1
|
Qin JJ, Yan G. High Reconstructability of Degree-Heterogeneous Networks. PHYSICAL REVIEW LETTERS 2025; 134:137402. [PMID: 40250383 DOI: 10.1103/physrevlett.134.137402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 04/20/2025]
Abstract
Reconstructing complex networks from observed, often noisy data is a fundamental task crucial for understanding complex systems across various domains. Despite numerous methods proposed for network reconstruction, little attention has been given to the relationship between reconstructability and the intrinsic properties of hidden networks. Here, we present a mathematical proof that, for scale-free networks, the reconstruction accuracy increases as the exponent of the power-law degree distribution decreases. This suggests that degree heterogeneity contributes to higher reconstructability. We validate this conclusion in empirical networks, where nodal degrees may not strictly adhere to power laws. Our results demonstrate that the reconstruction accuracy of degree-heterogeneous networks is indeed significantly higher than that of their randomized counterparts.
Collapse
Affiliation(s)
- Jia-Jie Qin
- Tongji University, Tongji University, Shanghai Research Institute for Intelligent Autonomous Systems, and School of Physical Science and Engineering, Shanghai 200092, People's Republic of China and National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, and MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, People's Republic of China
| | - Gang Yan
- Tongji University, Tongji University, Shanghai Research Institute for Intelligent Autonomous Systems, and School of Physical Science and Engineering, Shanghai 200092, People's Republic of China and National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, and MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, People's Republic of China
| |
Collapse
|
2
|
Leibovich N. Determining interaction directionality in complex biochemical networks from stationary measurements. Sci Rep 2025; 15:3004. [PMID: 39849082 PMCID: PMC11758029 DOI: 10.1038/s41598-025-86332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025] Open
Abstract
Revealing interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Some methods may reveal undirected network topology, e.g., using node-node correlation. Yet, the direction of the interaction, thus a causal inference, remains to be determined - especially in steady-state observations. We introduce a method to infer the directionality within this network only from a "snapshot" of the abundances of the relevant molecules. We examine the validity of the approach for different properties of the system and the data recorded, such as the molecule's level variability, the effect of sampling and measurement errors. Simulations suggest that the given approach successfully infer the reaction rates in various cases.
Collapse
Affiliation(s)
- N Leibovich
- National Research Council of Canada, NRC-Fields Mathematical Sciences Collaboration Centre, 222 College st., Toronto, ON, M5T 3J1, Canada.
| |
Collapse
|
3
|
Arthur R. Detectability constraints on meso-scale structure in complex networks. PLoS One 2025; 20:e0317670. [PMID: 39841660 PMCID: PMC11753644 DOI: 10.1371/journal.pone.0317670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
Community, core-periphery, disassortative and other node partitions allow us to understand the organisation and function of large networks. In this work we study common meso-scale structures using the idea of block modularity. We find that the configuration model imposes strong restrictions on core-periphery and related structures in directed and undirected networks. We derive inequalities expressing when such structures can be detected under the configuration model which are closely related to the resolution limit. Nestedness is closely related to core-periphery and is similarly restricted to only be detectable under certain conditions. We then derive a general equivalence between optimising block modularity and maximum likelihood estimation of the parameters of the degree corrected Stochastic Block Model. This allows us to contrast the two approaches, how they formalise the structure detection problem and understand these constraints in inferential versus descriptive approaches to meso-scale structure detection.
Collapse
Affiliation(s)
- Rudy Arthur
- Department of Computer Science, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
De Domenico M, Allegri L, Caldarelli G, d'Andrea V, Di Camillo B, Rocha LM, Rozum J, Sbarbati R, Zambelli F. Challenges and opportunities for digital twins in precision medicine from a complex systems perspective. NPJ Digit Med 2025; 8:37. [PMID: 39825012 PMCID: PMC11742446 DOI: 10.1038/s41746-024-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Digital twins (DTs) in precision medicine are increasingly viable, propelled by extensive data collection and advancements in artificial intelligence (AI), alongside traditional biomedical methodologies. We argue that including mechanistic simulations that produce behavior based on explicitly defined biological hypotheses and multiscale mechanisms is beneficial. It enables the exploration of diverse therapeutic strategies and supports dynamic clinical decision-making through insights from network science, quantitative biology, and digital medicine.
Collapse
Affiliation(s)
- Manlio De Domenico
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy.
- Padua Center for Network Medicine, University of Padua, Padova, Italy.
