1
|
Nordquist EB, Jia Z, Chen J. Small Molecule NS11021 Promotes BK Channel Activation by Increasing Inner Pore Hydration. J Chem Inf Model 2024; 64:7616-7625. [PMID: 39264311 PMCID: PMC12025341 DOI: 10.1021/acs.jcim.4c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The Ca2+ and voltage-gated big potassium (BK) channels are implicated in various diseases, including heart disease, asthma, epilepsy, and cancer, but remain an elusive drug target. A class of negatively charged activators (NCAs) have been demonstrated to promote the activation of several potassium channels including BK channels by binding to the hydrophobic inner pore, yet the underlying molecular mechanism of action remains poorly understood. In this work, we analyze the binding mode and potential activation mechanism of a specific NCA named NS11021 using atomistic simulations. The results show that NS11021 binding to the pore in deactivated BK channels is nonspecific and dynamic. The binding free energy of -8.3 ± 0.7 kcal/mol (KD = 0.3-3.1 μM) calculated using umbrella sampling agrees quantitatively with the experimental EC50 range of 0.4-2.1 μM. The bound NS11021 remains dynamic and is distal from the filter to significantly impact its conformation. Instead, NS11021 binding significantly enhances the pore hydration due to the charged tetrazol-phenyl group, thereby promoting the opening of the hydrophobic gate. We further show that the free energy barrier to K+ permeation is reduced by ∼3 kcal/mol regardless of the binding pose, which could explain the ∼62-fold increase in the intrinsic opening of BK channels measured experimentally. Taken together, these results support the idea that the molecular mechanism of NS11021 derives from increasing the hydration level of the conformationally closed pore, which does not depend on specific binding and likely explains the ability of NCAs to activate multiple K+ channels.
Collapse
Affiliation(s)
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, United States 01003
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, United States 01003
| |
Collapse
|
2
|
Lee N, Kim S, Lee NY, Jo H, Jeong P, Pagire HS, Pagire SH, Ahn JH, Jin MS, Park CS. Activation mechanism and novel binding sites of the BK Ca channel activator CTIBD. Life Sci Alliance 2024; 7:e202402621. [PMID: 39089879 PMCID: PMC11294680 DOI: 10.26508/lsa.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The large-conductance calcium-activated potassium (BKCa) channel, which is crucial for urinary bladder smooth muscle relaxation, is a potential target for overactive bladder treatment. Our prior work unveiled CTIBD as a promising BKCa channel activator, altering V 1/2 and G max This study investigates CTIBD's activation mechanism, revealing its independence from the Ca2+ and membrane voltage sensing of the BKCa channel. Cryo-electron microscopy disclosed that two CTIBD molecules bind to hydrophobic regions on the extracellular side of the lipid bilayer. Key residues (W22, W203, and F266) are important for CTIBD binding, and their replacement with alanine reduces CTIBD-mediated channel activation. The triple-mutant (W22A/W203A/F266A) channel showed the smallest V 1/2 shift with a minimal impact on activation and deactivation kinetics by CTIBD. At the single-channel level, CTIBD treatment was much less effective at increasing P o in the triple mutant, mainly because of a drastically increased dissociation rate compared with the WT. These findings highlight CTIBD's mechanism, offering crucial insights for developing small-molecule treatments for BKCa-related pathophysiological conditions.
Collapse
Affiliation(s)
- Narasaem Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Na Young Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heeji Jo
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | | | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
3
|
Kshatri A, Rivero-Pérez B, Giraldez T. Subunit-specific inhibition of BK channels by piperine. Biophys J 2024; 123:1942-1953. [PMID: 37700524 PMCID: PMC11309970 DOI: 10.1016/j.bpj.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
Piperine is the principal alkaloid present in black pepper and is well-known for its diverse pharmacological effects, including inhibition of different ion channels. Large conductance Ca2+-activated K+ channels (BK) are widely expressed across several tissues and play a vital role in many physiological functions. In this study, we investigated the pharmacological effects of piperine on various BK channel subunit compositions (BKα, BKαβ1,4, BKαγ1,3) expressed in HEK293T cells. Piperine in zero Ca2+ reversibly inhibited currents from the pore-forming BKα channels in a dose-dependent manner with a half-maximal inhibitory concentration (IC50) of 4.8 μM. Elevating the internal Ca2+ concentration from 0 to 100 μM significantly attenuated the inhibitory effects of piperine on BKα channels. The mutation G311S in the pore domain failed to alter the modulatory effects of piperine, whereas deletion of the entire cytoplasmic domain from BKα channels ablated its inhibitory effects. Addition of either BKβ1 or β4 regulatory subunits did not alter the efficacy of piperine on BKα channels. Interestingly, co-expression of either BKγ1 or BKγ3 subunits greatly diminished the ability of piperine to inhibit BKα channels. Our findings demonstrate that piperine is a potent natural modulator of BKα/BKαβ1,4 subunits but not BKαγ1,3 subunits. The mechanism of piperine modulation appeared to be allosteric and differs from that of other BK pore blockers (paxilline, peptide toxins, and quaternary ammonium compounds). Together, our results unravel the potential of piperine to inhibit BK channels, providing a new tool to explore mechanisms underlying the effects of regulatory subunits.
