1
|
Wang Y, Liu S, Zhao Y, Zhao Z, Liu Y, Zhang J, Yao J, Zou L, Zhang Y, Guan Y, Zhang Y. A general method to improve imprinting efficiency in surface protein imprinting by enhanced pre-assembly. Acta Biomater 2025; 198:428-439. [PMID: 40210184 DOI: 10.1016/j.actbio.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Surface protein-imprinted nanoparticles may replace the expensive and unstable antibodies in biomedical applications but still suffers from a low imprinting efficiency. A main reason may be the insufficient pre-assembly between monomers and template protein in surface imprinting using the conventional surface graft polymerization method. Increasing monomer concentrations enhances pre-assembly, but leads to agglomeration of the particles. To solve the dilemma, here an initiating system consisting of surface-immobilized glucose oxidase and horseradish peroxidase, glucose and acetylacetone was used to synthesize the imprinted coatings. No agglomeration occurs even at high monomer concentrations because of the localized polymerization. When surface imprinting of lysozyme over silica nanoparticles, both adsorption capacity and imprinting factor increase with increasing monomer concentration, because of the enhanced pre-assembly. This strategy was further combined with the "shape-memorable imprint cavity" strategy in which the conventional crosslinker is replaced with a peptide crosslinker capable of undergoing pH-induced helix-coil transition. The resulting surface lysozyme-imprinted silica nanoparticles exhibit high adsorption capacity, high imprinting factor, high selectivity, good reusability, easy and complete template removal under mild conditions, and fast rebinding kinetics. Surface imprinting of other proteins with high imprinting efficiency were also successfully carried out, demonstrating the generality of the strategy. STATEMENT OF SIGNIFICANCE: Surface protein-imprinted nanoparticles have emerged as promising artificial antibodies, but still suffering from low imprinting efficiency, primarily due to insufficient pre-assembly between functional monomers and template proteins. Increasing monomer concentrations enhances pre-assembly but causes particle agglomeration. Here the dilemma was solved by using an initiating system consisting of surface-immobilized glucose oxidase/horseradish peroxidase, glucose, and acetylacetone to achieve localized polymerization. Imprinting efficiency was significantly improved because of enhanced pre-assembly. This strategy was further combined with the "shape-memorable imprint cavity" strategy. Lysozyme-imprinted nanoparticles with high capacity (146.4 mg g-1), high imprinting factor (13.94), reusability, and fast rebinding kinetics was synthesized. Surface imprinting of other proteins with high imprinting efficiency were also successfully carried out, demonstrating the generality of the strategy.
Collapse
Affiliation(s)
- Yafei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China; Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Shun Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Yibo Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Zhuo Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, China; Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, China
| | - Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Zou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, China
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, China.
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, China; Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| |
Collapse
|
2
|
Wei A, Wang Q, Liu J, Huang Y, Li H, Zhu Z, Wang T, Yu Y. Co-initiating-system dual-mechanism drives the design of printable entangled polymer multinetworks. Nat Commun 2025; 16:4407. [PMID: 40355471 PMCID: PMC12069718 DOI: 10.1038/s41467-025-59669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Entanglement significantly enhances the mechanical performance and functionality of both natural and synthetic materials. However, developing straightforward, versatile strategies for creating high-performance entangled polymer materials remains a challenge. Here, a co-initiating-system dual-mechanism strategy is designed for fabricating printable entangled polymer multinetworks. This thermal-light dual-initiation process benefits the synthesis of high-molecular-weight polymers and promotes the rapid formation of multinetworks within hydrogels. The resulting long polymer chains enable hydrogels with higher mechanical performance, lower stress relaxation, and activation energy compared to short polymer chain-contained samples. Such a method proves more effective than traditional self-thickening and strengthening techniques for enhancing hydrogel entanglements and is also compatible with additive manufacturing, enabling the design of complex 2D webs with adaptive mechanical performance and capable of detecting and sensing applications. This work provides an effective strategy for designing high-performance entangled polymer materials, which are set to impact numerous fields, from advanced sensing to material science and beyond.
Collapse
Affiliation(s)
- An Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Qian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jupen Liu
- College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Yuchan Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Haoxiang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Zhenhao Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Tao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
3
|
Li Y, Deng X, Cao P, Liu H, Qing R, Dai Z, Guo F. Fully enhances the performance of eutectic hydrogels in the field of flexible sensors by cellulose. Int J Biol Macromol 2025; 311:143914. [PMID: 40324509 DOI: 10.1016/j.ijbiomac.2025.143914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/18/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Deep eutectic hydrogels (DES hydrogels), fabricated from deep eutectic solvents (DES), offer superior stability and applicability compared to traditional polymer-based hydrogels. However, most DES hydrogels exhibit substantial hysteresis during stretching and low electrical conductivity due to the viscous nature of the solvents. This study presents an effective approach to enhance DES hydrogel performance. By anchoring flexible chains at various scales and using water as a lubricant, we obtained a eutectic hydrogel with high conductivity, low hysteresis, frost resistance and long service life. Testing demonstrated a 2.28-fold increase in conductivity (1.28 S/m), a 2.5-fold increase in tensile strength, and 1363 % elongation at break. Furthermore, the hydrogel retained excellent flexibility and tensile strength after 60 days at room temperature in an open-air environment. This demonstrates the DES hydrogel's significant potential for flexible sensor applications. This research provides a viable strategy for preparing high-performance DES hydrogels.
