1
|
Kyei-Baffour E, Bak J, Silva J, Faller W, Alkan F. Detecting ribosome collisions with differential rRNA fragment analysis in ribosome profiling data. NAR Genom Bioinform 2025; 7:lqaf045. [PMID: 40342836 PMCID: PMC12060004 DOI: 10.1093/nargab/lqaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
It has become clear in recent years that ribosomes regularly stall during translation. Such translation impairment has many causes, including exposure to ribotoxic stress agents, the presence of specific RNA structures or sequences, or a shortage of amino acids or translation factors. If they are not resolved, stalled ribosomes can lead to ribosome collisions that are continuously surveilled by various sensor proteins. This in turn initiates a cascade of signalling events that can change the physiology and behaviour of cells. However, measuring changes in collision abundance has proved challenging, and as a result, the importance of collision-mediated biological responses is still unclear. Here, we show that computational analyses of standard ribosome profiling (Ribo-seq) data enable the prediction of changes in ribosome collisions between conditions. This is achieved by using the known 3D structure of collided ribosomes to define the ribosomal RNA (rRNA) positions that are differentially digested by RNases during the Ribo-seq protocol. Comparison of the relative rRNA reads at these positions allows the relative quantification of collisions between samples, an approach we call differential ribosome collisions by Analysis of rRNA Fragments (dricARF). When applied to public datasets across multiple organisms, our approach detects changes in collision events with unprecedented accuracy and sensitivity. In addition to providing supplementary evidence for ribosome collisions, our tool has the potential to uncover novel biological processes that are mediated by them. dricARF is available as part of the ARF R package and can be accessed through https://github.com/fallerlab/ARF.
Collapse
Affiliation(s)
- Edwin Sakyi Kyei-Baffour
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jitske Bak
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
2
|
Sharma R, Chirom O, Mujib A, Prasad M, Prasad A. UFMylation: Exploring a lesser known post translational modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112435. [PMID: 39993644 DOI: 10.1016/j.plantsci.2025.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Ubiquitination is a highly conserved post-translational modification (PTM) in which ubiquitin (Ub) is covalently attached to substrate proteins resulting in the alteration of protein structure, function, and stability. Another class of PTM mediated by ubiquitin-like proteins (UBLs) has gained significant attention among researchers in recent years. This article focuses on one such UBL-mediated PTM i.e. UFMylation. The enzymatic mechanism of UFMylation is similar to ubiquitination, involving three steps regulated by three different enzymes. In plants, reports suggest that UFMylation is predominantly involved in maintaining ER homeostasis including ER-phagy. However, studies related to this PTM are limited and future studies might reveal other molecular pathways regulated by UFMylation.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Oceania Chirom
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Abdul Mujib
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Manoj Prasad
- Department of Genetics, University of Delhi South Campus, New Delhi, India; National Institute of Plant Genome Research, New Delhi, India.
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
3
|
Paternoga H, Xia L, Dimitrova-Paternoga L, Li S, Yan LL, Oestereich M, Kasvandik S, Nanjaraj Urs AN, Beckert B, Tenson T, Zaher H, Inada T, Wilson DN. Structure of a Gcn2 dimer in complex with the large 60S ribosomal subunit. Proc Natl Acad Sci U S A 2025; 122:e2415807122. [PMID: 40198700 PMCID: PMC12012509 DOI: 10.1073/pnas.2415807122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The integrated stress response (ISR) is a central signaling network that enables eukaryotic cells to respond to a variety of different environmental stresses. Such stresses cause ribosome collisions that lead to activation of the kinase Gcn2, resulting in the phosphorylation and inactivation of eukaryotic initiation factor 2 and thereby promoting selective translation of mRNAs to restore homeostasis. Despite the importance of the ISR and intensive study over the past decades, structural insight into how Gcn2 interacts with ribosomal particles has been lacking. Using ex vivo affinity purification approaches, we have obtained a cryoelectron microscopy structure of a yeast Gcn2 dimer in complex with the ribosomal 60S subunit. The Gcn2 dimer is formed by dimerization of the histidine tRNA synthetase-like domains, which establish extensive interactions with the stalk-base and sarcin-ricin loop of the 60S subunit. The C-terminal domain of Gcn2 is also dimerized and occupies the A- and P-site tRNA binding sites at the peptidyl-transferase center of the 60S subunit. Complementary functional studies indicate that binding of Gcn2 to the 60S subunit does not require the coactivators Gcn1 or Gcn20, nor does it lead to phosphorylation of eIF2α. Instead, upon stress, we observe a shift of Gcn2 from the 60S subunit into the colliding ribosome fraction, suggesting that the Gcn2-60S complex represents an inactive stand-by state to enable a rapid redistribution to collided ribosomes, and thereby facilitating a quick and efficient response to stress.
Collapse
Affiliation(s)
- Helge Paternoga
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Lu Xia
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Lyudmila Dimitrova-Paternoga
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Sihan Li
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Malte Oestereich
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Sergo Kasvandik
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | | | - Bertrand Beckert
- Dubochet Center for Imaging at the Ecole Polytechnique Fédérale de Lausanne and the Université de Lausanne (DCI EPFL-UNIL), Quartier UNIL-Sorge, Bâtiment Génopode, Lausanne1015, Switzerland
| | - Tanel Tenson
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Hani Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Toshifumi Inada
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Daniel N. Wilson
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| |
Collapse
|
4
|
Zhang X, Brody JA, Graff M, Highland HM, Chami N, Xu H, Wang Z, Ferrier KR, Chittoor G, Josyula NS, Meyer M, Gupta S, Li X, Li Z, Allison MA, Becker DM, Bielak LF, Bis JC, Boorgula MP, Bowden DW, Broome JG, Buth EJ, Carlson CS, Chang KM, Chavan S, Chiu YF, Chuang LM, Conomos MP, DeMeo DL, Du M, Duggirala R, Eng C, Fohner AE, Freedman BI, Garrett ME, Guo X, Haiman C, Heavner BD, Hidalgo B, Hixson JE, Ho YL, Hobbs BD, Hu D, Hui Q, Hwu CM, Jackson RD, Jain D, Kalyani RR, Kardia SLR, Kelly TN, Lange EM, LeNoir M, Li C, Le Marchand L, McDonald MLN, McHugh CP, Morrison AC, Naseri T, O'Connell J, O'Donnell CJ, Palmer ND, Pankow JS, Perry JA, Peters U, Preuss MH, Rao DC, Regan EA, Reupena SM, Roden DM, Rodriguez-Santana J, Sitlani CM, Smith JA, Tiwari HK, Vasan RS, Wang Z, Weeks DE, Wessel J, Wiggins KL, Wilkens LR, Wilson PWF, Yanek LR, Yoneda ZT, Zhao W, Zöllner S, Arnett DK, Ashley-Koch AE, Barnes KC, Blangero J, Boerwinkle E, Burchard EG, Carson AP, Chasman DI, Ida Chen YD, Curran JE, Fornage M, Gordeuk VR, He J, Heckbert SR, Hou L, Irvin MR, et alZhang X, Brody JA, Graff M, Highland HM, Chami N, Xu H, Wang Z, Ferrier KR, Chittoor G, Josyula NS, Meyer M, Gupta S, Li X, Li Z, Allison MA, Becker DM, Bielak LF, Bis JC, Boorgula MP, Bowden DW, Broome JG, Buth EJ, Carlson CS, Chang KM, Chavan S, Chiu YF, Chuang LM, Conomos MP, DeMeo DL, Du M, Duggirala R, Eng C, Fohner AE, Freedman BI, Garrett ME, Guo X, Haiman C, Heavner BD, Hidalgo B, Hixson JE, Ho YL, Hobbs BD, Hu D, Hui Q, Hwu CM, Jackson RD, Jain D, Kalyani RR, Kardia SLR, Kelly TN, Lange EM, LeNoir M, Li C, Le Marchand L, McDonald MLN, McHugh CP, Morrison AC, Naseri T, O'Connell J, O'Donnell CJ, Palmer ND, Pankow JS, Perry JA, Peters U, Preuss MH, Rao DC, Regan EA, Reupena SM, Roden DM, Rodriguez-Santana J, Sitlani CM, Smith JA, Tiwari HK, Vasan RS, Wang Z, Weeks DE, Wessel J, Wiggins KL, Wilkens LR, Wilson PWF, Yanek LR, Yoneda ZT, Zhao W, Zöllner S, Arnett DK, Ashley-Koch AE, Barnes KC, Blangero J, Boerwinkle E, Burchard EG, Carson AP, Chasman DI, Ida Chen YD, Curran JE, Fornage M, Gordeuk VR, He J, Heckbert SR, Hou L, Irvin MR, Kooperberg C, Minster RL, Mitchell BD, Nouraie M, Psaty BM, Raffield LM, Reiner AP, Rich SS, Rotter JI, Benjamin Shoemaker M, Smith NL, Taylor KD, Telen MJ, Weiss ST, Zhang Y, Heard-Costa N, Sun YV, Lin X, Cupples LA, Lange LA, Liu CT, Loos RJF, North KE, Justice AE. Whole genome sequencing analysis of body mass index identifies novel African ancestry-specific risk allele. Nat Commun 2025; 16:3470. [PMID: 40216759 PMCID: PMC11992084 DOI: 10.1038/s41467-025-58420-2] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10-9), including two secondary signals. Notably, we identified and replicated a novel low-frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.