- Padua Neuroscience Center, University of Padua, Padova, Italy.
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy.
| | - Luca Allegri
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
| | - Guido Caldarelli
- DSMN and ECLT Ca' Foscari University of Venice, Venezia, Italy
- Institute of Complex Systems (ISC) CNR unit Sapienza University, Rome, Italy
- London Institute for Mathematical Sciences, Royal Institution, London, UK
| | - Valeria d'Andrea
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| | - Barbara Di Camillo
- Padua Center for Network Medicine, University of Padua, Padova, Italy
- Department of Information Engineering, University of Padua, Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Luis M Rocha
- School of Systems Science and Industrial Eng., Binghamton University, Binghamton, NY, USA
- Universidade Católica Portuguesa, Católica Biomedical Research Centre, Lisbon, Portugal
| | - Jordan Rozum
- School of Systems Science and Industrial Eng., Binghamton University, Binghamton, NY, USA
| | - Riccardo Sbarbati
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| | - Francesco Zambelli
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| |
Collapse
|
5
|
Contisciani M, Hobbhahn M, Power EA, Hennig P, De Bacco C. Flexible inference in heterogeneous and attributed multilayer networks. PNAS NEXUS 2025; 4:pgaf005. [PMID: 39850077 PMCID: PMC11756377 DOI: 10.1093/pnasnexus/pgaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025]
Abstract
Networked datasets can be enriched by different types of information about individual nodes or edges. However, most existing methods for analyzing such datasets struggle to handle the complexity of heterogeneous data, often requiring substantial model-specific analysis. In this article, we develop a probabilistic generative model to perform inference in multilayer networks with arbitrary types of information. Our approach employs a Bayesian framework combined with the Laplace matching technique to ease interpretation of inferred parameters. Furthermore, the algorithmic implementation relies on automatic differentiation, avoiding the need for explicit derivations. This makes our model scalable and flexible to adapt to any combination of input data. We demonstrate the effectiveness of our method in detecting overlapping community structures and performing various prediction tasks on heterogeneous multilayer data, where nodes and edges have different types of attributes. Additionally, we showcase its ability to unveil a variety of patterns in a social support network among villagers in rural India by effectively utilizing all input information in a meaningful way.
Collapse
Affiliation(s)
| | - Marius Hobbhahn
- Tübingen AI Center, University of Tübingen, Tübingen 72076, Germany
| | - Eleanor A Power
- Department of Methodology, London School of Economics and Political Sciences, London WC2A 2AE, United Kingdom
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Philipp Hennig
- Tübingen AI Center, University of Tübingen, Tübingen 72076, Germany
| | - Caterina De Bacco
- Max Planck Institute for Intelligent Systems, Tübingen 72076, Germany
| |
Collapse
|
6
|
Blumenthal DB, Lucchetta M, Kleist L, Fekete SP, List M, Schaefer MH. Emergence of power law distributions in protein-protein interaction networks through study bias. eLife 2024; 13:e99951. [PMID: 39660719 PMCID: PMC11718653 DOI: 10.7554/elife.99951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024] Open
Abstract
Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.
Collapse
Affiliation(s)
- David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
| | - Marta Lucchetta
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCSMilanItaly
| | - Linda Kleist
- Department of Computer Science, TU BraunschweigBraunschweigGermany
| | - Sándor P Fekete
- Department of Computer Science, TU BraunschweigBraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)BraunschweigGermany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of MunichFreisingGermany
- Munich Data Science Institute (MDSI), Technical University of MunichGarchingGermany
| | - Martin H Schaefer
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
7
|
Landry NW, Thompson W, Hébert-Dufresne L, Young JG. Reconstructing networks from simple and complex contagions. Phys Rev E 2024; 110:L042301. [PMID: 39562966 DOI: 10.1103/physreve.110.l042301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/23/2024] [Indexed: 11/21/2024]
Abstract
Network scientists often use complex dynamic processes to describe network contagions, but tools for fitting contagion models typically assume simple dynamics. Here, we address this gap by developing a nonparametric method to reconstruct a network and dynamics from a series of node states, using a model that breaks the dichotomy between simple pairwise and complex neighborhood-based contagions. We then show that a network is more easily reconstructed when observed through the lens of complex contagions if it is dense or the dynamic saturates, and that simple contagions are better otherwise.