Collapse
Affiliation(s)
- Yong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xin Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Peng Cao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Haoxiang Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Rongmei Qing
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zejia Dai
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fengxuan Guo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
4
|
Wang Y, Zhang Y, Zhao Y, Zhao Z, Yao J, Zou L, Zhang Y, Guan Y, Zhang Y. Magnetite Nanoparticles with High Affinity Toward Target Protein for Efficient and Facile Bio-Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413605. [PMID: 40091408 PMCID: PMC12079544 DOI: 10.1002/advs.202413605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Magnetite nanoparticles (Fe3O4 NPs) with molecular recognition capabilities offer significant potential for biomedical applications, yet existing surface protein imprinting methods often suffer from low efficiency. Herein, a surface enzyme-mediated polymerization strategy is exploited for surface imprinting of bovine serum albumin (BSA) onto Fe3O4 NPs. This method, compatible with all vinyl monomers and operable under mild conditions, enables imprinting at high monomer concentrations while preventing nanoparticle agglomeration. Notably, increasing the pre-polymerization solution concentration enhances the pre-assembly of functional monomers and template molecules, thereby improving imprinting efficiency. Furthermore, replacing conventional crosslinkers with a polyglutamic acid-based peptide crosslinker introduces a pH-responsive helix-coil transition, allowing complete template removal under mild conditions and increasing the adsorption capacity and imprinting factor to 139.8 mg g⁻¹ and 10.36, respectively. The resulting BSA-imprinted Fe₃O₄ NPs exhibits high selectivity, robustness, and rapid adsorption kinetics while maintaining strong magnetic responsiveness for easy separation. These features allows for the selective extraction of BSA from bovine fetal serum, demonstrating the potential of this approach for biomedical applications, particularly in bioseparations.
Collapse
Affiliation(s)
- Yafei Wang
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Pharmaceutical SciencesTiangong UniversityTianjin300387China
- Cangzhou Institute of Tiangong UniversityCangzhou061000China
| | - Yaojing Zhang
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Pharmaceutical SciencesTiangong UniversityTianjin300387China
| | - Yibo Zhao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Pharmaceutical SciencesTiangong UniversityTianjin300387China
| | - Zhuo Zhao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Pharmaceutical SciencesTiangong UniversityTianjin300387China
- Cangzhou Institute of Tiangong UniversityCangzhou061000China
| | - Jia Yao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Pharmaceutical SciencesTiangong UniversityTianjin300387China
| | - Lei Zou
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Pharmaceutical SciencesTiangong UniversityTianjin300387China
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of ChemistryTiangong UniversityTianjin300387China
| | - Ying Guan
- Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Pharmaceutical SciencesTiangong UniversityTianjin300387China
- Cangzhou Institute of Tiangong UniversityCangzhou061000China
| |
Collapse
|
5
|
Lu M, Shen L, Su H, Li B, Wang L, Yu WW. Highly ionic conductive, elastic, and biocompatible double-network composite gel for epidermal biopotential monitoring and wearable sensing. J Colloid Interface Sci 2025; 684:272-282. [PMID: 39798423 DOI: 10.1016/j.jcis.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Soft ionic conductors are promising candidates for epidermal electrodes, flexible sensors, ionic skins, and other soft iontronic devices. However, their inadequate ionic conductivity and mechanical properties (such as toughness and adhesiveness) are still the main constraints for their wide applications in wearable bioelectronics. Herein, an all-biocompatible composite gel with a double-network (DN) strategy is proposed. Compared to the single network, introducing a double-helix structured ι-carrageenan facilitates the DN gel with greatly enhanced mechanical properties and higher ionic conductivity (16.0 mS cm-1). Moreover, the DN gels exhibit high transparency (>92 %), high stretchability (1660 %), and sufficient adhesion. Benefiting from the above unique features, the DN gels successfully serve as biopotential electrodes, which can dynamically monitor human electrophysiological signals with a higher signal-to-noise ratio and superior environmental stability than the commercial electrode. Additionally, they can be employed as resistive strain sensors for accurate human movement monitoring. Our multifunctional DN composite gels offer a feasible platform for on-skin bioelectronics and human-machine interactions.
Collapse
Affiliation(s)
- Min Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; School of Integrated Circuits, Shandong University, Jinan 250101, China
| | - Lanbo Shen
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250100, China
| | - Huanxin Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Li
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250100, China
| | - Lingyun Wang
- School of Integrated Circuits, Shandong University, Jinan 250101, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
6
|
Huang Y, Yang Y, Peng C, Li Y, Feng W. High Strength, Strain, and Resilience of Gold Nanoparticle Reinforced Eutectogels for Multifunctional Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416318. [PMID: 39973805 PMCID: PMC12005770 DOI: 10.1002/advs.202416318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Indexed: 02/21/2025]
Abstract
Eutectogels with inherent ionic conductivity, mechanical flexibility, environment resistance, and cost-effectiveness have garnered considerable attention for the development of wearable devices. However, existing eutectogels rarely achieve a balance between strength, strain, and resilience, which are critical indicators of reliability in flexible electronics. Herein, poly(sodium styrenesulfonate) (PSS)-modified gold nanoparticles (AuNPs) in eutectic solvents are synthesized, and PSS-AuNP reinforced polyacrylic acid/polyvinylpyrrolidone (SAu-PAA/PVP) eutectogel is successfully prepared. Through the coordination between AuNPs and the PAA/PVP polymer chains, the SAu-PAA/PVP eutectogel exhibits significantly enhanced tensile strain (946%), mechanical strength (3.50 MPa), and resilience (85.3%). The high-performance eutectogel was demonstrated as a flexible sensor sensitive to strain and temperature, and the AuNPs provided near-infrared sensing capabilities. Furthermore, SAu-PAA/PVP eutectogel inherits the benefits of ES, including anti-drying and anti-freezing properties (-77 °C). Moreover, the eutectogel is microstructured using a simple molding method, and the resulting hierarchical pyramid microstructured eutectogel functions as ionic dielectric layer in a pressure sensor. This sensor exhibits high sensitivity (37.11 kPa-1), low detection limit (1 Pa), a fast response rate (36/54 ms), and excellent reproducibility over 5000 cycles, making them reliable and durable for detecting small vibrations, with potential applications in precision machinery, aerospace, and buildings.