Collapse
Affiliation(s)
- Xinruo Zhang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanfei Xu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kendra R Ferrier
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Mariah Meyer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Shreyash Gupta
- Population Health Sciences, Geisinger, Danville, PA, USA
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zilin Li
- Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
- School of Mathematics and Statistics and KLAS, Northeast Normal University, Changchun, Jilin, China
| | - Matthew A Allison
- Department of Family Medicine, Division of Preventive Medicine, The University of California San Diego, La Jolla, CA, USA
| | - Diane M Becker
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jai G Broome
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Erin J Buth
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sameer Chavan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yen-Feng Chiu
- Institute of Population Health Sciences, National Health Research Institutes, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, Division of Metabolism/Endocrinology, National Taiwan University Hospital, Taipei, Taiwan
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Dawn L DeMeo
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ravindranath Duggirala
- Life Sciences, College of Arts and Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
- Department of Health and Behavioral Sciences, College of Arts and Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Celeste Eng
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alison E Fohner
- Epidemiology, Institute of Public Health Genetics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Barry I Freedman
- Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Xiuqing Guo
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Chris Haiman
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin D Heavner
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - James E Hixson
- Department of Epidemiology, School of Public Health, UTHealth Houston, Houston, TX, USA
| | - Yuk-Lam Ho
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Brian D Hobbs
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donglei Hu
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA, USA
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Chii-Min Hwu
- Department of Medicine, Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan, Taiwan
| | | | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Rita R Kalyani
- Department of Medicine, Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tanika N Kelly
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ethan M Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael LeNoir
- Department of Pediatrics, Bay Area Pediatrics, Oakland, CA, USA
| | - Changwei Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Merry-Lynn N McDonald
- Department of Medicine, Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caitlin P McHugh
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, Brown University, Providence, RI, USA
| | - Jeffrey O'Connell
- Department of Medicine, Program for Personalized and Genomic Medicine, University of Maryland, Baltimore, MD, USA
| | - Christopher J O'Donnell
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James A Perry
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D C Rao
- Center for Biostatistics and Data Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Elizabeth A Regan
- Department of Medicine, Rheumatology, National Jewish Health, Denver, CO, USA
| | | | - Dan M Roden
- Medicine, Pharmacology, and Biomedical Informatics, Clinical Pharmacology and Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | | | - Zeyuan Wang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Daniel E Weeks
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer Wessel
- Department of Epidemiology, Indiana University, Indianapolis, IN, USA
- Department of Medicine, Indiana University, Indianapolis, IN, USA
- Diabaetes Translational Research Center, Indiana University, Indianapolis, IN, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peter W F Wilson
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lisa R Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary T Yoneda
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Sebastian Zöllner
- Department of Biostatistics, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Donna K Arnett
- Department of Epidemiology, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Kathleen C Barnes
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Bioengineering and Therapeutic Sciences and Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- Department of Medical Genetics, Genomic Outcomes, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Myriam Fornage
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victor R Gordeuk
- Department of Medicine, School of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jiang He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Northwestern University, Chicago, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland, Baltimore, MD, USA
| | - Mehdi Nouraie
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas L Smith
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Office of Research and Development, Department of Veterans Affairs, Seattle, WA, USA
| | - Kent D Taylor
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Division of Hematology, Duke University School of Medical, Durham, NC, USA
| | - Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Harvard Medical School, Boston, MA, USA
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nancy Heard-Costa
- Framingham Heart Study, School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Justice
- Population Health Sciences, Geisinger, Danville, PA, USA.
| |
Collapse
|
5
|
Fabret C, Giudice E, Chat S, Gillet R, Namy O. RQC2 is a major player in peptide release from stalled ribosomes. Structure 2025:S0969-2126(25)00105-4. [PMID: 40187343 DOI: 10.1016/j.str.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/15/2024] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Eukaryotic cells prevent the accumulation of potentially toxic aberrant polypeptides and maintain ribosome availability through surveillance and clearance mechanisms, including the evolutionarily conserved ribosome-associated quality control complex (RQC). RQC pathways have been widely investigated, with the identification of several factors ANKZF1/Vms1p, Ptrh1, and Arb1p involved in release/cleavage of the peptide-tRNA from 60S subunits. We aimed here to identify the genes involved in peptide release from stalled ribosomes. Using a genetic screen, we identified a mutant allele of RQC2 as involved in this process. We present the cryoelectron microscopy (cryo-EM) structure of RQC, which reveals how the F340I mutation affects mutant binding. This altered binding, in turn, disrupts the A-site's ability to bind the tRNA in the presence of Ltn1. These data account for the limitation of C-terminal alanine and threonine (CAT) tailing by the F340I mutation and suggest a model explaining the role of the Rqc2 protein in peptide release.
Collapse
Affiliation(s)
- Céline Fabret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Emmanuel Giudice
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Sophie Chat
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Reynald Gillet
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Baymiller M, Helton NS, Dodd B, Moon SL. tRNA synthetase activity is required for stress granule and P-body assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642431. [PMID: 40161773 PMCID: PMC11952412 DOI: 10.1101/2025.03.10.642431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In response to stress, translation initiation is suppressed and ribosome runoff via translation elongation drives mRNA assembly into ribonucleoprotein (RNP) granules including stress granules and P-bodies. Defects in translation elongation activate the integrated stress response. If and how stalled ribosomes are removed from mRNAs during translation elongation stress to drive RNP granule assembly is not clear. We demonstrate the integrated stress response is induced upon tRNA synthetase inhibition in part via ribosome collision sensing. However, saturating levels of tRNA synthetase inhibitors do not induce stress granules or P-bodies and prevent RNP granule assembly upon exogenous stress. The loss of tRNA synthetase activity causes persistent ribosome stalls that can be released with puromycin but are not rescued by ribosome-associated quality control pathways. Therefore, tRNA synthetase activity is required for ribosomes to run off mRNAs during stress to scaffold cytoplasmic RNP granules. Our findings suggest ribosome stalls can persist in human cells and uniquely uncouple ribonucleoprotein condensate assembly from the integrated stress response.