Collapse
Affiliation(s)
- Nicholas W Landry
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA
- , University of Vermont, Burlington, Vermont 05405, USA
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | | | | | | |
Collapse
|
8
|
Bénichou A, Masson JB, Vestergaard CL. Compression-based inference of network motif sets. PLoS Comput Biol 2024; 20:e1012460. [PMID: 39388477 PMCID: PMC11495616 DOI: 10.1371/journal.pcbi.1012460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/22/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Physical and functional constraints on biological networks lead to complex topological patterns across multiple scales in their organization. A particular type of higher-order network feature that has received considerable interest is network motifs, defined as statistically regular subgraphs. These may implement fundamental logical and computational circuits and are referred to as "building blocks of complex networks". Their well-defined structures and small sizes also enable the testing of their functions in synthetic and natural biological experiments. Here, we develop a framework for motif mining based on lossless network compression using subgraph contractions. This provides an alternative definition of motif significance which allows us to compare different motifs and select the collectively most significant set of motifs as well as other prominent network features in terms of their combined compression of the network. Our approach inherently accounts for multiple testing and correlations between subgraphs and does not rely on a priori specification of an appropriate null model. It thus overcomes common problems in hypothesis testing-based motif analysis and guarantees robust statistical inference. We validate our methodology on numerical data and then apply it on synaptic-resolution biological neural networks, as a medium for comparative connectomics, by evaluating their respective compressibility and characterize their inferred circuit motifs.
Collapse
Affiliation(s)
- Alexis Bénichou
- Institut Pasteur, Université Paris Cité, CNRS UMR 3751, Decision and Bayesian Computation, Paris, France
- Epiméthée, Inria, Paris, France
| | - Jean-Baptiste Masson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3751, Decision and Bayesian Computation, Paris, France
- Epiméthée, Inria, Paris, France
| | - Christian L. Vestergaard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3751, Decision and Bayesian Computation, Paris, France
- Epiméthée, Inria, Paris, France
| |
Collapse
|
9
|
Jardim LL, Schieber TA, Santana MP, Cerqueira MH, Lorenzato CS, Franco VKB, Zuccherato LW, da Silva Santos BA, Chaves DG, Ravetti MG, Rezende SM. Prediction of inhibitor development in previously untreated and minimally treated children with severe and moderately severe hemophilia A using a machine-learning network. J Thromb Haemost 2024; 22:2426-2437. [PMID: 38810700 DOI: 10.1016/j.jtha.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Prediction of inhibitor development in patients with hemophilia A (HA) remains a challenge. OBJECTIVES To construct a predictive model for inhibitor development in HA using a network of clinical variables and biomarkers based on the individual similarity network. METHODS Previously untreated and minimally treated children with severe/moderately severe HA, participants of the HEMFIL Cohort Study, were followed up until reaching 75 exposure days (EDs) without inhibitor (INH-) or upon inhibitor development (INH+). Clinical data and biological samples were collected before the start of factor (F)VIII replacement (T0). A predictive model (HemfilNET) was built to compare the networks and potential global topological differences between INH- and INH+ at T0, considering the network robustness. For validation, the "leave-one-out" cross-validation technique was employed. Accuracy, precision, recall, and F1-score were used as evaluation metrics for the machine-learning model. RESULTS We included 95 children with HA (CHA), of whom 31 (33%) developed inhibitors. The algorithm, featuring 37 variables, identified distinct patterns of networks at T0 for INH+ and INH-. The accuracy of the model was 74.2% for CHA INH+ and 98.4% for INH-. By focusing the analysis on CHA with high-risk F8 mutations for inhibitor development, the accuracy in identifying CHA INH+ increased to 82.1%. CONCLUSION Our machine-learning algorithm demonstrated an overall accuracy of 90.5% for predicting inhibitor development in CHA, which further improved when restricting the analysis to CHA with a high-risk F8 genotype. However, our model requires validation in other cohorts. Yet, missing data for some variables hindered more precise predictions.
