened by chemogenetic hyperactivation of BLA-to-NAc neurons. Moreover, altered BLA activity correlated with durable presynaptic connectivity changes coming from the paraventricular nucleus of the thalamus, recently demonstrated as orchestrating valence assignment in the amygdala. Together, our findings suggest that specific BLA circuits alterations might support negative bias in depressive states and provide new avenues for translational research to understand the mechanisms underlying depression and treatment efficacy.
Collapse
Affiliation(s)
- Mathilde Bigot
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Claire-Hélène De Badts
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Axel Benchetrit
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Éléonore Vicq
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Carine Moigneu
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Manon Meyrel
- Assistance Publique-Hôpitaux de Paris, Department of psychiatry, Mondor University Hospital, Créteil, France
- NeuroSpin, PsyBrain Team, UNIACT Lab, CEA Saclay, Gif-sur-Yvette, France
- Université Paris Est Créteil, Faculté de Santé de Créteil, INSERM U955, IMRB, Translational Neuropsychiatry team, Créteil, France
| | - Sébastien Wagner
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Alexandru Adrian Hennrich
- Max von Pettenkofer-Institute Virology, Medical Faculty, and Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Josselin Houenou
- Assistance Publique-Hôpitaux de Paris, Department of psychiatry, Mondor University Hospital, Créteil, France
- NeuroSpin, PsyBrain Team, UNIACT Lab, CEA Saclay, Gif-sur-Yvette, France
- Université Paris Est Créteil, Faculté de Santé de Créteil, INSERM U955, IMRB, Translational Neuropsychiatry team, Créteil, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Chantal Henry
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France.
- Université de Paris Cité, Paris, France.
- Departement of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, Paris, France.
| | - Mariana Alonso
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France.
| |
Collapse
|
20
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
21
|
Liu Y, Wang Y, Zhao ZD, Xie G, Zhang C, Chen R, Zhang Y. A subset of dopamine receptor-expressing neurons in the nucleus accumbens controls feeding and energy homeostasis. Nat Metab 2024; 6:1616-1631. [PMID: 39147933 PMCID: PMC11349581 DOI: 10.1038/s42255-024-01100-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Orchestrating complex behaviors, such as approaching and consuming food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also controls appetite and satiety. However, specific neuronal subtypes of the NAc that are involved and how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here we decipher the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and define a dopamine receptor D1-expressing and Serpinb2-expressing subtype controlling food consumption in male mice. Chemogenetics and optogenetics-mediated regulation of Serpinb2+ neurons bidirectionally regulate food seeking and consumption specifically. Circuitry stimulation reveals that the NAcShSerpinb2→LHLepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2+ neuron ablation reduces food intake and upregulates energy expenditure, resulting in reduced bodyweight gain. Our study reveals a neural circuit consisting of a molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, providing a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ying Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Zheng-Dong Zhao
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
22
|
Marinescu AM, Labouesse MA. The nucleus accumbens shell: a neural hub at the interface of homeostatic and hedonic feeding. Front Neurosci 2024; 18:1437210. [PMID: 39139500 PMCID: PMC11319282 DOI: 10.3389/fnins.2024.1437210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Feeding behavior is a complex physiological process regulated by the interplay between homeostatic and hedonic feeding circuits. Among the neural structures involved, the nucleus accumbens (NAc) has emerged as a pivotal region at the interface of these two circuits. The NAc comprises distinct subregions and in this review, we focus mainly on the NAc shell (NAcSh). Homeostatic feeding circuits, primarily found in the hypothalamus, ensure the organism's balance in energy and nutrient requirements. These circuits monitor peripheral signals, such as insulin, leptin, and ghrelin, and modulate satiety and hunger states. The NAcSh receives input from these homeostatic circuits, integrating information regarding the organism's metabolic needs. Conversely, so-called hedonic feeding circuits involve all other non-hunger and -satiety processes, i.e., the sensory information, associative learning, reward, motivation and pleasure associated with food consumption. The NAcSh is interconnected with hedonics-related structures like the ventral tegmental area and prefrontal cortex and plays a key role in encoding hedonic information related to palatable food seeking or consumption. In sum, the NAcSh acts as a crucial hub in feeding behavior, integrating signals from both homeostatic and hedonic circuits, to facilitate behavioral output via its downstream projections. Moreover, the NAcSh's involvement extends beyond simple integration, as it directly impacts actions related to food consumption. In this review, we first focus on delineating the inputs targeting the NAcSh; we then present NAcSh output projections to downstream structures. Finally we discuss how the NAcSh regulates feeding behavior and can be seen as a neural hub integrating homeostatic and hedonic feeding signals, via a functionally diverse set of projection neuron subpopulations.