Collapse
Affiliation(s)
- Yingxiang Huang
- Institute of Advanced Technology and EquipmentBeijing University of Chemical TechnologyBeijing100029China
| | - Yanzhao Yang
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Cong Peng
- Institute of Advanced Technology and EquipmentBeijing University of Chemical TechnologyBeijing100029China
| | - Yu Li
- Institute of Advanced Technology and EquipmentBeijing University of Chemical TechnologyBeijing100029China
| | - Wei Feng
- Institute of Advanced Technology and EquipmentBeijing University of Chemical TechnologyBeijing100029China
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| |
Collapse
|
7
|
Li Y, Tan S, Zhang X, Li Z, Cai J, Liu Y. Design Strategies and Emerging Applications of Conductive Hydrogels in Wearable Sensing. Gels 2025; 11:258. [PMID: 40277694 PMCID: PMC12027214 DOI: 10.3390/gels11040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Conductive hydrogels, integrating high conductivity, mechanical flexibility, and biocompatibility, have emerged as crucial materials driving the evolution of next-generation wearable sensors. Their unique ability to establish seamless interfaces with biological tissues enables real-time acquisition of physiological signals, external stimuli, and even therapeutic feedback, paving the way for intelligent health monitoring and personalized medical interventions. To fully harness their potential, significant efforts have been dedicated to tailoring the conductive networks, mechanical properties, and environmental stability of these hydrogels through rational design and systematic optimization. This review comprehensively summarizes the design strategies of conductive hydrogels, categorized into metal-based, carbon-based, conductive polymer-based, ionic, and hybrid conductive systems. For each type, the review highlights structural design principles, strategies for conductivity enhancement, and approaches to simultaneously enhance mechanical robustness and long-term stability under complex environments. Furthermore, the emerging applications of conductive hydrogels in wearable sensing systems are thoroughly discussed, covering physiological signal monitoring, mechano-responsive sensing platforms, and emerging closed-loop diagnostic-therapeutic systems. Finally, this review identifies key challenges and offers future perspectives to guide the development of multifunctional, intelligent, and scalable conductive hydrogel sensors, accelerating their translation into advanced flexible electronics and smart healthcare technologies.
Collapse
Affiliation(s)
- Yingchun Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China
| | - Shaozhe Tan
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, Xi’an 710071, China
| | - Xuesi Zhang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, Xi’an 710071, China
| | - Zhenyu Li
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, Xi’an 710071, China
| | - Jun Cai
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, Xi’an 710071, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an 710069, China
| |
Collapse
|
8
|
Ma H, Wang M, Hou J, Wang X, Sun P, Wang F. Strong and Tough Water-Tolerant Conductive Eutectogels with Phase-Separated Hydrophilic/Hydrophobic Dual Ionic Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500770. [PMID: 40026070 DOI: 10.1002/adma.202500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Eutectogels are emerging as the next-generation stretchable electronics due to their superior ionic conductivity, non-volatility, and cost-effectiveness. Nevertheless, most eutectogels suffer from weak mechanical strength and toughness and pronounced hygroscopicity. Herein, a strategy is proposed to fabricate phase-separated eutectogels with dual ionic channels (PSDIC-gel), which exhibit exceptional integrative properties, especially water resistance. By blending hydrophilic/hydrophobic polymerizable deep eutectic solvents, dual ionic channels spontaneously form via polymerization-induced phase separation. The hydrophilic poly(acrylic acid) (PAA) phase containing Li+-channels, rich in hydrogen bonding and ion-dipole interactions, provides mechanical strength and conductivity. The hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) phase incorporating cholinium cation (Ch+) channels enhances toughness, conductivity, and water resistance. Adjusting the phase ratio yields a microphase-separated transparent eutectogel with high tensile strength (6.03 MPa), toughness (16.18 MJ m-3), excellent ionic conductivity (1.6 × 10-3 S m-1), strong substrate adhesion, and rapid room-temperature self-healing. Solid-state NMR reveals the conductive mechanism and the phase-separated structure featuring dual ionic channels in PSDIC-gels, advancing the understanding of complex ionic interactions at the atomic level. The PSDIC-gel enables a flexible triboelectric nanogenerator for accurate real-time self-powered human motion sensing. This work advances eutectogel design through structure-property engineering, offering a universal strategy to reconcile mechanical robustness, environmental suitability, and ionic conductivity for wearable electronics.