Collapse
Affiliation(s)
- Letícia Lemos Jardim
- Instituto René Rachou (Fiocruz Minas), Belo Horizonte, Minas Gerais, Brazil; Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiago A Schieber
- Faculdade de Ciências Econômicas, School of Economics, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | | | | | | - Martín Gomez Ravetti
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suely Meireles Rezende
- Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Wang J, Hancock ER. The Ihara zeta function as a partition function for network structure characterisation. Sci Rep 2024; 14:18386. [PMID: 39117698 PMCID: PMC11310400 DOI: 10.1038/s41598-024-68882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Statistical characterizations of complex network structures can be obtained from both the Ihara Zeta function (in terms of prime cycle frequencies) and the partition function from statistical mechanics. However, these two representations are usually regarded as separate tools for network analysis, without exploiting the potential synergies between them. In this paper, we establish a link between the Ihara Zeta function from algebraic graph theory and the partition function from statistical mechanics, and exploit this relationship to obtain a deeper structural characterisation of network structure. Specifically, the relationship allows us to explore the connection between the microscopic structure and the macroscopic characterisation of a network. We derive thermodynamic quantities describing the network, such as entropy, and show how these are related to the frequencies of prime cycles of various lengths. In particular, the n-th order partial derivative of the Ihara Zeta function can be used to compute the number of prime cycles in a network, which in turn is related to the partition function of Bose-Einstein statistics. The corresponding derived entropy allows us to explore a phase transition in the network structure with critical points at high and low-temperature limits. Numerical experiments and empirical data are presented to evaluate the qualitative and quantitative performance of the resulting structural network characterisations.
Collapse
Affiliation(s)
- Jianjia Wang
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou, 215412, China.
| | - Edwin R Hancock
- Department of Computer Science, University of York, York, YO10 5GH, UK
| |
Collapse
|
11
|
Melo D, Pallares LF, Ayroles JF. Reassessing the modularity of gene co-expression networks using the Stochastic Block Model. PLoS Comput Biol 2024; 20:e1012300. [PMID: 39074140 PMCID: PMC11309492 DOI: 10.1371/journal.pcbi.1012300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/08/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
Finding communities in gene co-expression networks is a common first step toward extracting biological insight from these complex datasets. Most community detection algorithms expect genes to be organized into assortative modules, that is, groups of genes that are more associated with each other than with genes in other groups. While it is reasonable to expect that these modules exist, using methods that assume they exist a priori is risky, as it guarantees that alternative organizations of gene interactions will be ignored. Here, we ask: can we find meaningful communities without imposing a modular organization on gene co-expression networks, and how modular are these communities? For this, we use a recently developed community detection method, the weighted degree corrected stochastic block model (SBM), that does not assume that assortative modules exist. Instead, the SBM attempts to efficiently use all information contained in the co-expression network to separate the genes into hierarchically organized blocks of genes. Using RNAseq gene expression data measured in two tissues derived from an outbred population of Drosophila melanogaster, we show that (a) the SBM is able to find ten times as many groups as competing methods, that (b) several of those gene groups are not modular, and that (c) the functional enrichment for non-modular groups is as strong as for modular communities. These results show that the transcriptome is structured in more complex ways than traditionally thought and that we should revisit the long-standing assumption that modularity is the main driver of the structuring of gene co-expression networks.
Collapse
Affiliation(s)
- Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Luisa F. Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Julien F. Ayroles
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
12
|
Zhang S, Tian X, Chen C, Su Y, Huang W, Lv X, Chen C, Li H. AIGO-DTI: Predicting Drug-Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms. J Chem Inf Model 2024; 64:4373-4384. [PMID: 38743013 DOI: 10.1021/acs.jcim.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Artificial intelligence-based methods for predicting drug-target interactions (DTIs) aim to explore reliable drug candidate targets rapidly and cost-effectively to accelerate the drug development process. However, current methods are often limited by the topological regularities of drug molecules, making them difficult to generalize to a broader chemical space. Additionally, the use of similarity to measure DTI network links often introduces noise, leading to false DTI relationships and affecting the prediction accuracy. To address these issues, this study proposes an Adaptive Iterative Graph Optimization (AIGO)-DTI prediction framework. This framework integrates atomic cluster information and enhances molecular features through the design of functional group prompts and graph encoders, optimizing the construction of DTI association networks. Furthermore, the optimization of graph structure is transformed into a node similarity learning problem, utilizing multihead similarity metric functions to iteratively update the network structure to improve the quality of DTI information. Experimental results demonstrate the outstanding performance of AIGO-DTI on multiple public data sets and label reversal data sets. Case studies, molecular docking, and existing research validate its effectiveness and reliability. Overall, the method proposed in this study can construct comprehensive and reliable DTI association network information, providing new graphing and optimization strategies for DTI prediction, which contribute to efficient drug development and reduce target discovery costs.