Collapse
Affiliation(s)
- Max Baymiller
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noah S. Helton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin Dodd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie L. Moon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Sato N, Nakano Y, Matsuki Y, Tomomatsu S, Li S, Matsuo Y, Inada T. Crucial roles of Grr1 in splicing and translation of HAC1 mRNA upon unfolded stress response. Nat Commun 2025; 16:2172. [PMID: 40038285 PMCID: PMC11880305 DOI: 10.1038/s41467-025-57360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
In the process of the unfolded protein response (UPR), the Hac1p protein is induced through a complex regulation of the HAC1 mRNA. This includes the mRNA localization on the endoplasmic reticulum (ER) membrane and stress-triggered splicing. In yeast, a specific ribosome ubiquitination process, the monoubiquitination of eS7A by the E3 ligase Not4, facilitates the translation of HAC1i, a spliced form of the HAC1 mRNA. Upon UPR, the mono-ubiquitination of eS7A increases due to the downregulation of Ubp3, a deubiquitinating enzyme of eS7A. However, the exact mechanisms behind these regulations have remained unknown. In this study, an E3 ligase, Grr1, an F-box protein component of the SCF ubiquitin ligase complex, which is responsible for Ubp3 degradation, has been identified. Grr1-mediated Ubp3 degradation is required to maintain the level of eS7A monoubiquitination that facilitates Hac1p translation depending on the ORF of HAC1i. Grr1 also facilitates the splicing of HAC1u mRNA independently of Ubp3 and eS7A ubiquitination. Finally, we propose distinct roles of Grr1 upon UPR, HAC1u splicing, and HAC1i mRNA translation. Grr1-mediated Ubp3 degradation is crucial for HAC1i mRNA translation, highlighting the crucial role of ribosome ubiquitination in translational during UPR.
Collapse
Affiliation(s)
- Nichika Sato
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yu Nakano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuko Matsuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shota Tomomatsu
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan
| | - Sihan Li
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yoshitaka Matsuo
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
8
|
Scazzari M, Zhang Y, Moddemann A, Rospert S. Stalled disomes marked by Hel2-dependent ubiquitin chains undergo Ubp2/Ubp3-mediated deubiquitination upon translational run-off. Commun Biol 2025; 8:132. [PMID: 39875504 PMCID: PMC11775340 DOI: 10.1038/s42003-025-07569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways. Recent studies have revealed high concentrations of disomes and trisomes in unstressed cells, raising the question of whether and how Hel2 selects long-term stalled disomes and trisomes. This study presents quantitative analysis of in vivo-formed Hel2•ribosome complexes and the dynamics of Hel2-dependent Rps20 ubiquitination and Ubp2/Ubp3-dependent deubiquitination. Our findings show that Hel2 occupancy progressively increases from translating monosomes to disomes and trisomes. We demonstrate that disomes and trisomes with mono- or di-ubiquitinated Rps20 resolve independently of the RQC component Slh1, while those with tri- and tetra-ubiquitinated Rps20 do not. Based on the results, we propose a model in which Hel2 translates the duration of ribosome stalling into polyubiquitin chain length. This mechanism allows for the distinction between transient and long-term stalling, providing the RQC machinery with a means to select fatally stalled ribosomes over transiently stalled ones.
Collapse
Affiliation(s)
- Mario Scazzari
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Moddemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Ranjan A, Mattijssen S, Charlly N, Gallardo IC, Pitman L, Coleman J, Conte M, Maraia R. The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation. Nucleic Acids Res 2025; 53:gkaf053. [PMID: 39898547 PMCID: PMC11788930 DOI: 10.1093/nar/gkaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
LARP4 interacts with poly(A)-binding protein (PABP) to protect messenger RNAs (mRNAs) from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved and relevance had been undetermined. Here, through a combination of in-cell and in vitro methodologies, we identified positions 615-625 in conserved region-2 (CR2) of LARP4 (and 646-656 in LARP4B) as directly binding RACK1. Consistent with these results, AlphaFold2-Multimer predicted high-confidence interaction of CR2 with RACK1 propellers 5 and 6. CR2 mutations strongly decreased LARP4 association with cellular RACK1 and ribosomes by multiple assays, whereas PABP association was less affected, consistent with independent interactions. The CR2 mutations decreased LARP4's ability to stabilize a β-globin mRNA reporter containing an AU-rich element (ARE) to higher degree than β-globin and GFP (green fluorescent protein) mRNAs lacking the ARE. We show LARP4 robustly increases translation of β-glo-ARE mRNA, whereas the LARP4 CR2 mutant is impaired. Analysis of nanoLuc-ARE mRNA for production of luciferase activity confirmed LARP4 promotes translation efficiency, while CR2 mutations are disabling. Thus, LARP4 CR2-mediated interaction with RACK1 can promote translational efficiency of some mRNAs.
Collapse
Affiliation(s)
- Amitabh Ranjan
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sandy Mattijssen
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Nithin Charlly
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Isabel Cruz Gallardo
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Leah F Pitman
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
- Messenger RNA Regulation and Decay Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States 21702
| | - Jennifer C Coleman
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Richard J Maraia
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| |
Collapse
|
10
|
Hassan A, Pinkas M, Yaeshima C, Ishino S, Uchiumi T, Ito K, Demo G. Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization. Nucleic Acids Res 2025; 53:gkae1324. [PMID: 39797736 PMCID: PMC11724365 DOI: 10.1093/nar/gkae1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress. Despite extensive studies on bacteria and eukaryotes, understanding factor-mediated ribosome dimerization or anti-association in archaea remains elusive. Here, we present cryo-electron microscopy structures of an archaeal 30S dimer complexed with an archaeal ribosome dimerization factor (designated aRDF), from Pyrococcus furiosus, resolved at a resolution of 3.2 Å. The complex features two 30S subunits stabilized by aRDF homodimers in a unique head-to-body architecture, which differs from the disome architecture observed during hibernation in bacteria and eukaryotes. aRDF interacts directly with eS32 ribosomal protein, which is essential for subunit association. The binding mode of aRDF elucidates its anti-association properties, which prevent the assembly of archaeal 70S ribosomes.
Collapse
Affiliation(s)
- Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Matyas Pinkas
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Chiaki Yaeshima
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
11
|
Bourgeois G, Coureux PD, Lazennec-Schurdevin C, Madru C, Gaillard T, Duchateau M, Chamot-Rooke J, Bourcier S, Mechulam Y, Schmitt E. Structures of Saccharolobus solfataricus initiation complexes with leaderless mRNAs highlight archaeal features and eukaryotic proximity. Nat Commun 2025; 16:348. [PMID: 39753558 PMCID: PMC11698992 DOI: 10.1038/s41467-024-55718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
The archaeal ribosome is of the eukaryotic type. TACK and Asgard superphyla, the closest relatives of eukaryotes, have ribosomes containing eukaryotic ribosomal proteins not found in other archaea, eS25, eS26 and eS30. Here, we investigate the case of Saccharolobus solfataricus, a TACK crenarchaeon, using mainly leaderless mRNAs. We characterize the small ribosomal subunit of S. solfataricus bound to SD-leadered or leaderless mRNAs. Cryo-EM structures show eS25, eS26 and eS30 bound to the small subunit. We identify two ribosomal proteins, aS33 and aS34, and an additional domain of eS6. Leaderless mRNAs are bound to the small subunit with contribution of their 5'-triphosphate group. Archaeal eS26 binds to the mRNA exit channel wrapped around the 3' end of rRNA, as in eukaryotes. Its position is not compatible with an SD:antiSD duplex. Our results suggest a positive role of eS26 in leaderless mRNAs translation and possible evolutionary routes from archaeal to eukaryotic translation.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
- Retroviruses and Structural Biochemistry Team, Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-Lyon 1, CNRS, Université de Lyon, Lyon, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Clément Madru
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Thomas Gaillard
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Magalie Duchateau
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Sophie Bourcier
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
| |
Collapse
|
12
|
Ford PW, Narasimhan M, Bennett EJ. Ubiquitin-dependent translation control mechanisms: Degradation and beyond. Cell Rep 2024; 43:115050. [PMID: 39661518 PMCID: PMC11756260 DOI: 10.1016/j.celrep.2024.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Translation control mechanisms connect the largely static genome to the highly dynamic proteome. At each step in the translation cycle, multiple layers of regulation enable efficient protein biogenesis under optimal conditions and mediate responses to acute environmental challenges. Recent research has demonstrated that individual ribosomal protein ubiquitylation events act as molecular signals to specify quality control pathway outcomes. Here, we synthesize current knowledge of ubiquitin-mediated translation control mechanisms and highlight key outstanding questions. We compare and contrast ubiquitin-dependent mechanisms that regulate ribosome-associated quality control pathways at several steps in the translation cycle. We also explore how distinct ribosome ubiquitylation events on specific ribosomal proteins impact translation activity and how defects in specific ubiquitin-mediated regulatory steps impact physiology and health.