Collapse
Affiliation(s)
- Alina-Măriuca Marinescu
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marie A. Labouesse
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Antonoudiou P, Stone BT, Colmers PLW, Evans-Strong A, Teboul E, Walton NL, Weiss GL, Maguire J. Experience-dependent information routing through the basolateral amygdala shapes behavioral outcomes. Cell Rep 2024; 43:114489. [PMID: 38990724 PMCID: PMC11330675 DOI: 10.1016/j.celrep.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
It is well established that the basolateral amygdala (BLA) is an emotional processing hub that governs a diverse repertoire of behaviors. Selective engagement of a heterogeneous cell population in the BLA is thought to contribute to this flexibility in behavioral outcomes. However, whether this process is impacted by previous experiences that influence emotional processing remains unclear. Here we demonstrate that previous positive (enriched environment [EE]) or negative (chronic unpredictable stress [CUS]) experiences differentially influence the activity of populations of BLA principal neurons projecting to either the nucleus accumbens core or bed nucleus of the stria terminalis. Chemogenetic manipulation of these projection-specific neurons can mimic or occlude the effects of CUS and EE on behavioral outcomes to bidirectionally control avoidance behaviors and stress-induced helplessness. These data demonstrate that previous experiences influence the responsiveness of projection-specific BLA principal neurons, biasing information routing through the BLA, to drive divergent behavioral outcomes.
Collapse
Affiliation(s)
- Pantelis Antonoudiou
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Bradly T Stone
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Phillip L W Colmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Aidan Evans-Strong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Eric Teboul
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Najah L Walton
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Grant L Weiss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
24
|
Lei J, Zhang P, Li T, Cui C, Li M, Yang X, Peng X, Ren K, Yang J, Shi Y, Luo G, Yao Y, Tian B. Alternating bilateral sensory stimulation alleviates alcohol-induced conditioned place preference via a superior colliculus-VTA circuit. Cell Rep 2024; 43:114383. [PMID: 38923461 DOI: 10.1016/j.celrep.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol is the most widely used addictive substance, potentially leading to brain damage and genetic abnormalities. Despite its prevalence and associated risks, current treatments have yet to identify effective methods for reducing cravings and preventing relapse. In this study, we find that 4-Hz alternating bilateral sensory stimulation (ABS) effectively reduces ethanol-induced conditioned place preference (CPP) in male mice, while 4-Hz flash light does not exhibit therapeutic effects. Whole-brain c-Fos mapping demonstrates that 4-Hz ABS triggers notable activation in superior colliculus GABAergic neurons (SCGABA). SCGABA forms monosynaptic connections with ventral tegmental area dopaminergic neurons (VTADA), which is implicated in ethanol-induced CPP. Bidirectional chemogenetic manipulation of SC-VTA circuit either replicates or blocks the therapeutic effects of 4-Hz ABS on ethanol-induced CPP. These findings elucidate the role of SC-VTA circuit for alleviating ethanol-related CPP by 4-Hz ABS and point to a non-drug and non-invasive approach that might have potential for treating alcohol use disorder.
Collapse
Affiliation(s)
- Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, P.R. China.
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xueke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yulong Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Gangan Luo
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yibo Yao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, P.R. China.
| |
Collapse
|
25
|
Hamilton AR, Vishwanath A, Weintraub NC, Cowen SL, Heien ML. Dopamine Release Dynamics in the Nucleus Accumbens Are Modulated by the Timing of Electrical Stimulation Pulses When Applied to the Medial Forebrain Bundle and Medial Prefrontal Cortex. ACS Chem Neurosci 2024; 15:2643-2653. [PMID: 38958080 PMCID: PMC11287657 DOI: 10.1021/acschemneuro.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Electrical brain stimulation has been used in vivo and in vitro to investigate neural circuitry. Historically, stimulation parameters such as amplitude, frequency, and pulse width were varied to investigate their effects on neurotransmitter release and behavior. These experiments have traditionally employed fixed-frequency stimulation patterns, but it has previously been found that neurons are more precisely tuned to variable input. Introducing variability into the interpulse interval of stimulation pulses will inform on how dopaminergic release can be modulated by variability in pulse timing. Here, dopaminergic release in rats is monitored in the nucleus accumbens (NAc), a key dopaminergic center which plays a role in learning and motivation, by fast-scan cyclic voltammetry. Dopaminergic release in the NAc could also be modulated by stimulation region due to differences in connectivity. We targeted two regions for stimulation─the medial forebrain bundle (MFB) and the medial prefrontal cortex (mPFC)─due to their involvement in reward processing and projections to the NAc. Our goal is to investigate how variable interpulse interval stimulation patterns delivered to these regions affect the time course of dopamine release in the NAc. We found that stimulating the MFB with these variable stimulation patterns saw a highly responsive, frequency-driven dopaminergic response. In contrast, variable stimulation patterns applied to the mPFC were not as sensitive to the variable frequency changes. This work will help inform on how stimulation patterns can be tuned specifically to the stimulation region to improve the efficiency of electrical stimulation and control dopamine release.