Collapse
Affiliation(s)
- Sizhe Zhang
- College of Software, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Xuecong Tian
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Ying Su
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Wanhua Huang
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Hongyi Li
- Xinjiang University, Urumqi, 830046 Xinjiang, China
| |
Collapse
|
13
|
Romero Moreno G, Restocchi V, Fleuriot JD, Anand A, Mercer SW, Guthrie B. Multimorbidity analysis with low condition counts: a robust Bayesian approach for small but important subgroups. EBioMedicine 2024; 102:105081. [PMID: 38518656 PMCID: PMC10966445 DOI: 10.1016/j.ebiom.2024.105081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Robustly examining associations between long-term conditions may be important in identifying opportunities for intervention in multimorbidity but is challenging when evidence is limited. We have developed a Bayesian inference framework that is robust to sparse data and used it to quantify morbidity associations in the oldest old, a population with limited available data. METHODS We conducted a retrospective cross-sectional study of a representative dataset of primary care patients in Scotland as of March 2007. We included 40 long-term conditions and studied their associations in 12,009 individuals aged 90 and older, stratified by sex (3039 men, 8970 women). We analysed associations obtained with Relative Risk (RR), a standard measure in the literature, and compared them with our proposed measure, Associations Beyond Chance (ABC). To enable a broad exploration of interactions between long-term conditions, we built networks of association and assessed differences in their analysis when associations are estimated by RR or ABC. FINDINGS Our Bayesian framework was appropriately more cautious in attributing association when evidence is lacking, particularly in uncommon conditions. This caution in reporting association was also present in reporting differences in associations between sex and affected the aggregated measures of multimorbidity and network representations. INTERPRETATION Incorporating uncertainty into multimorbidity research is crucial to avoid misleading findings when evidence is limited, a problem that particularly affects small but important subgroups. Our proposed framework improves the reliability of estimations of associations and, more in general, of research into disease mechanisms and multimorbidity. FUNDING National Institute for Health and Care Research.
Collapse
Affiliation(s)
| | | | | | - Atul Anand
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Stewart W Mercer
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Bruce Guthrie
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Kaiser D, Patwardhan S, Kim M, Radicchi F. Reconstruction of multiplex networks via graph embeddings. Phys Rev E 2024; 109:024313. [PMID: 38491583 DOI: 10.1103/physreve.109.024313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Multiplex networks are collections of networks with identical nodes but distinct layers of edges. They are genuine representations of a large variety of real systems whose elements interact in multiple fashions or flavors. However, multiplex networks are not always simple to observe in the real world; often, only partial information on the layer structure of the networks is available, whereas the remaining information is in the form of aggregated, single-layer networks. Recent works have proposed solutions to the problem of reconstructing the hidden multiplexity of single-layer networks using tools proper for network science. Here, we develop a machine-learning framework that takes advantage of graph embeddings, i.e., representations of networks in geometric space. We validate the framework in systematic experiments aimed at the reconstruction of synthetic and real-world multiplex networks, providing evidence that our proposed framework not only accomplishes its intended task, but often outperforms existing reconstruction techniques.
Collapse
Affiliation(s)
- Daniel Kaiser
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, Indiana 47408, USA
| | - Siddharth Patwardhan
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, Indiana 47408, USA
| | - Minsuk Kim
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, Indiana 47408, USA
| | - Filippo Radicchi
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, Indiana 47408, USA
| |
Collapse
|
15
|
Vafaii H, Mandino F, Desrosiers-Grégoire G, O'Connor D, Markicevic M, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair MC, Constable RT, Lake EMR, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. Nat Commun 2024; 15:229. [PMID: 38172111 PMCID: PMC10764905 DOI: 10.1038/s41467-023-44363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.
Collapse
Affiliation(s)
- Hadi Vafaii
- Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Computional Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xinxin Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Section of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mallar Chakravarty
- Computional Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Michael C Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Neuroimaging Center, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Lizotte S, Young JG, Allard A. Hypergraph reconstruction from uncertain pairwise observations. Sci Rep 2023; 13:21364. [PMID: 38049512 PMCID: PMC10695935 DOI: 10.1038/s41598-023-48081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
The network reconstruction task aims to estimate a complex system's structure from various data sources such as time series, snapshots, or interaction counts. Recent work has examined this problem in networks whose relationships involve precisely two entities-the pairwise case. Here, using Bayesian inference, we investigate the general problem of reconstructing a network in which higher-order interactions are also present. We study a minimal example of this problem, focusing on the case of hypergraphs with interactions between pairs and triplets of vertices, measured imperfectly and indirectly. We derive a Metropolis-Hastings-within-Gibbs algorithm for this model to highlight the unique challenges that come with estimating higher-order models. We show that this approach tends to reconstruct empirical and synthetic networks more accurately than an equivalent graph model without higher-order interactions.