Collapse
Affiliation(s)
- Hanbing Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Min Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Tianjin, 300192, China
| | - Jiawen Hou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fenfen Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Allemailem KS, Almousa S, Alissa M, Alrumaihi F, Alharbi HO, Almansour NM, Aldaiji LA, Abouzied AS, Alsugoor MH, Alasmari O, Albakawi MJ, Stride J. Innovations in quantitative rapid testing: Early prediction of health risks. Curr Probl Cardiol 2025; 50:103000. [PMID: 39900212 DOI: 10.1016/j.cpcardiol.2025.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
As health monitoring becomes increasingly intricate, the demand for innovative solutions to predict and assess health status is more pressing than ever. This review focuses on the transformative potential of multi-sensor technologies in health monitoring, emphasizing their role in early health status prediction. By integrating diverse sensor types ranging from wearable fitness trackers to implantable devices and environmental monitors healthcare professionals can gain a richer, more nuanced understanding of an individual's physiological state. We analyze various configurations of multi-sensor networks and their efficacy in identifying early indicators of health issues, such as cardiovascular diseases, diabetes, and respiratory ailments. For example, the combination of biometric sensors that track vital signs with environmental data on pollutants can yield invaluable insights into a patient's overall health. This integrated approach not only improves the accuracy of health assessments but also facilitates timely interventions. Furthermore, we address the challenges inherent in multi-sensor systems, including data integration, device interoperability, and the need for advanced algorithms capable of processing complex datasets. Recent advancements in machine learning and artificial intelligence are underscored as pivotal in enhancing the capabilities of these technologies for predictive health analytics. Ultimately, this review highlights how multi-sensor systems can redefine early health status prediction, paving the way for proactive healthcare strategies that significantly improve patient outcomes and optimize healthcare delivery.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saad Almousa
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al Kharj, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Leen A Aldaiji
- Department of Laboratories & Blood Bank, Dr. Sulaiman Al Habib Medical Group, Qassim 51431, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Mahdi H Alsugoor
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al Kharj, Saudi Arabia
| | - Omer Alasmari
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al Kharj, Saudi Arabia
| | - Marwh Jamal Albakawi
- Department of Laboratory and Blood Bank, King Fahad Specialist Hospital, Tabuk 47717, Saudi Arabia
| | | |
Collapse
|
10
|
Vo TH, Lam PK, Sheng YJ, Tsao HK. A functional eutectogel based on ultrahigh-molecular weight polymers: Physical entanglements in deep eutectic solvent. J Colloid Interface Sci 2025; 683:610-619. [PMID: 39706080 DOI: 10.1016/j.jcis.2024.12.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Eutectogels have emerged as a promising material for wearable devices due to its superior ionic conductivity, non-volatility, and low cost. Despite numerous efforts, only a limited number of polymers and gelling mechanisms have been successfully employed in the fabrication of eutectogels. In this study, an effective three-dimensional network is developed based on the entanglements of polymer chains, facilitating the formation of an entangled eutectogel. The fabrication process involves directly dissolving ultra-high molecular weight polyvinylpyrrolidone (PVP) in deep eutectic solvent (reline) through a simple heating-cooling method. The resulting eutectogel, containing 40 wt% PVP, exhibits excellent stretchability of 1410 % strain, toughness of 544.8 kJ/m3, and ionic conductivity of 0.015 S/m. It also generates a reliable resistance signal suitable for strain-sensing applications. Furthermore, this entangled eutectogel displays self-healing capabilities, enabled by the diffusion and re-entanglement of polymer chains. This work not only demonstrates a facile fabrication approach for an entangled eutectogel but also provides the first investigation into employing long chain entanglements in the development of eutectogels.
Collapse
Affiliation(s)
- Trung Hieu Vo
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan; Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Phuc Khanh Lam
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan; Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
11
|
He Q, Zhao Q, Zhang L. Long-chain crosslinker-induced patterning on an elastic polymer film for robust and reversible information encryption/decryption. MATERIALS HORIZONS 2025; 12:2360-2368. [PMID: 39801323 DOI: 10.1039/d4mh01828a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
While reversible information encryption and decryption are readily achievable with hydrogels, this process presents a significant challenge when applied to elastic polymer films. This is due to the inherent chemical stability of anhydrous polymer films which significantly increases the difficulty of information writing. In this study, we propose a solvent-free radical polymerization method for chemical patterning on the elastic film of poly(styrene-butadiene-styrene) (SBS). Unlike short chain crosslinkers-induced patterning, which increases the brittleness of the film, the long-chain crosslinkers are chemically bonded with the chains of SBS. This not only enhances the mechanical stability of film, but also improves its softness and robustness (the strength increases 1.8 times and the toughness increases 2.3 times), thereby greatly extending its durability for information encryption and decryption. When patterned with a photomask, the crosslinked regions maintain transparency upon acetone absorption, while the non-crosslinked regions become opaque due to an acetone-induced phase change. Upon removal of acetone, these opaque regions can be restored to transparency. Compared with hydrogels liable to water loss and deformation, the patterned films show greater stability, retaining pattern encryption/decryption functions after 30 days in a natural environment without special storage. The rate of this phase transition is directly related to the degree of crosslinking. Therefore, by adjusting the degree of crosslinking, the patterned films can undergo multistage encryption/decryption in response to acetone, providing a promising method for information security and storage.
Collapse
Affiliation(s)
- Qitong He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
12
|
Xu C, Xie A, Hu H, Wang Z, Feng Y, Wang D, Liu W. Ultrastrong eutectogels engineered via integrated mechanical training in molecular and structural engineering. Nat Commun 2025; 16:2589. [PMID: 40091058 PMCID: PMC11911444 DOI: 10.1038/s41467-025-57800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Ultrastrong gels possess generally ultrahigh modulus and strength yet exhibit limited stretchability owing to hardening and embrittlement accompanied by reinforcement. This dilemma is overcome here by using hyperhysteresis-mediated mechanical training that hyperhysteresis allows structural retardation to prevent the structural recovery of network after training, resulting in simply single pre-stretching training. This training strategy introduces deep eutectic solvent into polyvinyl alcohol hydrogels to achieve hyperhysteresis via hydrogen bonding nanocrystals on molecular engineering, performs single pre-stretching training to produce hierarchical nanofibrils on structural engineering, and fabricates chemically cross-linked second network to enable stretchability. The resultant eutectogels display exceptional mechanical performances with enormous fracture strength (85.2 MPa), Young's modulus (98 MPa) and work of rupture (130.6 MJ m-3), which compare favorably to those of previous gels. The presented strategy is generalizable to other solvents and polymer for engineering ultrastrong organogels, and further inspires advanced fabrication technologies for force-induced self-reinforcement materials.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ao Xie
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyuan Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhengde Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yange Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China.