Collapse
Affiliation(s)
- Andrea R. Hamilton
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | - Nathan C. Weintraub
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Stephen L. Cowen
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - M. Leandro Heien
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
26
|
Long JH, Wang PJ, Xuan L, Juan Y, Wu GY, Teng JF, Sui JF, Li YM, Yang L, Li HL, Liu SL. Prelimbic cortex-nucleus accumbens core projection positively regulates itch and itch-related aversion. Behav Brain Res 2024; 468:114999. [PMID: 38615978 DOI: 10.1016/j.bbr.2024.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Itch is one of the most common clinical symptoms in patients with diseases of the skin, liver, or kidney, and it strongly triggers aversive emotion and scratching behavior. Previous studies have confirmed the role of the prelimbic cortex (Prl) and the nucleus accumbens core (NAcC), which are reward and motivation regulatory centers, in the regulation of itch. However, it is currently unclear whether the Prl-NAcC projection, an important pathway connecting these two brain regions, is involved in the regulation of itch and its associated negative emotions. In this study, rat models of acute neck and cheek itch were established by subcutaneous injection of 5-HT, compound 48/80, or chloroquine. Immunofluorescence experiments determined that the number of c-Fos-immunopositive neurons in the Prl increased during acute itch. Chemogenetic inhibition of Prl glutamatergic neurons or Prl-NAcC glutamatergic projections can inhibit both histaminergic and nonhistaminergic itch-scratching behaviors and rectify the itch-related conditioned place aversion (CPA) behavior associated with nonhistaminergic itch. The Prl-NAcC projection may play an important role in the positive regulation of itch-scratching behavior by mediating the negative emotions related to itch.
Collapse
Affiliation(s)
- Jun-Hui Long
- Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People's Liberation Army), Chongqing, China
| | - Pu-Jun Wang
- Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People's Liberation Army), Chongqing, China
| | - Li Xuan
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yao Juan
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jun-Fei Teng
- Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People's Liberation Army), Chongqing, China
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ya-Min Li
- Institute of Economics and Business Management, Chongqing University of Education, Chongqing, China
| | - Liu Yang
- Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People's Liberation Army), Chongqing, China
| | - Hong-Li Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Shu-Lei Liu
- Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People's Liberation Army), Chongqing, China.
| |
Collapse
|
27
|
Zhao X, Hu A, Wang Y, Zhao T, Xiang X. Paraventricular thalamus to nucleus accumbens circuit activation decreases long-term relapse of alcohol-seeking behaviour in male mice. Pharmacol Biochem Behav 2024; 237:173726. [PMID: 38360104 DOI: 10.1016/j.pbb.2024.173726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Some studies have highlighted the crucial role of aversion in addiction treatment. The pathway from the anterior paraventricular thalamus (PVT) to the shell of the nucleus accumbens (NAc) has been reported as an essential regulatory pathway for processing aversion and is also closely associated with substance addiction. However, its impact on alcohol addiction has been relatively underexplored. Therefore, this study focused on the role of the PVT-NAc pathway in the formation and relapse of alcohol addiction-like behaviour, offering a new perspective on the mechanisms of alcohol addiction. RESULTS The chemogenetic inhibition of the PVT-NAc pathway in male mice resulted in a notable decrease in the establishment of ethanol-induced conditioned place aversion (CPA), and NAc-projecting PVT neurons were recruited due to aversive effects. Conversely, activation of the PVT-NAc pathway considerably impeded the formation of ethanol-induced conditioned place preference (CPP). Furthermore, during the memory reconsolidation phase, activation of this pathway effectively disrupted the animals' preference for alcohol-associated contexts. Whether it was administered urgently 24 h later or after a long-term withdrawal of 10 days, a low dose of alcohol could still not induce the reinstatement of ethanol-induced CPP. CONCLUSIONS Our results demonstrated PVT-NAc circuit processing aversion, which may be one of the neurobiological mechanisms underlying aversive counterconditioning, and highlighted potential targets for inhibiting the development of alcohol addiction-like behaviour and relapse after long-term withdrawal.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Aqian Hu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yanyan Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tianshu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
28
|