Collapse
Affiliation(s)
- Aravind Kshatri
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Belinda Rivero-Pérez
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Teresa Giraldez
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
4
|
Moldenhauer HJ, Tammen K, Meredith AL. Structural mapping of patient-associated KCNMA1 gene variants. Biophys J 2024; 123:1984-2000. [PMID: 38042986 PMCID: PMC11309989 DOI: 10.1016/j.bpj.2023.11.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
KCNMA1-linked channelopathy is a neurological disorder characterized by seizures, motor abnormalities, and neurodevelopmental disabilities. The disease mechanisms are predicted to result from alterations in KCNMA1-encoded BK K+ channel activity; however, only a subset of the patient-associated variants have been functionally studied. The localization of these variants within the tertiary structure or evaluation by pathogenicity algorithms has not been systematically assessed. In this study, 82 nonsynonymous patient-associated KCNMA1 variants were mapped within the BK channel protein. Fifty-three variants localized within cryoelectron microscopy-resolved structures, including 21 classified as either gain of function (GOF) or loss of function (LOF) in BK channel activity. Clusters of LOF variants were identified in the pore, the AC region (RCK1), and near the Ca2+ bowl (RCK2), overlapping with sites of pharmacological or endogenous modulation. However, no clustering was found for GOF variants. To further understand variants of uncertain significance (VUSs), assessments by multiple standard pathogenicity algorithms were compared, and new thresholds for sensitivity and specificity were established from confirmed GOF and LOF variants. An ensemble algorithm was constructed (KCNMA1 meta score (KMS)), consisting of a weighted summation of this trained dataset combined with a structural component derived from the Ca2+-bound and unbound BK channels. KMS assessment differed from the highest-performing individual algorithm (REVEL) at 10 VUS residues, and a subset were studied further by electrophysiology in HEK293 cells. M578T, E656A, and D965V (KMS+;REVEL-) were confirmed to alter BK channel properties in voltage-clamp recordings, and D800Y (KMS-;REVEL+) was assessed as benign under the test conditions. However, KMS failed to accurately assess K457E. These combined results reveal the distribution of potentially disease-causing KCNMA1 variants within BK channel functional domains and pathogenicity evaluation for VUSs, suggesting strategies for improving channel-level predictions in future studies by building on ensemble algorithms such as KMS.
Collapse
Affiliation(s)
- Hans J Moldenhauer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kelly Tammen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Zhang G, Yang H, Wang Y, Liang H, Shi J, Cui J. Redox-dependent Cd 2+ inhibition of BK-type Ca 2+-activated K + channels. Biophys J 2024; 123:2076-2084. [PMID: 38400542 PMCID: PMC11309971 DOI: 10.1016/j.bpj.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
Large-conductance Ca2+-activated K+ channels (BK channels) are formed by Slo1 subunits as a homotetramer. Besides Ca2+, other divalent cations, such as Cd2+, also activate BK channels when applied intracellularly by shifting the conductance-voltage relation to more negative voltages. However, we found that if the inside-out patch containing BK channels was treated with solution containing reducing agents such as dithiothreitol (DTT), then subsequent Cd2+ application completely inhibited BK currents. The DTT-dependent Cd2+ inhibition could be reversed by treating the patch with solutions containing H2O2, suggesting that a redox reaction regulates the Cd2+ inhibition of BK channels. Similar DTT-dependent Cd2+ inhibition was also observed in a mutant BK channel, Core-MT, in which the cytosolic domain of the channel is deleted, and in the proton-activated Slo3 channels but not observed in the voltage-gated Shaker K+ channels. A possible mechanism for the DTT-dependent Cd2+ inhibition is that DTT treatment breaks one or more disulfide bonds between cysteine pairs in the BK channel protein and the freed thiol groups coordinate with Cd2+ to form an ion bridge that blocks the channel or locks the channel at the closed state. However, surprisingly, none of the mutations of all cysteine residues in Slo1 affect the DTT-dependent Cd2+ inhibition. These results are puzzling, with an apparent contradiction: on one hand, a redox reaction seems to regulate Cd2+ inhibition of the channel, but on the other hand, no cysteine residue in the Slo1 subunit seems to be involved in such inhibition.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Huanghe Yang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri; Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| | - Yuyin Wang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Hongwu Liang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Jingyi Shi
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri.