Collapse
Affiliation(s)
- Pierce W Ford
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mythreyi Narasimhan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Rickgauer JP, Choi H, Moore AS, Denk W, Lippincott-Schwartz J. Structural dynamics of human ribosomes in situ reconstructed by exhaustive high-resolution template matching. Mol Cell 2024; 84:4912-4928.e7. [PMID: 39626661 DOI: 10.1016/j.molcel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Protein synthesis is central to life and requires the ribosome, which catalyzes the stepwise addition of amino acids to a polypeptide chain by undergoing a sequence of structural transformations. Here, we employed high-resolution template matching (HRTM) on cryoelectron microscopy (cryo-EM) images of directly cryofixed living cells to obtain a set of ribosomal configurations covering the entire elongation cycle, with each configuration occurring at its native abundance. HRTM's position and orientation precision and ability to detect small targets (∼300 kDa) made it possible to order these configurations along the reaction coordinate and to reconstruct molecular features of any configuration along the elongation cycle. Visualizing the cycle's structural dynamics by combining a sequence of >40 reconstructions into a 3D movie readily revealed component and ligand movements, some of them surprising, such as spring-like intramolecular motion, providing clues about the molecular mechanisms involved in some still mysterious steps during chain elongation.
Collapse
Affiliation(s)
- J Peter Rickgauer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Heejun Choi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Winfried Denk
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | | |
Collapse
|
14
|
Ishibashi K, Shichino Y, Han P, Wakabayashi K, Mito M, Inada T, Kimura S, Iwasaki S, Mishima Y. Translation of zinc finger domains induces ribosome collision and Znf598-dependent mRNA decay in zebrafish. PLoS Biol 2024; 22:e3002887. [PMID: 39636823 PMCID: PMC11620358 DOI: 10.1371/journal.pbio.3002887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Quality control of translation is crucial for maintaining cellular and organismal homeostasis. Obstacles in translation elongation induce ribosome collision, which is monitored by multiple sensor mechanisms in eukaryotes. The E3 ubiquitin ligase Znf598 recognizes collided ribosomes, triggering ribosome-associated quality control (RQC) to rescue stalled ribosomes and no-go decay (NGD) to degrade stall-prone mRNAs. However, the impact of RQC and NGD on maintaining the translational homeostasis of endogenous mRNAs has remained unclear. In this study, we investigated the endogenous substrate mRNAs of NGD during the maternal-to-zygotic transition (MZT) of zebrafish development. RNA-Seq analysis of zebrafish znf598 mutant embryos revealed that Znf598 down-regulates mRNAs encoding the C2H2-type zinc finger domain (C2H2-ZF) during the MZT. Reporter assays and disome profiling indicated that ribosomes stall and collide while translating tandem C2H2-ZFs, leading to mRNA degradation by Znf598. Our results suggest that NGD maintains the quality of the translatome by mitigating the risk of ribosome collision at the abundantly present C2H2-ZF sequences in the vertebrate genome.
Collapse
Affiliation(s)
- Kota Ishibashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Peixun Han
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Kimi Wakabayashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Toshifumi Inada
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuichiro Mishima
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
15
|
Lehmann JA, Lindner D, Sung HM, Stoecklin G. E3 ubiquitin ligase RNF10 promotes dissociation of stalled ribosomes and responds to ribosomal subunit imbalance. Nat Commun 2024; 15:10350. [PMID: 39609413 PMCID: PMC11604940 DOI: 10.1038/s41467-024-54411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Aberrant translation causes ribosome stalling, which leads to the ubiquitination of ribosomal proteins and induces ribosome-associated quality control. As part of this quality control process, the E3 ubiquitin ligase RNF10 monoubiquitinates ribosomal protein RPS3. Here, we demonstrate that RNF10-mediated RPS3 monoubiquitination antagonizes ribosomal half-mer formation by promoting dissociation of 40S subunits from ribosomes stalled during translation elongation. Interestingly, RNF10 also promotes dissociation of 40S subunits stalled during aberrant translation initiation. Moreover, RNF10 levels are tightly coupled to the amount of 40S subunits. Knockdown of RPS proteins, which abrogates 40S ribosome biogenesis, results in proteasomal degradation of RNF10. Vice versa, knockdown of RPL proteins, which abrogates 60S biogenesis, leads to the accumulation of stalled initiating 40S subunits, increased RNF10 levels, and RPS3 monoubiquitination. As a factor required for the resolution of stalled translation events, RNF10 is part of a fundamental mechanism by which cells respond to imbalances in ribosomal subunit stoichiometry.
Collapse
Affiliation(s)
- Janina A Lehmann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Hsu-Min Sung
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Chang WD, Yoon MJ, Yeo KH, Choe YJ. Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides. Mol Cell 2024; 84:4334-4349.e7. [PMID: 39488212 DOI: 10.1016/j.molcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
Collapse
Affiliation(s)
- Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Mi-Jeong Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kian Hua Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Young-Jun Choe
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
17
|
Kögel A, Keidel A, Loukeri MJ, Kuhn CC, Langer LM, Schäfer IB, Conti E. Structural basis of mRNA decay by the human exosome-ribosome supercomplex. Nature 2024; 635:237-242. [PMID: 39385025 PMCID: PMC11540850 DOI: 10.1038/s41586-024-08015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The interplay between translation and mRNA decay is widespread in human cells1-3. In quality-control pathways, exonucleolytic degradation of mRNA associated with translating ribosomes is mediated largely by the cytoplasmic exosome4-9, which includes the exoribonuclease complex EXO10 and the helicase complex SKI238 (refs. 10-16). The helicase can extract mRNA from the ribosome and is expected to transfer it to the exoribonuclease core through a bridging factor, HBS1L3 (also known as SKI7), but the mechanisms of this molecular handover remain unclear7,17,18. Here we reveal how human EXO10 is recruited by HBS1L3 (SKI7) to an active ribosome-bound SKI238 complex. We show that rather than a sequential handover, a direct physical coupling mechanism takes place, which culminates in the formation of a cytoplasmic exosome-ribosome supercomplex. Capturing the structure during active decay reveals a continuous path in which an RNA substrate threads from the 80S ribosome through the SKI2 helicase into the exoribonuclease active site of the cytoplasmic exosome complex. The SKI3 subunit of the complex directly binds to HBS1L3 (SKI7) and also engages a surface of the 40S subunit, establishing a recognition platform in collided disomes. Exosome and ribosome thus work together as a single structural and functional unit in co-translational mRNA decay, coordinating their activities in a transient supercomplex.
Collapse
Affiliation(s)
- Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matina-Jasemi Loukeri
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher C Kuhn
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Paul Langerhans Institute Dresden and Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
18
|
Ranjan A, Mattijssen S, Charlly N, Gallardo IC, Pitman LF, Coleman JC, Conte MR, Maraia RJ. The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621267. [PMID: 39554137 PMCID: PMC11565960 DOI: 10.1101/2024.11.01.621267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
LARP4 interacts with poly(A)-binding protein (PABP) to protect mRNAs from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved, and relevance had been undetermined. Here, yeast two-hybrid domain mapping followed by other methods identified positions 615-625 in conserved region-2 (CR2) of LARP4 (and LARP4B) as directly binding RACK1 region 200-317. Consistent with these results, AlphaFold2-multimer predicted high confidence interaction of CR2 with RACK1 propellers 5-6. CR2 mutations strongly decreased LARP4 association with cellular RACK1 and ribosomes by multiple assays, whereas less effect was observed for PABP association, consistent with independent interactions. CR2 mutations decreased LARP4 ability to optimally stabilize a β-globin mRNA reporter containing an AU-rich element (ARE) more significantly than a β-globin and other reporters lacking this element. While polysome profiles indicate the β-glo-ARE mRNA is inefficiently translated, consistent with published data, we show that LARP4 increases its translation whereas the LARP4-CR2 mutant is impaired. Analysis of nanoLuc-ARE mRNA for production of luciferase activity confirmed LARP4 promotes translation efficiency while CR2 mutations are disabling. Thus, LARP4 CR2-mediated interaction with RACK1 can promote translational efficiency of some mRNAs.