| |
Collapse
|
13
|
Choi K, Lee G, Lee MG, Hwang HJ, Lee K, Lee Y. Bio-Inspired Ionic Sensors: Transforming Natural Mechanisms into Sensory Technologies. NANO-MICRO LETTERS 2025; 17:180. [PMID: 40072809 PMCID: PMC11904071 DOI: 10.1007/s40820-025-01692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors-such as photoreceptors, mechanoreceptors, and chemoreceptors-that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell. Inspired by the biological principles of sensory systems, recent advancements in electronics have led to a wide range of applications in artificial sensors. In the current review, we highlight recent developments in artificial sensors inspired by biological sensory systems utilizing soft ionic materials. The versatile characteristics of these ionic materials are introduced while focusing on their mechanical and electrical properties. The features and working principles of natural and artificial sensing systems are investigated in terms of six categories: vision, tactile, hearing, gustatory, olfactory, and proximity sensing. Lastly, we explore several challenges that must be overcome while outlining future research directions in the field of soft ionic sensors.
Collapse
Affiliation(s)
- Kyongtae Choi
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Gibeom Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Min-Gyu Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Jae Hwang
- Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Kibeom Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Younghoon Lee
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
14
|
Cho YE, Lee S, Ma SJ, Sun JY. Network design for soft materials: addressing elasticity and fracture resistance challenges. SOFT MATTER 2025; 21:1603-1623. [PMID: 39937243 DOI: 10.1039/d4sm01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Soft materials, such as elastomers and gels, feature crosslinked polymer chains that provide stretchable and elastic mechanical properties. These properties are derived from entropic elasticity, which limits energy dissipation and makes the material susceptible to fracture. To address this issue, network designs that dissipate energy through the plastic zone have been introduced to enhance toughness; however, this approach compromises elasticity, preventing the material from fully recovering its original shape after deformation. In this review, we describe the trade-off between fracture resistance and elasticity, exploring network designs that overcome this limitation to achieve both high toughness and low hysteresis. The development of soft materials that are both elastic and fracture-resistant holds significant promise for applications in stretchable electronics, soft robotics, and biomedical devices. By analyzing successful network designs, we identify strategies to further improve these materials and discuss potential enhancements based on existing limitations.
Collapse
Affiliation(s)
- Yong Eun Cho
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sihwan Lee
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Jun Ma
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong-Yun Sun
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q, Ma R. Fatigue-resistant and super-tough thermocells. Nat Commun 2025; 16:1963. [PMID: 40000631 PMCID: PMC11861941 DOI: 10.1038/s41467-025-57233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Wearable thermocells offer a sustainable energy solution for wearable electronics but are hindered by poor fatigue resistance, low fracture energy, and thermal inefficiencies. In this study, we present a high-strength, fatigue-resistant thermocell with enhanced thermoelectric performance through solvent exchange-assisted annealing and chaotropic effect-enhanced thermoelectric properties. The mechanical strength and toughness are improved by forming macromolecular crystal domains and entangling polymer chains. Guanidine ions, with strong chaotropic properties, optimize the solvation layer of redox ion couple, boosting thermoelectric efficiency. Compared to existing anti-fatigue thermocells, the current design exhibits a 20-fold increase in mechanical toughness (368 kJ m-2) and a 3-fold increase in Seebeck coefficient (5.4 mV K-1). With an ultimate tensile strength of 12 MPa, a fatigue threshold of 4.1 kJ m-2, and a specific output power density of 714 μW m-2 K-2, this thermocell outperforms existing designs, enabling more reliable and efficient wearable electronics and stretchable devices.
Collapse
Affiliation(s)
- Lili Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| | - Peijia Bai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Yanjie Fang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Jiaqi Guo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Qi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Zhao XH, Deng YF, Xi J, Huang JQ, Zhang YZ. Supramolecular Spring-Like Fe(II) Spin-Crossover Complexes Experiencing Giant and Anisotropic Thermal Expansion Across Two Distinct Temperature Regimes. Angew Chem Int Ed Engl 2025; 64:e202414826. [PMID: 39503272 DOI: 10.1002/anie.202414826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 11/21/2024]
Abstract
Dynamic molecules with tunable chemical and physical properties in response to external stimuli hold great potential for applications in various fields such as information storage, smart molecular machines, and biomimetics. Among them, supramolecular springs and spin-crossover (SCO) complexes can both undergo visible macroscopic changes under heat or light stimulation. In this study, we synthesized a unique trinuclear Fe(II)-SCO complex, [(R-L)FeII{Au(CN)2}2] (R 1), using a chiral chelating ligand decorated with rotatable benzyl rings. The [FeAu2] trinuclear molecules form a 21-helical supramolecular chain via elastic Au ⋯ ${\cdots }$ Au contacts. Interestingly, the synergy between the multiple dynamic factors (SCO event, rotation of the rings, and flexibility in Au ⋯ ${\cdots }$ Au distance) endows the complex with multiple switchings in both magnetism and structure, as well as the most intriguing characteristic of giant and anisotropic "breathing" feature in thermal expansion within two distinct temperature regimes. Specifically, complex R 1 undergoes two hysteretic magnetic transitions: a non-spin transition between 360 and 380 K and an unsymmetric SCO transition in the region of 160-280 K, associated with a symmetry-breaking event between the non-polar and polar space groups (P212121↔P21). Both transitions are triggered/accompanied by the rotation (inward vs. outward) of the benzyl rings. Correspondingly, reversible spring-like motions of the helical chains with the helical pitches varying from 11.345140 K to 12.509280 K then back to 11.630380 K Å are observed in the two distinct temperature regimes. This work demonstrates a significant success in incorporating both SCO and spring-like motion in one system, paving the way for designing multifunctional dynamic materials for future devices.