Hu Y, Du W, Qi J, Luo H, Zhang Z, Luo M, Wang Y. Comparative brain-wide mapping of ketamine- and isoflurane-activated nuclei and functional networks in the mouse brain. eLife 2024; 12:RP88420. [PMID: 38512722 PMCID: PMC10957177 DOI: 10.7554/elife.88420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Ketamine (KET) and isoflurane (ISO) are two widely used general anesthetics, yet their distinct and shared neurophysiological mechanisms remain elusive. In this study, we conducted a comparative analysis of the effects of KET and ISO on c-Fos expression across the mouse brain, utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the responses of individual brain regions to each anesthetic. Our findings reveal that KET activates a wide range of brain regions, notably in the cortical and subcortical nuclei involved in sensory, motor, emotional, and reward processing, with the temporal association areas (TEa) as a strong hub, suggesting a top-down mechanism affecting consciousness by primarily targeting higher order cortical networks. In contrast, ISO predominantly influences brain regions in the hypothalamus, impacting neuroendocrine control, autonomic function, and homeostasis, with the locus coeruleus (LC) as a connector hub, indicating a bottom-up mechanism in anesthetic-induced unconsciousness. KET and ISO both activate brain areas involved in sensory processing, memory and cognition, reward and motivation, as well as autonomic and homeostatic control, highlighting their shared effects on various neural pathways. In conclusion, our results highlight the distinct but overlapping effects of KET and ISO, enriching our understanding of the mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Jiangtao Qi
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
29
|
Trost W, Trevor C, Fernandez N, Steiner F, Frühholz S. Live music stimulates the affective brain and emotionally entrains listeners in real time. Proc Natl Acad Sci U S A 2024; 121:e2316306121. [PMID: 38408255 DOI: 10.1073/pnas.2316306121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
Music is powerful in conveying emotions and triggering affective brain mechanisms. Affective brain responses in previous studies were however rather inconsistent, potentially because of the non-adaptive nature of recorded music used so far. Live music instead can be dynamic and adaptive and is often modulated in response to audience feedback to maximize emotional responses in listeners. Here, we introduce a setup for studying emotional responses to live music in a closed-loop neurofeedback setup. This setup linked live performances by musicians to neural processing in listeners, with listeners' amygdala activity was displayed to musicians in real time. Brain activity was measured using functional MRI, and especially amygdala activity was quantified in real time for the neurofeedback signal. Live pleasant and unpleasant piano music performed in response to amygdala neurofeedback from listeners was acoustically very different from comparable recorded music and elicited significantly higher and more consistent amygdala activity. Higher activity was also found in a broader neural network for emotion processing during live compared to recorded music. This finding included observations of the predominance for aversive coding in the ventral striatum while listening to unpleasant music, and involvement of the thalamic pulvinar nucleus, presumably for regulating attentional and cortical flow mechanisms. Live music also stimulated a dense functional neural network with the amygdala as a central node influencing other brain systems. Finally, only live music showed a strong and positive coupling between features of the musical performance and brain activity in listeners pointing to real-time and dynamic entrainment processes.
Collapse
Affiliation(s)
- Wiebke Trost
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Caitlyn Trevor
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Natalia Fernandez
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Florence Steiner
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Sascha Frühholz
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
- Department of Psychology, University of Oslo, Oslo 0373, Norway
| |
Collapse
|
30
|
Guo X, Yuan Y, Su X, Cao Z, Chu C, Lei C, Wang Y, Yang L, Pan Y, Sheng H, Cui D, Shao D, Yang H, Fu Y, Wen Y, Cai Z, Lai B, Chen M, Zheng P. Different projection neurons of basolateral amygdala participate in the retrieval of morphine withdrawal memory with diverse molecular pathways. Mol Psychiatry 2024; 29:793-808. [PMID: 38145987 PMCID: PMC11153146 DOI: 10.1038/s41380-023-02371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Context-induced retrieval of drug withdrawal memory is one of the important reasons for drug relapses. Previous studies have shown that different projection neurons in different brain regions or in the same brain region such as the basolateral amygdala (BLA) participate in context-induced retrieval of drug withdrawal memory. However, whether these different projection neurons participate in the retrieval of drug withdrawal memory with same or different molecular pathways remains a topic for research. The present results showed that (1) BLA neurons projecting to the prelimbic cortex (BLA-PrL) and BLA neurons projecting to the nucleus accumbens (BLA-NAc) participated in context-induced retrieval of morphine withdrawal memory; (2) there was an increase in the expression of Arc and pERK in BLA-NAc neurons, but not in BLA-PrL neurons during context-induced retrieval of morphine withdrawal memory; (3) pERK was the upstream molecule of Arc, whereas D1 receptor was the upstream molecule of pERK in BLA-NAc neurons during context-induced retrieval of morphine withdrawal memory; (4) D1 receptors also strengthened AMPA receptors, but not NMDA receptors, -mediated glutamatergic input to BLA-NAc neurons via pERK during context-induced retrieval of morphine withdrawal memory. These results suggest that different projection neurons of the BLA participate in the retrieval of morphine withdrawal memory with diverse molecular pathways.