Collapse
Affiliation(s)
- Amitabh Ranjan
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sandy Mattijssen
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Nithin Charlly
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Isabel Cruz Gallardo
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Leah F. Pitman
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Messenger RNA Regulation and Decay Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jennifer C. Coleman
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Richard J. Maraia
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Zheng W, Zhang Y, Wang J, Wang S, Chai P, Bailey EJ, Guo W, Devarkar SC, Wu S, Lin J, Zhang K, Liu J, Lomakin IB, Xiong Y. Visualizing the translation landscape in human cells at high resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601723. [PMID: 39005351 PMCID: PMC11244987 DOI: 10.1101/2024.07.02.601723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Obtaining comprehensive structural descriptions of macromolecules within their natural cellular context holds immense potential for understanding fundamental biology and improving health. Here, we present the landscape of protein synthesis inside human cells in unprecedented detail obtained using an approach which combines automated cryo-focused ion beam (FIB) milling and in situ single-particle cryo-electron microscopy (cryo-EM). With this in situ cryo-EM approach we resolved a 2.19 Å consensus structure of the human 80S ribosome and unveiled its 21 distinct functional states, nearly all higher than 3 Å resolution. In contrast to in vitro studies, we identified protein factors, including SERBP1, EDF1 and NAC/3, not enriched on purified ribosomes. Most strikingly, we observed that SERBP1 binds to the ribosome in almost all translating and non-translating states to bridge the 60S and 40S ribosomal subunits. These newly observed binding sites suggest that SERBP1 may serve an important regulatory role in translation. We also uncovered a detailed interface between adjacent translating ribosomes which can form the helical polysome structure. Finally, we resolved high-resolution structures from cells treated with homoharringtonine and cycloheximide, and identified numerous polyamines bound to the ribosome, including a spermidine that interacts with cycloheximide bound at the E site of the ribosome, underscoring the importance of high-resolution in situ studies in the complex native environment. Collectively, our work represents a significant advancement in detailed structural studies within cellular contexts.
Collapse
|
20
|
Li X, Wang M, Denk T, Buschauer R, Li Y, Beckmann R, Cheng J. Structural basis for differential inhibition of eukaryotic ribosomes by tigecycline. Nat Commun 2024; 15:5481. [PMID: 38942792 PMCID: PMC11213857 DOI: 10.1038/s41467-024-49797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Tigecycline is widely used for treating complicated bacterial infections for which there are no effective drugs. It inhibits bacterial protein translation by blocking the ribosomal A-site. However, even though it is also cytotoxic for human cells, the molecular mechanism of its inhibition remains unclear. Here, we present cryo-EM structures of tigecycline-bound human mitochondrial 55S, 39S, cytoplasmic 80S and yeast cytoplasmic 80S ribosomes. We find that at clinically relevant concentrations, tigecycline effectively targets human 55S mitoribosomes, potentially, by hindering A-site tRNA accommodation and by blocking the peptidyl transfer center. In contrast, tigecycline does not bind to human 80S ribosomes under physiological concentrations. However, at high tigecycline concentrations, in addition to blocking the A-site, both human and yeast 80S ribosomes bind tigecycline at another conserved binding site restricting the movement of the L1 stalk. In conclusion, the observed distinct binding properties of tigecycline may guide new pathways for drug design and therapy.
Collapse
Affiliation(s)
- Xiang Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Mengjiao Wang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Timo Denk
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Buschauer
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Chinnam NB, Thapar R, Arvai AS, Sarker AH, Soll JM, Paul T, Syed A, Rosenberg DJ, Hammel M, Bacolla A, Katsonis P, Asthana A, Tsai MS, Ivanov I, Lichtarge O, Silverman RH, Mosammaparast N, Tsutakawa SE, Tainer JA. ASCC1 structures and bioinformatics reveal a novel helix-clasp-helix RNA-binding motif linked to a two-histidine phosphodiesterase. J Biol Chem 2024; 300:107368. [PMID: 38750793 PMCID: PMC11214414 DOI: 10.1016/j.jbc.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.
Collapse
Affiliation(s)
- Naga Babu Chinnam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roopa Thapar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew S Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Altaf H Sarker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jennifer M Soll
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tanmoy Paul
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Panagiotis Katsonis
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Olivier Lichtarge
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nima Mosammaparast
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
22
|
Miścicka A, Bulakhov AG, Kuroha K, Zinoviev A, Hellen CT, Pestova T. Ribosomal collision is not a prerequisite for ZNF598-mediated ribosome ubiquitination and disassembly of ribosomal complexes by ASCC. Nucleic Acids Res 2024; 52:4627-4643. [PMID: 38366554 PMCID: PMC11077048 DOI: 10.1093/nar/gkae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Ribosomal stalling induces the ribosome-associated quality control (RQC) pathway targeting aberrant polypeptides. RQC is initiated by K63-polyubiquitination of ribosomal protein uS10 located at the mRNA entrance of stalled ribosomes by the E3 ubiquitin ligase ZNF598 (Hel2 in yeast). Ubiquitinated ribosomes are dissociated by the ASC-1 complex (ASCC) (RQC-Trigger (RQT) complex in yeast). A cryo-EM structure of the ribosome-bound RQT complex suggested the dissociation mechanism, in which the RNA helicase Slh1 subunit of RQT (ASCC3 in mammals) applies a pulling force on the mRNA, inducing destabilizing conformational changes in the 40S subunit, whereas the collided ribosome acts as a wedge, promoting subunit dissociation. Here, using an in vitro reconstitution approach, we found that ribosomal collision is not a strict prerequisite for ribosomal ubiquitination by ZNF598 or for ASCC-mediated ribosome release. Following ubiquitination by ZNF598, ASCC efficiently dissociated all polysomal ribosomes in a stalled queue, monosomes assembled in RRL, in vitro reconstituted 80S elongation complexes in pre- and post-translocated states, and 48S initiation complexes, as long as such complexes contained ≥ 30-35 3'-terminal mRNA nt. downstream from the P site and sufficiently long ubiquitin chains. Dissociation of polysomes and monosomes both involved ribosomal splitting, enabling Listerin-mediated ubiquitination of 60S-associated nascent chains.
Collapse
Affiliation(s)
- Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexander G Bulakhov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Kazushige Kuroha
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
23
|
Bothe A, Ban N. A highly optimized human in vitro translation system. CELL REPORTS METHODS 2024; 4:100755. [PMID: 38608690 PMCID: PMC11046033 DOI: 10.1016/j.crmeth.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
In vitro translation is an important method for studying fundamental aspects of co- and post-translational gene regulation, as well as for protein expression in the laboratory and on an industrial scale. Here, by re-examining and improving a human in vitro translation system (HITS), we were able to develop a minimal system where only four components are needed to supplement human cell lysates. Functional characterization of our improved HITS revealed the synergistic effect of mRNA capping and polyadenylation. Furthermore, we found that mRNAs are translated with an efficiency equal to or higher than existing state-of-the-art mammalian in vitro translation systems. Lastly, we present an easy preparation procedure for cytoplasmic extracts from cultured HeLa cells, which can be performed in any cell culture laboratory. These methodological advances will allow HITSs to become a widespread tool in basic molecular biology research.
Collapse
Affiliation(s)
- Adrian Bothe
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
24
|
Parker MD, Brunk ES, Getzler AJ, Karbstein K. The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage. PLoS Biol 2024; 22:e3001767. [PMID: 39038273 PMCID: PMC11045238 DOI: 10.1371/journal.pbio.3001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/05/2024] [Indexed: 07/24/2024] Open
Abstract
The 18S rRNA sequence is highly conserved, particularly at its 3'-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3'-end is degenerate with similar sites nearby. Here, we used yeast genetics, biochemistry, and next-generation sequencing to investigate a role for the ATPase Rio1 in monitoring the accuracy of the 18S rRNA 3'-end. We demonstrate that Nob1 can miscleave its rRNA substrate and that miscleaved rRNA accumulates upon bypassing the Rio1-mediated quality control (QC) step, but not in healthy cells with intact QC mechanisms. Mechanistically, we show that Rio1 binding to miscleaved rRNA is weaker than its binding to accurately processed 18S rRNA. Accordingly, excess Rio1 results in accumulation of miscleaved rRNA. Ribosomes containing miscleaved rRNA can translate, albeit more slowly, thereby inviting collisions with trailing ribosomes. These collisions result in degradation of the defective ribosomes utilizing parts of the machinery for mRNA QC. Altogether, the data support a model in which Rio1 inspects the 3'-end of the nascent 18S rRNA to prevent miscleaved 18S rRNA-containing ribosomes from erroneously engaging in translation, where they induce ribosome collisions. The data also demonstrate how ribosome collisions purify cells of altered ribosomes with different functionalities, with important implications for the concept of ribosome heterogeneity.