Collapse
Affiliation(s)
- Simon Lizotte
- Département de Physique, de génie Physique et d'optique, Université Laval, Québec, G1V 0A6, Canada
- Centre Interdisciplinaire en Modélisation Mathématique, Université Laval, Québec, G1V 0A6, Canada
| | - Jean-Gabriel Young
- Département de Physique, de génie Physique et d'optique, Université Laval, Québec, G1V 0A6, Canada
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, 05405, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05405, USA
| | - Antoine Allard
- Département de Physique, de génie Physique et d'optique, Université Laval, Québec, G1V 0A6, Canada.
- Centre Interdisciplinaire en Modélisation Mathématique, Université Laval, Québec, G1V 0A6, Canada.
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
17
|
Ratajczak F, Joblin M, Hildebrandt M, Ringsquandl M, Falter-Braun P, Heinig M. Speos: an ensemble graph representation learning framework to predict core gene candidates for complex diseases. Nat Commun 2023; 14:7206. [PMID: 37938585 PMCID: PMC10632370 DOI: 10.1038/s41467-023-42975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
Understanding phenotype-to-genotype relationships is a grand challenge of 21st century biology with translational implications. The recently proposed "omnigenic" model postulates that effects of genetic variation on traits are mediated by core-genes and -proteins whose activities mechanistically influence the phenotype, whereas peripheral genes encode a regulatory network that indirectly affects phenotypes via core gene products. Here, we develop a positive-unlabeled graph representation-learning ensemble-approach based on a nested cross-validation to predict core-like genes for diverse diseases using Mendelian disorder genes for training. Employing mouse knockout phenotypes for external validations, we demonstrate that core-like genes display several key properties of core genes: Mouse knockouts of genes corresponding to our most confident predictions give rise to relevant mouse phenotypes at rates on par with the Mendelian disorder genes, and all candidates exhibit core gene properties like transcriptional deregulation in disease and loss-of-function intolerance. Moreover, as predicted for core genes, our candidates are enriched for drug targets and druggable proteins. In contrast to Mendelian disorder genes the new core-like genes are enriched for druggable yet untargeted gene products, which are therefore attractive targets for drug development. Interpretation of the underlying deep learning model suggests plausible explanations for our core gene predictions in form of molecular mechanisms and physical interactions. Our results demonstrate the potential of graph representation learning for the interpretation of biological complexity and pave the way for studying core gene properties and future drug development.
Collapse
Affiliation(s)
- Florin Ratajczak
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Munich, Neuherberg, Germany
| | | | | | | | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Munich, Neuherberg, Germany.
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | - Matthias Heinig
- Institute of Computational Biology (ICB), Helmholtz Munich, Neuherberg, Germany.
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- German Centre for Cardiovascular Research (DZHK), Munich Heart Association, Partner Site Munich, Berlin, Germany.
| |
Collapse
|
18
|
Liu CX, Alexander TJ, Altmann EG. Nonassortative relationships between groups of nodes are typical in complex networks. PNAS NEXUS 2023; 2:pgad364. [PMID: 38034095 PMCID: PMC10681970 DOI: 10.1093/pnasnexus/pgad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Decomposing a graph into groups of nodes that share similar connectivity properties is essential to understand the organization and function of complex networks. Previous works have focused on groups with specific relationships between group members, such as assortative communities or core-periphery structures, developing computational methods to find these mesoscale structures within a network. Here, we go beyond these two traditional cases and introduce a methodology that is able to identify and systematically classify all possible community types in directed multi graphs, based on the pairwise relationship between groups. We apply our approach to 53 different networks and find that assortative communities are the most common structures, but that previously unexplored types appear in almost every network. A particularly prevalent new type of relationship, which we call a source-basin structure, has information flowing from a sparsely connected group of nodes (source) to a densely connected group (basin). We look in detail at two online social networks-a new network of Twitter users and a well-studied network of political blogs-and find that source-basin structures play an important role in both of them. This confirms not only the widespread appearance of nonassortative structures but also the potential of hitherto unidentified relationships to explain the organization of complex networks.