| |
Collapse
|
6
|
Bernetti M, Bosio S, Bresciani V, Falchi F, Masetti M. Probing allosteric communication with combined molecular dynamics simulations and network analysis. Curr Opin Struct Biol 2024; 86:102820. [PMID: 38688074 DOI: 10.1016/j.sbi.2024.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Understanding the allosteric mechanisms within biomolecules involved in diseases is of paramount importance for drug discovery. Indeed, characterizing communication pathways and critical hotspots in signal transduction can guide a rational approach to leverage allosteric modulation for therapeutic purposes. While the atomistic signatures of allosteric processes are difficult to determine experimentally, computational methods can be a remarkable resource. Network analysis built on Molecular Dynamics simulation data is particularly suited in this respect and is gradually becoming of routine use. Herein, we collect the recent literature in the field, discussing different aspects and available options for network construction and analysis. We further highlight interesting refinements and extensions, eventually providing our perspective on this topic.
Collapse
Affiliation(s)
- Mattia Bernetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy.
| | - Stefano Bosio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy. https://twitter.com/Stefano__Bosio
| | - Veronica Bresciani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy. https://twitter.com/V_Bresciani
| | - Federico Falchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
7
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
8
|
Melancon K, Pliushcheuskaya P, Meiler J, Künze G. Targeting ion channels with ultra-large library screening for hit discovery. Front Mol Neurosci 2024; 16:1336004. [PMID: 38249296 PMCID: PMC10796734 DOI: 10.3389/fnmol.2023.1336004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Ion channels play a crucial role in a variety of physiological and pathological processes, making them attractive targets for drug development in diseases such as diabetes, epilepsy, hypertension, cancer, and chronic pain. Despite the importance of ion channels in drug discovery, the vastness of chemical space and the complexity of ion channels pose significant challenges for identifying drug candidates. The use of in silico methods in drug discovery has dramatically reduced the time and cost of drug development and has the potential to revolutionize the field of medicine. Recent advances in computer hardware and software have enabled the screening of ultra-large compound libraries. Integration of different methods at various scales and dimensions is becoming an inevitable trend in drug development. In this review, we provide an overview of current state-of-the-art computational chemistry methodologies for ultra-large compound library screening and their application to ion channel drug discovery research. We discuss the advantages and limitations of various in silico techniques, including virtual screening, molecular mechanics/dynamics simulations, and machine learning-based approaches. We also highlight several successful applications of computational chemistry methodologies in ion channel drug discovery and provide insights into future directions and challenges in this field.
Collapse
Affiliation(s)
- Kortney Melancon
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Georg Künze
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Moldenhauer HJ, Tammen K, Meredith AL. Structural mapping of patient-associated KCNMA1 gene variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550850. [PMID: 37546746 PMCID: PMC10402178 DOI: 10.1101/2023.07.27.550850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
KCNMA1-linked channelopathy is a neurological disorder characterized by seizures, motor abnormalities, and neurodevelopmental disabilities. The disease mechanisms are predicted to result from alterations in KCNMA1-encoded BK K+ channel activity; however, only a subset of the patient-associated variants have been functionally studied. The localization of these variants within the tertiary structure or evaluation by pathogenicity algorithms has not been systematically assessed. In this study, 82 nonsynonymous patient-associated KCNMA1 variants were mapped within the BK channel protein. Fifty-three variants localized within cryo-EM resolved structures, including 21 classified as either gain-of-function (GOF) or loss-of-function (LOF) in BK channel activity. Clusters of LOF variants were identified in the pore, the AC region (RCK1), and near the Ca 2+ bowl (RCK2), overlapping with sites of pharmacological or endogenous modulation. However, no clustering was found for GOF variants. To further understand variants of uncertain significance (VUS), assessments by multiple standard pathogenicity algorithms were compared, and new thresholds for sensitivity and specificity were established from confirmed GOF and LOF variants. An ensemble algorithm was constructed (KCNMA1 Meta Score), consisting of a weighted summation of this trained dataset combined with a structural component derived from the Ca 2+ bound and unbound BK channels. KMS assessment differed from the highest performing individual algorithm (REVEL) at 10 VUS residues, and a subset were studied further by electrophysiology in HEK293 cells. M578T, E656A, and D965V (KMS+;REVEL-) were confirmed to alter BK channel properties in voltage-clamp recordings, and D800Y (KMS-;REVEL+) was assessed as benign under the test conditions. However, KMS failed to accurately assess K457E. These combined results reveal the distribution of potentially disease-causing KCNMA1 variants within BK channel functional domains and pathogenicity evaluation for VUS, suggesting strategies for improving channel-level predictions in future studies by building on ensemble algorithms such as KMS.
Collapse
|
10
|
Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed Pharmacother 2023; 160:114413. [PMID: 36805187 DOI: 10.1016/j.biopha.2023.114413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.
Collapse
|