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Elise S. Brunk
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Adam J. Getzler
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| |
Collapse
|
25
|
Fedry J, Silva J, Vanevic M, Fronik S, Mechulam Y, Schmitt E, des Georges A, Faller WJ, Förster F. Visualization of translation reorganization upon persistent ribosome collision stress in mammalian cells. Mol Cell 2024; 84:1078-1089.e4. [PMID: 38340715 PMCID: PMC7615912 DOI: 10.1016/j.molcel.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/06/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ.
Collapse
Affiliation(s)
- Juliette Fedry
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands; MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mihajlo Vanevic
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Stanley Fronik
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Amédée des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA; Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA; Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
26
|
Inada T, Beckmann R. Mechanisms of Translation-coupled Quality Control. J Mol Biol 2024; 436:168496. [PMID: 38365086 DOI: 10.1016/j.jmb.2024.168496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
27
|
Flügel T, Schacherl M, Unbehaun A, Schroeer B, Dabrowski M, Bürger J, Mielke T, Sprink T, Diebolder CA, Guillén Schlippe YV, Spahn CMT. Transient disome complex formation in native polysomes during ongoing protein synthesis captured by cryo-EM. Nat Commun 2024; 15:1756. [PMID: 38409277 PMCID: PMC10897467 DOI: 10.1038/s41467-024-46092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Structural studies of translating ribosomes traditionally rely on in vitro assembly and stalling of ribosomes in defined states. To comprehensively visualize bacterial translation, we reactivated ex vivo-derived E. coli polysomes in the PURE in vitro translation system and analyzed the actively elongating polysomes by cryo-EM. We find that 31% of 70S ribosomes assemble into disome complexes that represent eight distinct functional states including decoding and termination intermediates, and a pre-nucleophilic attack state. The functional diversity of disome complexes together with RNase digest experiments suggests that paused disome complexes transiently form during ongoing elongation. Structural analysis revealed five disome interfaces between leading and queueing ribosomes that undergo rearrangements as the leading ribosome traverses through the elongation cycle. Our findings reveal at the molecular level how bL9's CTD obstructs the factor binding site of queueing ribosomes to thwart harmful collisions and illustrate how translation dynamics reshape inter-ribosomal contacts.
Collapse
Affiliation(s)
- Timo Flügel
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Magdalena Schacherl
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Anett Unbehaun
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Birgit Schroeer
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Marylena Dabrowski
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Jörg Bürger
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Microscopy and Cryo-Electron Microscopy Service Group, Berlin, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Microscopy and Cryo-Electron Microscopy Service Group, Berlin, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Technology Platform Cryo-EM, Berlin, Germany
| | - Christoph A Diebolder
- Core Facility for Cryo-Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Technology Platform Cryo-EM, Berlin, Germany
| | - Yollete V Guillén Schlippe
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany.
| | - Christian M T Spahn
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany.
| |
Collapse
|
28
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
29
|
Liu J, Nagy N, Ayala-Torres C, Aguilar-Alonso F, Morais-Esteves F, Xu S, Masucci MG. Remodeling of the ribosomal quality control and integrated stress response by viral ubiquitin deconjugases. Nat Commun 2023; 14:8315. [PMID: 38097648 PMCID: PMC10721647 DOI: 10.1038/s41467-023-43946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
The strategies adopted by viruses to reprogram the translation and protein quality control machinery and promote infection are poorly understood. Here, we report that the viral ubiquitin deconjugase (vDUB)-encoded in the large tegument protein of Epstein-Barr virus (EBV BPLF1)-regulates the ribosomal quality control (RQC) and integrated stress responses (ISR). The vDUB participates in protein complexes that include the RQC ubiquitin ligases ZNF598 and LTN1. Upon ribosomal stalling, the vDUB counteracts the ubiquitination of the 40 S particle and inhibits the degradation of translation-stalled polypeptides by the proteasome. Impairment of the RQC correlates with the readthrough of stall-inducing mRNAs and with activation of a GCN2-dependent ISR that redirects translation towards upstream open reading frames (uORFs)- and internal ribosome entry sites (IRES)-containing transcripts. Physiological levels of active BPLF1 promote the translation of the EBV Nuclear Antigen (EBNA)1 mRNA in productively infected cells and enhance the release of progeny virus, pointing to a pivotal role of the vDUB in the translation reprogramming that enables efficient virus production.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Aguilar-Alonso
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco Morais-Esteves
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shanshan Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Zhao S, Cordes J, Caban KM, Götz MJ, Mackens-Kiani T, Veltri AJ, Sinha NK, Weickert P, Kaya S, Hewitt G, Nedialkova DD, Fröhlich T, Beckmann R, Buskirk AR, Green R, Stingele J. RNF14-dependent atypical ubiquitylation promotes translation-coupled resolution of RNA-protein crosslinks. Mol Cell 2023; 83:4290-4303.e9. [PMID: 37951216 PMCID: PMC10783637 DOI: 10.1016/j.molcel.2023.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
Reactive aldehydes are abundant endogenous metabolites that challenge homeostasis by crosslinking cellular macromolecules. Aldehyde-induced DNA damage requires repair to prevent cancer and premature aging, but it is unknown whether cells also possess mechanisms that resolve aldehyde-induced RNA lesions. Here, we establish photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL) as a model system to study RNA crosslinking damage in the absence of confounding DNA damage in human cells. We find that such RNA damage causes translation stress by stalling elongating ribosomes, which leads to collisions with trailing ribosomes and activation of multiple stress response pathways. Moreover, we discovered a translation-coupled quality control mechanism that resolves covalent RNA-protein crosslinks. Collisions between translating ribosomes and crosslinked mRNA-binding proteins trigger their modification with atypical K6- and K48-linked ubiquitin chains. Ubiquitylation requires the E3 ligase RNF14 and leads to proteasomal degradation of the protein adduct. Our findings identify RNA lesion-induced translational stress as a central component of crosslinking damage.
Collapse
Affiliation(s)
- Shubo Zhao
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Cordes
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karolina M Caban
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian J Götz
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Timur Mackens-Kiani
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anthony J Veltri
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Pedro Weickert
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Selay Kaya
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Graeme Hewitt
- King's College London School of Cancer & Pharmaceutical Sciences, London, UK
| | - Danny D Nedialkova
- Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany
| | - Thomas Fröhlich
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roland Beckmann
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Julian Stingele
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
31
|
Ugajin N, Imami K, Takada H, Ishihama Y, Chiba S, Mishima Y. Znf598-mediated Rps10/eS10 ubiquitination contributes to the ribosome ubiquitination dynamics during zebrafish development. RNA (NEW YORK, N.Y.) 2023; 29:1910-1927. [PMID: 37751929 PMCID: PMC10653392 DOI: 10.1261/rna.079633.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
The ribosome is a translational apparatus that comprises about 80 ribosomal proteins and four rRNAs. Recent studies reported that ribosome ubiquitination is crucial for translational regulation and ribosome-associated quality control (RQC). However, little is known about the dynamics of ribosome ubiquitination under complex biological processes of multicellular organisms. To explore ribosome ubiquitination during animal development, we generated a zebrafish strain that expresses a FLAG-tagged ribosomal protein Rpl36/eL36 from its endogenous locus. We examined ribosome ubiquitination during zebrafish development by combining affinity purification of ribosomes from rpl36-FLAG zebrafish embryos with immunoblotting analysis. Our findings showed that the ubiquitination of ribosomal proteins dynamically changed as development proceeded. We also showed that during zebrafish development, the ribosome was ubiquitinated by Znf598, an E3 ubiquitin ligase that activates RQC. Ribosomal protein Rps10/eS10 was found to be a key ubiquitinated protein during development. Furthermore, we showed that Rps10/eS10 ubiquitination-site mutations reduced the overall ubiquitination pattern of the ribosome. These results demonstrate the complexity and dynamics of ribosome ubiquitination during zebrafish development.