Collapse
Affiliation(s)
- Xin-Hua Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jing Xi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jia-Quan Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
17
|
Wei C, Yu S, Wei Y, Yang W, Zhu S, Yang W, Huang J, Lu H, Zhu J. All-solid Conductive Elastomers Bridging Mechanical Performance and Sustainability for Durable and Multifunctional Electronics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8117-8126. [PMID: 39862164 DOI: 10.1021/acsami.4c21865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance. The elastomer exhibits remarkable tensile strength (6.69 MPa) and ultrahigh toughness (275.7 MJ/m3), capable of lifting loads 8300 times its own weight and demonstrated notch-insensitive properties. The elastomer also possessed degradable and stepwise recyclable properties, supporting its sustainability. Its excellent mechanical performance and conductivity enable stable signal output for multifunctional electronics. A wearable strain sensor is developed, demonstrating high sensitivity (gauge factor up to 4.52) and reliable repeatability under strain. Furthermore, a durable triboelectric nanogenerator is also fabricated, delivering stable signal output over one month and demonstrating strong potential for tactile sensing across various contact materials, making it highly promising for future human-machine interaction applications. This work offers feasible strategy for the design of solid elastomer-based durable electronics and highlights the potential for multifunctional applications.
Collapse
Affiliation(s)
- Chunxiang Wei
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, P. R. China
| | - Shaoyu Yu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, P. R. China
| | - Yuanyuan Wei
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Wenjie Yang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, P. R. China
| | - SanE Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, P. R. China
| | - Wei Yang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, P. R. China
| | - Junjun Huang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, P. R. China
| | - Hongdian Lu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, P. R. China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, P. R.China
| |
Collapse
|
18
|
Yan Y, Deng W, Xie D, Hu J. Silk Fibroin Hydrogel for Pulse Waveform Precise and Continuous Perception. Adv Healthc Mater 2025; 14:e2403637. [PMID: 39707661 DOI: 10.1002/adhm.202403637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Indexed: 12/23/2024]
Abstract
Precise and continuous monitoring of blood pressure and cardiac function is of great importance for early diagnosis and timely treatment of cardiovascular diseases. The common tests rely on on-site diagnosis and bulky equipments, hindering early diagnosis. The emerging hydrogels have gained considerable attention in skin bioelectronics by virtue of the similarities to biological tissues and versatility in mechanical, electrical, and biofunctional engineering. However, hydrogels should overcome intrinsic issues such as poor mechanical strength, easy dehydration and freezing, weak adhesiveness and self-recovery, severely limiting their precision and reliability in practical applications. Here, silk fibroin hydrogels are developed as resistive sensors for pulse waveform monitoring. The silk fibroin hydrogel is simultaneously transparent, extremely stretchable, extra tough, adhesive, printable, and environmentally endurable. The silk fibroin hydrogel is also conductive with high sensitivity, short self-healing time, highly repeatable and reliable response, meeting the requirements for wearable sensors for continuous monitoring. The sensors with silk fibroin hydrogel present high-quality and stable waveforms of radical and brachial pulses with high precision and rich features, providing physiological signals of blood pressure and cardiac function. The sensors are promising for personalized health management, daily monitoring and timely diagnosis.
Collapse
Affiliation(s)
- Yingmei Yan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Du Xie
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
19
|
Sun S, Hao S, Liu Y, Sun S, Xu Y, Jiang M, Shao C, Wen J, Sun R. Mechanically Resilient, Self-Healing, and Environmentally Adaptable Eutectogel-Based Triboelectric Nanogenerators for All-Weather Energy Harvesting and Human-Machine Interaction. ACS NANO 2025; 19:811-825. [PMID: 39700480 DOI: 10.1021/acsnano.4c12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Triboelectric nanogenerators (TENGs) have garnered significant attention for mechanical energy harvesting, self-powered sensing, and human-machine interaction. However, their performance is often constrained by materials that lack sufficient mechanical robustness, self-healing capability, and adaptability to environmental extremes. Eutectogels, with their inherent ionic conductivity, thermal stability, and sustainability, offer an appealing alternative as flexible TENG electrodes, yet they typically suffer from weak damage endurance and insufficient self-healing capability. To overcome these challenges, here, we introduce an internal-external dual reinforcement strategy (IEDRS) that enhances internal bonding dynamics within the eutectogel matrix, composed of glycidyl methacrylate and deep eutectic solvent, and integrates plant-derived lignin as an external reinforcer. Notably, the resultant eutectogel, named GLCL, exhibits appealing collection merits including superior mechanical robustness (1.53 MPa tensile stress and 1.85 MJ/m3 toughness), ultrastrong adhesion (4.76 MPa), high self-healing efficiency (84.7%), and significant environmental adaptability (-40 to 100 °C). These improvements ensure that the assembled triboelectric nanogenerator (GLCL-TENG) produces stable and robust electrical outputs, maintained even under dynamic and postdamage conditions. Additionally, the GLCL-TENG exhibits significant extreme environmental tolerance and durability, maintaining high and consistent electrical outputs over a wide temperature range (-40 to 100 °C) and throughout 10,000 cycles of repeated contact-separation. Leveraging these robust performances, the GLCL-TENG excels in all-weather biomechanical energy harvesting and accurate individual motion detection and functions as a self-powered interface for wireless vehicular control. This work presents a viable material design strategy for developing tough and self-healing eutectogel electrodes, emphasizing the potential application of TENGs in all-weather smart vehicles.