Collapse
Affiliation(s)
- Xinli Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Yuan
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoman Su
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zixuan Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenshan Chu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chao Lei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingqi Wang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Pan
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huan Sheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dongyang Cui
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Da Shao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yali Fu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yaxian Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhangyin Cai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Medical College of China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
31
|
Liu Y, Zhao ZD, Xie G, Chen R, Zhang Y. A molecularly defined NAcSh D1 subtype controls feeding and energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530275. [PMID: 36909586 PMCID: PMC10002697 DOI: 10.1101/2023.02.27.530275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Orchestrating complex behavioral states, such as approach and consumption of food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also plays an important role in controlling appetite and satiety in responses to changing external stimuli. However, the specific neuronal subtypes of NAc involved as well as how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here, we deciphered the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and defined a dopamine receptor D1(Drd1)- and Serpinb2-expressing subtype located in NAcSh encoding food consumption. Chemogenetics- and optogenetics-mediated regulation of Serpinb2 + neurons bidirectionally regulates food seeking and consumption specifically. Circuitry stimulation revealed the NAcSh Serpinb2 →LH LepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2 + neuron ablation reduces food intake and upregulates energy expenditure resulting in body weight loss. Together, our study reveals a neural circuit consisted of molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, which can serve as a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Zheng-dong Zhao
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
McDevitt DS, Wade QW, McKendrick GE, Nelsen J, Starostina M, Tran N, Blendy JA, Graziane NM. The Paraventricular Thalamic Nucleus and Its Projections in Regulating Reward and Context Associations. eNeuro 2024; 11:ENEURO.0524-23.2024. [PMID: 38351131 PMCID: PMC10883411 DOI: 10.1523/eneuro.0524-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a brain region that mediates aversive and reward-related behaviors as shown in animals exposed to fear conditioning, natural rewards, or drugs of abuse. However, it is unknown whether manipulations of the PVT, in the absence of external factors or stimuli (e.g., fear, natural rewards, or drugs of abuse), are sufficient to drive reward-related behaviors. Additionally, it is unknown whether drugs of abuse administered directly into the PVT are sufficient to drive reward-related behaviors. Here, using behavioral as well as pathway and cell-type specific approaches, we manipulate PVT activity as well as the PVT-to-nucleus accumbens shell (NAcSh) neurocircuit to explore reward phenotypes. First, we show that bath perfusion of morphine (10 µM) caused hyperpolarization of the resting membrane potential, increased rheobase, and decreased intrinsic membrane excitability in PVT neurons that project to the NAcSh. Additionally, we found that direct injections of morphine (50 ng) in the PVT of mice were sufficient to generate conditioned place preference (CPP) for the morphine-paired chamber. Mimicking the inhibitory effect of morphine, we employed a chemogenetic approach to inhibit PVT neurons that projected to the NAcSh and found that pairing the inhibition of these PVT neurons with a specific context evoked the acquisition of CPP. Lastly, using brain slice electrophysiology, we found that bath-perfused morphine (10 µM) significantly reduced PVT excitatory synaptic transmission on both dopamine D1 and D2 receptor-expressing medium spiny neurons in the NAcSh, but that inhibiting PVT afferents in the NAcSh was not sufficient to evoke CPP.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Quinn W Wade
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Greer E McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Jacob Nelsen
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Mariya Starostina
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Nam Tran
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
33
|
Li M, Yang G. A mesocortical glutamatergic pathway modulates neuropathic pain independent of dopamine co-release. Nat Commun 2024; 15:643. [PMID: 38245542 PMCID: PMC10799877 DOI: 10.1038/s41467-024-45035-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Dysfunction in the mesocortical pathway, connecting the ventral tegmental area (VTA) to the prefrontal cortex, has been implicated in chronic pain. While extensive research has focused on the role of dopamine, the contribution of glutamatergic signaling in pain modulation remains unknown. Using in vivo calcium imaging, we observe diminished VTA glutamatergic activity targeting the prelimbic cortex (PL) in a mouse model of neuropathic pain. Optogenetic activation of VTA glutamatergic terminals in the PL alleviates neuropathic pain, whereas inhibiting these terminals in naïve mice induces pain-like responses. Importantly, this pain-modulating effect is independent of dopamine co-release, as demonstrated by CRISPR/Cas9-mediated gene deletion. Furthermore, we show that VTA neurons primarily project to excitatory neurons in the PL, and their activation restores PL outputs to the anterior cingulate cortex, a key region involved in pain processing. These findings reveal a distinct mesocortical glutamatergic pathway that critically modulates neuropathic pain independent of dopamine signaling.
Collapse
Affiliation(s)
- Miao Li
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Cantini D, Choleris E, Kavaliers M. Neurobiology of Pathogen Avoidance and Mate Choice: Current and Future Directions. Animals (Basel) 2024; 14:296. [PMID: 38254465 PMCID: PMC10812398 DOI: 10.3390/ani14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Animals are under constant threat of parasitic infection. This has influenced the evolution of social behaviour and has strong implications for sexual selection and mate choice. Animals assess the infection status of conspecifics based on various sensory cues, with odours/chemical signals and the olfactory system playing a particularly important role. The detection of chemical cues and subsequent processing of the infection threat that they pose facilitates the expression of disgust, fear, anxiety, and adaptive avoidance behaviours. In this selective review, drawing primarily from rodent studies, the neurobiological mechanisms underlying the detection and assessment of infection status and their relations to mate choice are briefly considered. Firstly, we offer a brief overview of the aspects of mate choice that are relevant to pathogen avoidance. Then, we specifically focus on the olfactory detection of and responses to conspecific cues of parasitic infection, followed by a brief overview of the neurobiological systems underlying the elicitation of disgust and the expression of avoidance of the pathogen threat. Throughout, we focus on current findings and provide suggestions for future directions and research.