Collapse
Affiliation(s)
- Nozomi Ugajin
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Koshi Imami
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiraku Takada
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinobu Chiba
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Yuichiro Mishima
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
32
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
33
|
Ishimura R, Ito S, Mao G, Komatsu-Hirota S, Inada T, Noda NN, Komatsu M. Mechanistic insights into the roles of the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. SCIENCE ADVANCES 2023; 9:eadh3635. [PMID: 37595036 PMCID: PMC10438457 DOI: 10.1126/sciadv.adh3635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through ufmylation, similar to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control (RQC) at the ER (ER-RQC), and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here, we provide insights into the mechanism of the UFM1 E3 complex in not only ufmylation but also ER-RQC. The E3 complex consisting of UFL1 and UFBP1 interacted with UFC1, UFM1 E2, and, subsequently, CDK5RAP3, an adaptor for ufmylation of ribosomal subunit RPL26. Upon disome formation, the E3 complex associated with ufmylated RPL26 on the 60S subunit through the UFM1-interacting region of UFBP1. Loss of E3 components or disruption of the interaction between UFBP1 and ufmylated RPL26 attenuated ER-RQC. These results provide insights into not only the molecular basis of the ufmylation but also its role in proteostasis.
Collapse
Affiliation(s)
- Ryosuke Ishimura
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sota Ito
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Gaoxin Mao
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoko Komatsu-Hirota
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
34
|
Xing H, Taniguchi R, Khusainov I, Kreysing JP, Welsch S, Turoňová B, Beck M. Translation dynamics in human cells visualized at high resolution reveal cancer drug action. Science 2023; 381:70-75. [PMID: 37410833 DOI: 10.1126/science.adh1411] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, but their distribution in actively translating human cells remains elusive. We used a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with high resolution. These structures revealed the distribution of functional states of the elongation cycle, a Z transfer RNA binding site, and the dynamics of ribosome expansion segments. Ribosome structures from cells treated with Homoharringtonine, a drug used against chronic myeloid leukemia, revealed how translation dynamics were altered in situ and resolve the small molecules within the active site of the ribosome. Thus, structural dynamics and drug effects can be assessed at high resolution within human cells.
Collapse
Affiliation(s)
- Huaipeng Xing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Reiya Taniguchi
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Iskander Khusainov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, 60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Ikeuchi K, Ivic N, Buschauer R, Cheng J, Fröhlich T, Matsuo Y, Berninghausen O, Inada T, Becker T, Beckmann R. Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2. Nat Commun 2023; 14:2730. [PMID: 37169754 PMCID: PMC10175282 DOI: 10.1038/s41467-023-38161-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by Otu2 upon ribosomal subunit recycling. Despite its importance for translation efficiency the exact role and structural basis for this translational reset is poorly understood. Here, structural analysis by cryo-electron microscopy of native and reconstituted Otu2-bound ribosomal complexes reveals that Otu2 engages 40S subunits mainly between ribosome recycling and initiation stages. Otu2 binds to several sites on the intersubunit surface of the 40S that are not occupied by any other 40S-binding factors. This binding mode explains the discrimination against 80S ribosomes via the largely helical N-terminal domain of Otu2 as well as the specificity for mono-ubiquitinated eS7 on 40S. Collectively, this study reveals mechanistic insights into the Otu2-driven deubiquitination steps for translational reset during ribosome recycling/(re)initiation.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Nives Ivic
- Division of Physical Chemistry, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000, Zagreb, Croatia
| | - Robert Buschauer
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Jingdong Cheng
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
- Institutes of biomedical science, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan university, Dong'an Road 131, 200032, Shanghai, China
| | - Thomas Fröhlich
- LAFUGA, Laboratory for Functional Genome Analysis, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
36
|
Scavone F, Gumbin S, Da Rosa P, Kopito R. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. Proc Natl Acad Sci U S A 2023; 120:e2220340120. [PMID: 37036982 PMCID: PMC10120006 DOI: 10.1073/pnas.2220340120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Ribosomes that stall while translating cytosolic proteins are incapacitated by incomplete nascent chains, termed "arrest peptides" (APs) that are destroyed by the ubiquitin proteasome system (UPS) via a process known as the ribosome-associated quality control (RQC) pathway. By contrast, APs on ribosomes that stall while translocating secretory proteins into the endoplasmic reticulum (ER-APs) are shielded from cytosol by the ER membrane and the tightly sealed ribosome-translocon junction (RTJ). How this junction is breached to enable access of cytosolic UPS machinery and 26S proteasomes to translocon- and ribosome-obstructing ER-APs is not known. Here, we show that UPS and RQC-dependent degradation of ER-APs strictly requires conjugation of the ubiquitin-like (Ubl) protein UFM1 to 60S ribosomal subunits at the RTJ. Therefore, UFMylation of translocon-bound 60S subunits modulates the RTJ to promote access of proteasomes and RQC machinery to ER-APs.
Collapse
Affiliation(s)
| | - Samantha C. Gumbin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Paul A. Da Rosa
- Department of Biology, Stanford University, Stanford, CA94305
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
37
|
Fedry J, Silva J, Vanevic M, Fronik S, Mechulam Y, Schmitt E, des Georges A, Faller W, Förster F. Visualization of translation reorganization upon persistent collision stress in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533914. [PMID: 36993420 PMCID: PMC10055323 DOI: 10.1101/2023.03.23.533914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Aberrantly slow mRNA translation leads to ribosome stalling and subsequent collision with the trailing neighbor. Ribosome collisions have recently been shown to act as stress sensors in the cell, with the ability to trigger stress responses balancing survival and apoptotic cell-fate decisions depending on the stress level. However, we lack a molecular understanding of the reorganization of translation processes over time in mammalian cells exposed to an unresolved collision stress. Here we visualize the effect of a persistent collision stress on translation using in situ cryo electron tomography. We observe that low dose anisomycin collision stress leads to the stabilization of Z-site bound tRNA on elongating 80S ribosomes, as well as to the accumulation of an off-pathway 80S complex possibly resulting from collision splitting events. We visualize collided disomes in situ, occurring on compressed polysomes and revealing a stabilized geometry involving the Z-tRNA and L1 stalk on the stalled ribosome, and eEF2 bound to its collided rotated-2 neighbor. In addition, non-functional post-splitting 60S complexes accumulate in the stressed cells, indicating a limiting Ribosome associated Quality Control clearing rate. Finally, we observe the apparition of tRNA-bound aberrant 40S complexes shifting with the stress timepoint, suggesting a succession of different initiation inhibition mechanisms over time. Altogether, our work visualizes the changes of translation complexes under persistent collision stress in mammalian cells, indicating how perturbations in initiation, elongation and quality control processes contribute to an overall reduced protein synthesis.
Collapse
Affiliation(s)
- Juliette Fedry
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mihajlo Vanevic
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Stanley Fronik
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Amédée des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - William Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
38
|
Scavone F, Gumbin SC, DaRosa PA, Kopito RR. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531792. [PMID: 36945571 PMCID: PMC10028864 DOI: 10.1101/2023.03.08.531792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ribosomes that stall while translating cytosolic proteins are incapacitated by incomplete nascent chains, termed "arrest peptides" (APs) that are destroyed by the ubiquitin proteasome system (UPS) via a process known as the ribosome-associated quality control (RQC) pathway. By contrast, APs on ribosomes that stall while translocating secretory proteins into the endoplasmic reticulum (ER-APs) are shielded from cytosol by the ER membrane and the tightly sealed ribosome-translocon junction (RTJ). How this junction is breached to enable access of cytosolic UPS machinery and 26S proteasomes to translocon- and ribosome-obstructing ER-APs is not known. Here, we show that UPS and RQC-dependent degradation of ER-APs strictly requires conjugation of the ubiquitin-like (Ubl) protein UFM1 to 60S ribosomal subunits at the RTJ. Therefore, UFMylation of translocon-bound 60S subunits modulates the RTJ to promote access of proteasomes and RQC machinery to ER-APs. Significance Statement UFM1 is a ubiquitin-like protein that is selectively conjugated to the large (60S) subunit of ribosomes bound to the endoplasmic reticulum (ER), but the specific biological function of this modification is unclear. Here, we show that UFMylation facilitates proteasome-mediated degradation of arrest polypeptides (APs) which are generated following splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER. We propose that UFMylation weakens the tightly sealed ribosome-translocon junction, thereby allowing the cytosolic ubiquitin-proteasome and ribosome-associated quality control machineries to access ER-APs.