Collapse
Affiliation(s)
- Shaochao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P. R. China
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| | - Sanwei Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P. R. China
| | - Yongquan Liu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| | - Shaofei Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| | - Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P. R. China
| | - Ming Jiang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei230601, P. R. China
| | - Changyou Shao
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P. R. China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| |
Collapse
|
20
|
Lyu X, Zhang H, Shen S, Gong Y, Zhou P, Zou Z. Multi-Modal Sensing Ionogels with Tunable Mechanical Properties and Environmental Stability for Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410572. [PMID: 39292213 DOI: 10.1002/adma.202410572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ionogels have garnered significant interest due to their great potential in flexible iontronic devices. However, their limited mechanical tunability and environmental intolerance have posed significant challenges for their integration into next-generation flexible electronics in different scenarios. Herein, the synergistic effect of cation-oxygen coordination interaction and hydrogen bonding is leveraged to construct a 3D supramolecular network, resulting in ionogels with tunable modulus, stretchability, and strength, achieving an unprecedented elongation at break of 10 800%. Moreover, the supramolecular network endows the ionogels with extremely high fracture energy, crack insensitivity, and high elasticity. Meanwhile, the high environmental stability and hydrophobic network of the ionogels further shield them from the unfavorable effects of temperature variations and water molecules, enabling them to operate within a broad temperature range and exhibit robust underwater adhesion. Then, the ionogel is assembled into a wearable sensor, demonstrating its great potential in flexible sensing (temperature, pressure, and strain) and underwater signal transmission. This work can inspire the applications of ionogels in multifunctional sensing and wearable fields.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Haoqi Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shengtao Shen
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yue Gong
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
21
|
Sun B, Liu K, Wu B, Sun S, Wu P. Low-Hysteresis and Tough Ionogels via Low-Energy-Dissipating Cross-Linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408826. [PMID: 39210639 DOI: 10.1002/adma.202408826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Low-hysteresis merits can help polymeric gel materials survive from consecutive loading cycles and promote life span in many burgeoning areas. However, it is a big challenge to design low-hysteresis and tough polymeric gel materials, especially for ionogels. This can be attributed to the fact that higher viscosities of ionic liquids (ILs) would increase chain friction of polymeric gels and eventually dissipate large amounts of energy under deformation. Herein, a chemical design of ionogels is proposed to achieve low-hysteresis characteristics in both mechanical and electric aspects via hierarchical aggregates formed by supramolecular self-assembly of quadruple H-bonds in a soft IL-rich polymeric matrix. These self-assembled nanoaggregates not only can greatly reinforce the polymeric matrix and enhance resilience, but also exhibit low-energy-dissipating features under stress conditions, simultaneously benefiting for low-hysteresis properties. These aggregates can also promote toughness and subsequent anti-fatigue properties in response to external cyclic mechanical stimuli. More importantly, these ionogels are presented as a model system to elucidate the underlying mechanism of the low hysteresis and fatigue resistance. Based on these findings, it is further demonstrated that the supramolecular low-hysteresis strategy is universal.
Collapse
Affiliation(s)
- Bin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, Center for Advanced Low-dimension Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Kai Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, Center for Advanced Low-dimension Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, Center for Advanced Low-dimension Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, Center for Advanced Low-dimension Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
22
|
Mercadal P, González A, Beloqui A, Tomé LC, Mecerreyes D, Calderón M, Picchio ML. Eutectogels: The Multifaceted Soft Ionic Materials of Tomorrow. JACS AU 2024; 4:3744-3758. [PMID: 39483226 PMCID: PMC11522931 DOI: 10.1021/jacsau.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Eutectogels, a rising category of soft materials, have recently garnered significant attention owing to their remarkable potential in various domains. This innovative class of materials consists of a eutectic solvent immobilized in a three-dimensional network structure. The use of eco-friendly and cost-effective eutectic solvents further emphasizes the appeal of these materials in multiple applications. Eutectogels exhibit key characteristics of most eutectic solvents, including environmental friendliness, facile preparation, low vapor pressure, and good ionic conductivity. Moreover, they can be tailored to display functionalities such as self-healing capability, adhesiveness, and antibacterial properties, which are facilitated by incorporating specific combinations of the eutectic mixture constituents. This perspective article delves into the current landscape and challenges associated with eutectogels, particularly focusing on their potential applications in CO2 separation, drug delivery systems, battery technologies, biocatalysis, and food packaging. By exploring these diverse realms, we aim to shed light on the transformative capabilities of eutectogels and the opportunities they present to address pressing industrial, academic, and environmental challenges.