Collapse
Affiliation(s)
- Dante Cantini
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Elena Choleris
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Martin Kavaliers
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Psychology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
35
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Domingues AV, Rodrigues AJ, Soares-Cunha C. A novel perspective on the role of nucleus accumbens neurons in encoding associative learning. FEBS Lett 2023; 597:2601-2610. [PMID: 37643893 DOI: 10.1002/1873-3468.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The nucleus accumbens (NAc) has been considered a key brain region for encoding reward/aversion and cue-outcome associations. These processes are encoded by medium spiny neurons that express either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). Despite the well-established role of NAc neurons in encoding reward/aversion, the underlying processing by D1-/D2-MSNs remains largely unknown. Recent electrophysiological, optogenetic and calcium imaging studies provided insight on the complex role of D1- and D2-MSNs in these behaviours and helped to clarify their involvement in associative learning. Here, we critically discuss findings supporting an intricate and complementary role of NAc D1- and D2-MSNs in associative learning, emphasizing the need for additional studies in order to fully understand the role of these neurons in behaviour.
Collapse
Affiliation(s)
- Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
37
|
Chen W, Zhang Y, Liang J, Zhang Z, Zhang L, Huang E, Zhang G, Lu L, Han Y, Shi J. Disrupting astrocyte-neuron lactate transport prevents cocaine seeking after prolonged withdrawal. SCIENCE ADVANCES 2023; 9:eadi4462. [PMID: 37878699 PMCID: PMC10599624 DOI: 10.1126/sciadv.adi4462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
Energy supply, especially the transfer of lactate from astrocytes to neurons, is critical for neuronal plasticity. However, its role in the incubation of cocaine craving remains largely unknown. Using an extended-access self-administration model and in vivo 1H-magnetic resonance spectroscopy, we found that lactate synthesis in the central amygdala (CeA) is required for the intensified cocaine craving after prolonged withdrawal. Furthermore, incubated cocaine seeking was associated with a selective increase in monocarboxylate transporter 2 (MCT2) and MCT4 expression levels. Down-regulation of astrocytic MCT4 or neuronal MCT2 using targeted antisense oligonucleotides or cell type-specific shRNA attenuated cocaine craving and reduced the expression of plasticity-related proteins and excitatory synaptic transmission. Meanwhile, lactate administration rescued MCT4 but not MCT2 disruption-induced behavioral changes due to the inability of lactate to be transported into neurons. Together, our study highlights the critical role of astrocyte-neuron lactate transport in the CeA in the incubation of cocaine craving and suggests a potential therapeutic target for drug addiction.
Collapse
Affiliation(s)
- Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Liang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Zhongyu Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guipeng Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| |
Collapse
|
38
|
Ma L, Liu H, Xu Z, Yang M, Zhang Y. Application of the wholebrain calculation interactive framework to map whole-brain neural connectivity networks. J Chem Neuroanat 2023; 132:102304. [PMID: 37331669 DOI: 10.1016/j.jchemneu.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The aim of this work was to develop a simple and feasible method of mapping the neural network topology of the mouse brain. Wild-type C57BL/6 J mice (n = 10) aged 8-10 weeks were injected with the cholera toxin subunit B (CTB) tracer in the anterior (NAcCA) and posterior (NAcCP) parts of the nucleus accumbens (NAc) core and in the medial (NAcSM) and lateral (NAcSL) parts of the NAc shell. The labeled neurons were reconstructed using the WholeBrain Calculation Interactive Framework. The NAcCA receives neuronal projections from the olfactory areas (OLF) and isocortex; the thalamus and isocortex project more fibers to the NAcSL, and the hypothalamus send more fiber projections to the NAcSM. Cell resolution can be automatically annotated, analyzed, and visualized using the WholeBrain Calculation Interactive Framework, making large-scale mapping of mouse brains at cellular and subcellular resolutions easier and more accurate.
Collapse
Affiliation(s)
- Liping Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - He Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ziyi Xu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Mengli Yang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
39
|
Wang XY, Jia WB, Xu X, Chen R, Wang LB, Su XJ, Xu PF, Liu XQ, Wen J, Song XY, Liu YY, Zhang Z, Liu XF, Zhang Y. A glutamatergic DRN-VTA pathway modulates neuropathic pain and comorbid anhedonia-like behavior in mice. Nat Commun 2023; 14:5124. [PMID: 37612268 PMCID: PMC10447530 DOI: 10.1038/s41467-023-40860-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Chronic pain causes both physical suffering and comorbid mental symptoms such as anhedonia. However, the neural circuits and molecular mechanisms underlying these maladaptive behaviors remain elusive. Here using a mouse model, we report a pathway from vesicular glutamate transporter 3 neurons in the dorsal raphe nucleus to dopamine neurons in the ventral tegmental area (VGluT3DRN→DAVTA) wherein population-level activity in response to innocuous mechanical stimuli and sucrose consumption is inhibited by chronic neuropathic pain. Mechanistically, neuropathic pain dampens VGluT3DRN → DAVTA glutamatergic transmission and DAVTA neural excitability. VGluT3DRN → DAVTA activation alleviates neuropathic pain and comorbid anhedonia-like behavior (CAB) by releasing glutamate, which subsequently promotes DA release in the nucleus accumbens medial shell (NAcMed) and produces analgesic and anti-anhedonia effects via D2 and D1 receptors, respectively. In addition, VGluT3DRN → DAVTA inhibition produces pain-like reflexive hypersensitivity and anhedonia-like behavior in intact mice. These findings reveal a crucial role for VGluT3DRN → DAVTA → D2/D1NAcMed pathway in establishing and modulating chronic pain and CAB.