Collapse
Affiliation(s)
| | - Samantha C Gumbin
- Department of Molecular and Cellular Physiology, Stanford School of Medicine, Stanford CA, 94305
| | - Paul A DaRosa
- Department of Biology, Stanford University, Stanford CA, 94305
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford CA, 94305
| |
Collapse
|
39
|
Best K, Ikeuchi K, Kater L, Best D, Musial J, Matsuo Y, Berninghausen O, Becker T, Inada T, Beckmann R. Structural basis for clearing of ribosome collisions by the RQT complex. Nat Commun 2023; 14:921. [PMID: 36801861 PMCID: PMC9938168 DOI: 10.1038/s41467-023-36230-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
Translation of aberrant messenger RNAs can cause stalling of ribosomes resulting in ribosomal collisions. Collided ribosomes are specifically recognized to initiate stress responses and quality control pathways. Ribosome-associated quality control facilitates the degradation of incomplete translation products and requires dissociation of the stalled ribosomes. A central event is therefore the splitting of collided ribosomes by the ribosome quality control trigger complex, RQT, by an unknown mechanism. Here we show that RQT requires accessible mRNA and the presence of a neighboring ribosome. Cryogenic electron microscopy of RQT-ribosome complexes reveals that RQT engages the 40S subunit of the lead ribosome and can switch between two conformations. We propose that the Ski2-like helicase 1 (Slh1) subunit of RQT applies a pulling force on the mRNA, causing destabilizing conformational changes of the small ribosomal subunit, ultimately resulting in subunit dissociation. Our findings provide conceptual framework for a helicase-driven ribosomal splitting mechanism.
Collapse
Affiliation(s)
- Katharina Best
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Ken Ikeuchi
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Lukas Kater
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Daniel Best
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Joanna Musial
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
40
|
Matsuo Y, Inada T. Co-Translational Quality Control Induced by Translational Arrest. Biomolecules 2023; 13:biom13020317. [PMID: 36830686 PMCID: PMC9953336 DOI: 10.3390/biom13020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Genetic mutations, mRNA processing errors, and lack of availability of charged tRNAs sometimes slow down or completely stall translating ribosomes. Since an incomplete nascent chain derived from stalled ribosomes may function anomalously, such as by forming toxic aggregates, surveillance systems monitor every step of translation and dispose of such products to prevent their accumulation. Over the past decade, yeast models with powerful genetics and biochemical techniques have contributed to uncovering the mechanism of the co-translational quality control system, which eliminates the harmful products generated from aberrant translation. We here summarize the current knowledge of the molecular mechanism of the co-translational quality control systems in yeast, which eliminate the incomplete nascent chain, improper mRNAs, and faulty ribosomes to maintain cellular protein homeostasis.
Collapse
|
41
|
Oikawa D, Shimizu K, Tokunaga F. Pleiotropic Roles of a KEAP1-Associated Deubiquitinase, OTUD1. Antioxidants (Basel) 2023; 12:antiox12020350. [PMID: 36829909 PMCID: PMC9952104 DOI: 10.3390/antiox12020350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Protein ubiquitination, which is catalyzed by ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, and ubiquitin ligases, is a crucial post-translational modification to regulate numerous cellular functions in a spatio-temporal-specific manner. The human genome encodes ~100 deubiquitinating enzymes (DUBs), which antagonistically regulate the ubiquitin system. OTUD1, an ovarian tumor protease (OTU) family DUB, has an N-terminal-disordered alanine-, proline-, glycine-rich region (APGR), a catalytic OTU domain, and a ubiquitin-interacting motif (UIM). OTUD1 preferentially hydrolyzes lysine-63-linked ubiquitin chains in vitro; however, recent studies indicate that OTUD1 cleaves various ubiquitin linkages, and is involved in the regulation of multiple cellular functions. Thus, OTUD1 predominantly functions as a tumor suppressor by targeting p53, SMAD7, PTEN, AKT, IREB2, YAP, MCL1, and AIF. Furthermore, OTUD1 regulates antiviral signaling, innate and acquired immune responses, and cell death pathways. Similar to Nrf2, OTUD1 contains a KEAP1-binding ETGE motif in its APGR and regulates the reactive oxygen species (ROS)-mediated oxidative stress response and cell death. Importantly, in addition to its association with various cancers, including multiple myeloma, OTUD1 is involved in acute graft-versus-host disease and autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and ulcerative colitis. Thus, OTUD1 is an important DUB as a therapeutic target for a variety of diseases.
Collapse
|
42
|
Tomomatsu S, Watanabe A, Tesina P, Hashimoto S, Ikeuchi K, Li S, Matsuo Y, Beckmann R, Inada T. Two modes of Cue2-mediated mRNA cleavage with distinct substrate recognition initiate no-go decay. Nucleic Acids Res 2023; 51:253-270. [PMID: 36583309 PMCID: PMC9841427 DOI: 10.1093/nar/gkac1172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/31/2022] Open
Abstract
Ribosome collisions are recognized by E3 ubiquitin ligase Hel2/ZNF598, leading to RQC (ribosome-associated quality control) and to endonucleolytic cleavage and degradation of the mRNA termed NGD (no-go decay). NGD in yeast requires the Cue2 endonuclease and occurs in two modes, either coupled to RQC (NGDRQC+) or RQC uncoupled (NGDRQC-). This is mediated by an unknown mechanism of substrate recognition by Cue2. Here, we show that the ubiquitin binding activity of Cue2 is required for NGDRQC- but not for NGDRQC+, and that it involves the first two N-terminal Cue domains. In contrast, Trp122 of Cue2 is crucial for NGDRQC+. Moreover, Mbf1 is required for quality controls by preventing +1 ribosome frameshifting induced by a rare codon staller. We propose that in Cue2-dependent cleavage upstream of the collided ribosomes (NGDRQC-), polyubiquitination of eS7 is recognized by two N-terminal Cue domains of Cue2. In contrast, for the cleavage within collided ribosomes (NGDRQC+), the UBA domain, Trp122 and the interaction between Mbf1 and uS3 are critical.
Collapse
Affiliation(s)
- Shota Tomomatsu
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsuya Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Petr Tesina
- Gene Center and Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, D-81377 Munich, Germany
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ken Ikeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Gene Center and Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, D-81377 Munich, Germany
| | - Sihan Li
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, D-81377 Munich, Germany
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
43
|
Decoding of the ubiquitin code for clearance of colliding ribosomes by the RQT complex. Nat Commun 2023; 14:79. [PMID: 36627279 PMCID: PMC9831982 DOI: 10.1038/s41467-022-35608-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The collision sensor Hel2 specifically recognizes colliding ribosomes and ubiquitinates the ribosomal protein uS10, leading to noncanonical subunit dissociation by the ribosome-associated quality control trigger (RQT) complex. Although uS10 ubiquitination is essential for rescuing stalled ribosomes, its function and recognition steps are not fully understood. Here, we show that the RQT complex components Cue3 and Rqt4 interact with the K63-linked ubiquitin chain and accelerate the recruitment of the RQT complex to the ubiquitinated colliding ribosome. The CUE domain of Cue3 and the N-terminal domain of Rqt4 bind independently to the K63-linked ubiquitin chain. Their deletion abolishes ribosomal dissociation mediated by the RQT complex. High-speed atomic force microscopy (HS-AFM) reveals that the intrinsically disordered regions of Rqt4 enable the expansion of the searchable area for interaction with the ubiquitin chain. These findings provide mechanistic insight into the decoding of the ubiquitin code for clearance of colliding ribosomes by the RQT complex.
Collapse
|