Collapse
Affiliation(s)
- Cathy Xuanchi Liu
- School of Mathematics and Statistics, University of Sydney, Sydney, 2006 NSW, Australia
- Centre for Complex Systems, University of Sydney, Sydney, 2006 NSW, Australia
| | - Tristram J Alexander
- Centre for Complex Systems, University of Sydney, Sydney, 2006 NSW, Australia
- School of Physics, University of Sydney, Sydney, 2006 NSW, Australia
| | - Eduardo G Altmann
- School of Mathematics and Statistics, University of Sydney, Sydney, 2006 NSW, Australia
- Centre for Complex Systems, University of Sydney, Sydney, 2006 NSW, Australia
| |
Collapse
|
19
|
Perri V, Petrović LV, Scholtes I. Bayesian inference of transition matrices from incomplete graph data with a topological prior. EPJ DATA SCIENCE 2023; 12:48. [PMID: 37840552 PMCID: PMC10567898 DOI: 10.1140/epjds/s13688-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Many network analysis and graph learning techniques are based on discrete- or continuous-time models of random walks. To apply these methods, it is necessary to infer transition matrices that formalize the underlying stochastic process in an observed graph. For weighted graphs, where weighted edges capture observations of repeated interactions between nodes, it is common to estimate the entries of such transition matrices based on the (relative) weights of edges. However in real-world settings we are often confronted with incomplete data, which turns the construction of the transition matrix based on a weighted graph into an inference problem. Moreover, we often have access to additional information, which capture topological constraints of the system, i.e. which edges in a weighted graph are (theoretically) possible and which are not. Examples include transportation networks, where we may have access to a small sample of passenger trajectories as well as the physical topology of connections, or a limited set of observed social interactions with additional information on the underlying social structure. Combining these two different sources of information to reliably infer transition matrices from incomplete data on repeated interactions is an important open challenge, with severe implications for the reliability of downstream network analysis tasks. Addressing this issue, we show that including knowledge on such topological constraints can considerably improve the inference of transition matrices, especially in situations where we only have a small number of observed interactions. To this end, we derive an analytically tractable Bayesian method that uses repeated interactions and a topological prior to perform data-efficient inference of transition matrices. We compare our approach against commonly used frequentist and Bayesian approaches both in synthetic data and in five real-world datasets, and we find that our method recovers the transition probabilities with higher accuracy. Furthermore, we demonstrate that the method is robust even in cases when the knowledge of the topological constraint is partial. Lastly, we show that this higher accuracy improves the results for downstream network analysis tasks like cluster detection and node ranking, which highlights the practical relevance of our method for interdisciplinary data-driven analyses of networked systems.
Collapse
Affiliation(s)
- Vincenzo Perri
- Data Analytics Group, Department of Informatics, University of Zurich, Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
| | - Luka V. Petrović
- Data Analytics Group, Department of Informatics, University of Zurich, Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
| | - Ingo Scholtes
- Data Analytics Group, Department of Informatics, University of Zurich, Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
- Chair of Machine Learning for Complex Networks, Center for Artificial Intelligence and Data Science, Julius-Maximilians-Universität Würzburg, John-Skilton-Strasse 8a, 97074 Würzburg, Germany
| |
Collapse
|
20
|
Cliff OM, Bryant AG, Lizier JT, Tsuchiya N, Fulcher BD. Unifying pairwise interactions in complex dynamics. NATURE COMPUTATIONAL SCIENCE 2023; 3:883-893. [PMID: 38177751 DOI: 10.1038/s43588-023-00519-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/14/2023] [Indexed: 01/06/2024]
Abstract
Scientists have developed hundreds of techniques to measure the interactions between pairs of processes in complex systems, but these computational methods-from contemporaneous correlation coefficients to causal inference methods-define and formulate interactions differently, using distinct quantitative theories that remain largely disconnected. Here we introduce a large assembled library of 237 statistics of pairwise interactions, and assess their behavior on 1,053 multivariate time series from a wide range of real-world and model-generated systems. Our analysis highlights commonalities between disparate mathematical formulations of interactions, providing a unified picture of a rich interdisciplinary literature. Using three real-world case studies, we then show that simultaneously leveraging diverse methods can uncover those most suitable for addressing a given problem, facilitating interpretable understanding of the quantitative formulation of pairwise dependencies that drive successful performance. Our results and accompanying software enable comprehensive analysis of time-series interactions by drawing on decades of diverse methodological contributions.