Collapse
Affiliation(s)
- Xin-Yue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Wen-Bin Jia
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Xiang Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Rui Chen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Liang-Biao Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Xiao-Jing Su
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Peng-Fei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Xiao-Qing Liu
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China
| | - Jie Wen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Xiao-Yuan Song
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China
| | - Yuan-Yuan Liu
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China.
| | - Xin-Feng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| |
Collapse
|
40
|
Antonoudiou P, Stone B, Colmers PLW, Evans-Strong A, Walton N, Weiss G, Maguire J. Experience-dependent information routing through the basolateral amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551710. [PMID: 37577684 PMCID: PMC10418260 DOI: 10.1101/2023.08.02.551710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The basolateral amygdala (BLA) is an emotional processing hub and is well-established to influence both positive and negative valence processing. Selective engagement of a heterogeneous cell population in the BLA is thought to contribute to this flexibility in valence processing. However, how this process is impacted by previous experiences which influence valence processing is unknown. Here we demonstrate that previous positive (EE) or negative (chronic unpredictable stress) experiences differentially influence the activity of specific populations of BLA principal neurons projecting to either the nucleus accumbens core or bed nucleus of the stria terminalis. Using chemogenetic manipulation of these projection-specific neurons we can mimic or occlude the effects of chronic unpredictable stress or enriched environment on valence processing to bidirectionally control avoidance behaviors and stress-induced helplessness. These data demonstrate that previous experiences influence the responsiveness of projection-specific BLA principal neurons, biasing information routing through the BLA, to govern valence processing.
Collapse
|
41
|
Enriquez-Traba J, Yarur-Castillo HE, Flores RJ, Weil T, Roy S, Usdin TB, LaGamma CT, Arenivar M, Wang H, Tsai VS, Moritz AE, Sibley DR, Moratalla R, Freyberg ZZ, Tejeda HA. Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546539. [PMID: 37425766 PMCID: PMC10327105 DOI: 10.1101/2023.06.27.546539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dopamine release in striatal circuits, including the nucleus accumbens (NAc), tracks separable features of reward such as motivation and reinforcement. However, the cellular and circuit mechanisms by which dopamine receptors transform dopamine release into distinct constructs of reward remain unclear. Here, we show that dopamine D3 receptor (D3R) signaling in the NAc drives motivated behavior by regulating local NAc microcircuits. Furthermore, D3Rs co-express with dopamine D1 receptors (D1Rs), which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report non-overlapping physiological actions of D3R and D1R signaling in NAc neurons. Our results establish a novel cellular framework wherein dopamine signaling within the same NAc cell type is physiologically compartmentalized via actions on distinct dopamine receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors that are relevant to the etiology of neuropsychiatric disorders.
Collapse
|
42
|
da Costa VF, Ramírez JCC, Ramírez SV, Avalo-Zuluaga JH, Baptista-de-Souza D, Canto-de-Souza L, Planeta CS, Rodríguez JLR, Nunes-de-Souza RL. Emotional- and cognitive-like responses induced by social defeat stress in male mice are modulated by the BNST, amygdala, and hippocampus. Front Integr Neurosci 2023; 17:1168640. [PMID: 37377628 PMCID: PMC10291097 DOI: 10.3389/fnint.2023.1168640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Chronic exposure to social defeat stress (SDS) has been used to investigate the neurobiology of depressive- and anxiety-like responses and mnemonic processes. We hypothesized that these affective, emotional, and cognitive consequences induced by SDS are regulated via glutamatergic neurons located in the bed nucleus of the stria terminalis (BNST), amygdaloid complex, and hippocampus in mice. Methods Here, we investigated the influence of chronic SDS on (i) the avoidance behavior assessed in the social interaction test, (ii) the anxiety-like behavior (e.g., elevated plus-maze, and open field tests) (iii) depressive-like behaviors (e.g., coat state, sucrose splash, nesting building, and novel object exploration tests), (iv) the short-term memory (object recognition test), (v) ΔFosB, CaMKII as well as ΔFosB + CaMKII labeling in neurons located in the BNST, amygdaloid complex, dorsal (dHPC) and the ventral (vHPC) hippocampus. Results The main results showed that the exposure of mice to SDS (a) increased defensive and anxiety-like behaviors and led to memory impairment without eliciting clear depressive-like or anhedonic effects; (b) increased ΔFosB + CaMKII labeling in BNST and amygdala, suggesting that both areas are strongly involved in the modulation of this type of stress; and produced opposite effects on neuronal activation in the vHPC and dHPC, i.e., increasing and decreasing, respectively, ΔFosB labeling. The effects of SDS on the hippocampus suggest that the vHPC is likely related to the increase of defensive- and anxiety-related behaviors, whereas the dHPC seems to modulate the memory impairment. Discussion Present findings add to a growing body of evidence indicating the involvement of glutamatergic neurotransmission in the circuits that modulate emotional and cognitive consequences induced by social defeat stress.