Collapse
Affiliation(s)
- Oliver M Cliff
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Annie G Bryant
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
- School of Computer Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita-shi, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, Seika-cho, Japan
| | - Ben D Fulcher
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia.
- Centre for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
21
|
Klein B. A consolidated framework for quantifying interaction dynamics. NATURE COMPUTATIONAL SCIENCE 2023; 3:823-824. [PMID: 38177753 DOI: 10.1038/s43588-023-00520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Brennan Klein
- Network Science Institute, Northeastern University, Boston, MA, USA.
| |
Collapse
|
22
|
Bokányi E, Heemskerk EM, Takes FW. The anatomy of a population-scale social network. Sci Rep 2023; 13:9209. [PMID: 37280385 DOI: 10.1038/s41598-023-36324-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Large-scale human social network structure is typically inferred from digital trace samples of online social media platforms or mobile communication data. Instead, here we investigate the social network structure of a complete population, where people are connected by high-quality links sourced from administrative registers of family, household, work, school, and next-door neighbors. We examine this multilayer social opportunity structure through three common concepts in network analysis: degree, closure, and distance. Findings present how particular network layers contribute to presumably universal scale-free and small-world properties of networks. Furthermore, we suggest a novel measure of excess closure and apply this in a life-course perspective to show how the social opportunity structure of individuals varies along age, socio-economic status, and education level.
Collapse
|
23
|
Ji P, Wang Y, Peron T, Li C, Nagler J, Du J. Structure and function in artificial, zebrafish and human neural networks. Phys Life Rev 2023; 45:74-111. [PMID: 37182376 DOI: 10.1016/j.plrev.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Network science provides a set of tools for the characterization of the structure and functional behavior of complex systems. Yet a major problem is to quantify how the structural domain is related to the dynamical one. In other words, how the diversity of dynamical states of a system can be predicted from the static network structure? Or the reverse problem: starting from a set of signals derived from experimental recordings, how can one discover the network connections or the causal relations behind the observed dynamics? Despite the advances achieved over the last two decades, many challenges remain concerning the study of the structure-dynamics interplay of complex systems. In neuroscience, progress is typically constrained by the low spatio-temporal resolution of experiments and by the lack of a universal inferring framework for empirical systems. To address these issues, applications of network science and artificial intelligence to neural data have been rapidly growing. In this article, we review important recent applications of methods from those fields to the study of the interplay between structure and functional dynamics of human and zebrafish brain. We cover the selection of topological features for the characterization of brain networks, inference of functional connections, dynamical modeling, and close with applications to both the human and zebrafish brain. This review is intended to neuroscientists who want to become acquainted with techniques from network science, as well as to researchers from the latter field who are interested in exploring novel application scenarios in neuroscience.
Collapse
Affiliation(s)
- Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Yufan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Thomas Peron
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil.
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Shanghai 200433, China; Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
| | - Jan Nagler
- Deep Dynamics, Frankfurt School of Finance & Management, Frankfurt, Germany; Centre for Human and Machine Intelligence, Frankfurt School of Finance & Management, Frankfurt, Germany
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
24
|
Pandey AK, Loscalzo J. Network medicine: an approach to complex kidney disease phenotypes. Nat Rev Nephrol 2023:10.1038/s41581-023-00705-0. [PMID: 37041415 DOI: 10.1038/s41581-023-00705-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Scientific reductionism has been the basis of disease classification and understanding for more than a century. However, the reductionist approach of characterizing diseases from a limited set of clinical observations and laboratory evaluations has proven insufficient in the face of an exponential growth in data generated from transcriptomics, proteomics, metabolomics and deep phenotyping. A new systematic method is necessary to organize these datasets and build new definitions of what constitutes a disease that incorporates both biological and environmental factors to more precisely describe the ever-growing complexity of phenotypes and their underlying molecular determinants. Network medicine provides such a conceptual framework to bridge these vast quantities of data while providing an individualized understanding of disease. The modern application of network medicine principles is yielding new insights into the pathobiology of chronic kidney diseases and renovascular disorders by expanding the understanding of pathogenic mediators, novel biomarkers and new options for renal therapeutics. These efforts affirm network medicine as a robust paradigm for elucidating new advances in the diagnosis and treatment of kidney disorders.
Collapse
Affiliation(s)
- Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Constrained expectation-maximisation for inference of social graphs explaining online user–user interactions. SOCIAL NETWORK ANALYSIS AND MINING 2023. [DOI: 10.1007/s13278-023-01037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|