Collapse
Affiliation(s)
- Vinícius Fresca da Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Johana Caterin Caipa Ramírez
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Stephany Viatela Ramírez
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Julian Humberto Avalo-Zuluaga
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
| | - Cleopatra S. Planeta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | | | - Ricardo Luiz Nunes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| |
Collapse
|
43
|
Sánchez-Zavaleta R, Becerril-Meléndez LA, Ruiz-Contreras AE, Escobar-Elías AP, Herrera-Solís A, Méndez-Díaz M, de la Mora MP, Prospéro-García OE. CB1R chronic intermittent pharmacological activation facilitates amphetamine seeking and self-administration and changes in CB1R/CRFR1 expression in the amygdala and nucleus accumbens in rats. Pharmacol Biochem Behav 2023:173587. [PMID: 37308040 DOI: 10.1016/j.pbb.2023.173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Patterns of drug ingestion may have a dissimilar impact on the brain, and therefore also the development of drug addiction. One pattern is binge intoxication that refers to the ingestion of a high amount of drug on a single occasion followed by an abstinence period of variable duration. In this study, our goal was to contrast the effect of continuous low amounts with intermittent higher amounts of Arachidonyl-chloro-ethylamide (ACEA), a CB1R agonist, on amphetamine seeking and ingestion, and describe the effects on the expression of CB1R and CRFR1 in the central nucleus of the amygdala (CeA) and in the nucleus accumbens shell (NAcS). Adult male Wistar rats were treated with a daily administration of vehicle or 20 μg of ACEA, or four days of vehicle followed by 100 μg of ACEA on the fifth day, for a total of 30 days. Upon completion of this treatment, the CB1R and CRFR1 expression in the CeA and NAcS was evaluated by immunofluorescence. Additional groups of rats were evaluated for their anxiety levels (elevated plus maze, EPM), amphetamine (AMPH) self-administration (ASA) and breakpoint (A-BP), as well as AMPH-induced conditioned place preference (A-CPP). Results indicated that ACEA induced changes in the CB1R and CRFR1 expression in both the NAcS and CeA. An increase in anxiety-like behavior, ASA, A-BP and A-CPP was also observed. Since the intermittent administration of 100 μg of ACEA induced the most evident changes in most of the parameters studied, we concluded that binge-like ingestion of drugs induces changes in the brain that may make the subject more vulnerable to developing drug addiction.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Lorena Alline Becerril-Meléndez
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico
| | - Ana Paula Escobar-Elías
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Andrea Herrera-Solís
- Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Chile
| | - Mónica Méndez-Díaz
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Miguel Pérez de la Mora
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Oscar E Prospéro-García
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
44
|
Wang W, Xie X, Zhuang X, Huang Y, Tan T, Gangal H, Huang Z, Purvines W, Wang X, Stefanov A, Chen R, Rodriggs L, Chaiprasert A, Yu E, Vierkant V, Hook M, Huang Y, Darcq E, Wang J. Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Rep 2023; 42:112089. [PMID: 36796365 PMCID: PMC10404641 DOI: 10.1016/j.celrep.2023.112089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain μ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Tao Tan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - William Purvines
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucas Rodriggs
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Anita Chaiprasert
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Emily Yu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Valerie Vierkant
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Michelle Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Emmanuel Darcq
- Department of Psychiatry, University of Strasbourg, INSERM U1114, 67084 Strasbourg Cedex, France
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA; Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Chen G, Lai S, Bao G, Ke J, Meng X, Lu S, Wu X, Xu H, Wu F, Xu Y, Xu F, Bi GQ, Peng G, Zhou K, Zhu Y. Distinct reward processing by subregions of the nucleus accumbens. Cell Rep 2023; 42:112069. [PMID: 36753418 DOI: 10.1016/j.celrep.2023.112069] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shishi Lai
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Yunnan University School of Medicine, Yunnan University, Kunming 650091, China
| | - Guo Bao
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jincan Ke
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaogao Meng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Lu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiaocong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fengyi Wu
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangdun Peng
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kuikui Zhou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|