Collapse
Affiliation(s)
- Pablo
A. Mercadal
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), Córdoba 5000, Argentina
- Facultad
de Ciencias Agropecuarias, Departamento de Recursos Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Agustín González
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), Córdoba 5000, Argentina
| | - Ana Beloqui
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Liliana C. Tomé
- CEMMPRE,
ARISE, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - David Mecerreyes
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Matias L. Picchio
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
23
|
Zhang Z, Qian L, Zhang B, Ma C, Zhang G. Jellyfish-Inspired Polyurea Ionogel with Mechanical Robustness, Self-Healing, and Fluorescence Enabled by Hyperbranched Cluster Aggregates. Angew Chem Int Ed Engl 2024; 63:e202410335. [PMID: 38967098 DOI: 10.1002/anie.202410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Ionogels are promising for soft iontronics, with their network structure playing a pivotal role in determining their performance and potential applications. However, simultaneously achieving mechanical toughness, low hysteresis, self-healing, and fluorescence using existing network structures is challenging. Drawing inspiration from jellyfish, we propose a novel hierarchical crosslinking network structure design for in situ formation of hyperbranched cluster aggregates (HCA) to fabricate polyurea ionogels to overcome these challenges. Leveraging the disparate reactivity of isocyanate groups, we induce the in situ formation of HCA through competing reactions, enhancing toughness and imparting the clustering-triggered emission of ionogel. This synergy between supramolecular interactions in the network and plasticizing effect in ionic liquid leads to reduced hysteresis of the ionogel. Furthermore, the incorporation of NCO-terminated prepolymer with dynamic oxime-urethane bonds (NPU) enables self-healing and enhances stretchability. Our investigations highlight the significant influence of HCA on ionogel performance, showcasing mechanical robustness including high strength (3.5 MPa), exceptional toughness (5.5 MJ m-3), resistance to puncture, and low hysteresis, self-healing, as well as fluorescence, surpassing conventional dynamic crosslinking approaches. This network design strategy is versatile and can meet the various demands of flexible electronics applications.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lu Qian
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
24
|
Luo T, Guo X, Qi J, Yu J, Lu C, Wang C, Chu F, Wang J. Fabrication of liquid-free ionic conductive elastomer (ICE) from cellulose-rosin derived poly(esterimide) towards temperature-tolerant and solvent-resistant UV shadowless adhesive and sensor. Int J Biol Macromol 2024; 278:134921. [PMID: 39173788 DOI: 10.1016/j.ijbiomac.2024.134921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Recently, the utilization of the cellulose to fabricate the multifunctional materials with aim to replace the petroleum-based product, is receiving significant attentions. However, the development of cellulose-based multifunctional materials with high mechanical strength and temperature resistance is still a challenge. Herein, the intrinsic feature and property of cellulose and rosin were creatively employed to fabricate a novel cellulose-rosin based poly(esterimide) (PEI) by esterification reaction and imidization reaction, and the obtained cellulose-rosin derived PEI exhibits superior thermal stability. Then the as-prepared cellulose-rosin derived PEI was dissolved in polymerizable deep eutectic solvents (PDES) and in-situ formed the ionic conductive elastomer (ICE) with via UV-induced polymerization. These cellulose-rosin based ICE exhibited excellent mechanical properties, solvent resistance, and temperature tolerance. By adjusting the mass ratio of cellulose-rosin derived PEI and PDES, the as-prepared liquid-free ICE functions as UV shadowless adhesive and wearable sensors. The bonding strength of UV shadowless adhesive could 1.52 MPa, which could be applied to fix the broken glass toy models. Furthermore, wearable sensors based those ICE could monitor the large and subtle movements even under extreme environmental condition, such as being soaked in organic solvent (such as tetrahydrofuran) or at low/high temperature (-25 °C or 80 °C). This work opens a new avenue for the next-generation of multifunctional ICE.
Collapse
Affiliation(s)
- Tong Luo
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory of Biomass Chemical Utilization, Key and Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Xiaoliang Guo
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory of Biomass Chemical Utilization, Key and Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Ji Qi
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory of Biomass Chemical Utilization, Key and Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Juan Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chuanwei Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory of Biomass Chemical Utilization, Key and Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory of Biomass Chemical Utilization, Key and Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jifu Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory of Biomass Chemical Utilization, Key and Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
25
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
26
|
Arjunan KK, Weng CY, Sheng YJ, Tsao HK. Formation of Self-Healing Granular Eutectogels through Jammed Carbopol Microgels in Supercooled Deep Eutectic Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17081-17089. [PMID: 39078642 PMCID: PMC11325637 DOI: 10.1021/acs.langmuir.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Typically, gel-like materials consist of a polymer network structure in a solvent. In this work, a gel-like material is developed in a deep eutectic solvent (DES) without the presence of a polymer network, achieved simply by adding microgels. The DES is composed of choline chloride and citric acid and remains stably in a supercooled state at room temperature, exhibiting Newtonian fluid behavior with high viscosity. When the microgel (Carbopol) concentration exceeds 2 wt %, the DES undergoes a transition from a liquid to a soft gel state, characterized as a granular eutectogel. The soft gel characteristics of eutectogels exhibit a yield stress, and their storage moduli exceed the loss moduli. The yield stress and storage moduli are observed to increase with increasing microgel concentration. In contrast, the ion conductivity decreases with increasing microgel concentration but eventually levels off. Because the eutectogel can dissolve completely in excess water, it is a physical gel-like material, attributed to the densely packed structure of microgels in the supercooled DES. Due to the absence of networks, the granular eutectogel has the capability to self-heal simply by being pushed together after being cut into two pieces.
Collapse
Affiliation(s)
- Karthi Keyan Arjunan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Yun Weng
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
27
|
Xu H, Li H, Zhang Y, Guan Y, Zhang Y. Strong and Thermo-Switchable Gel Adhesion Based on UCST-Type Phase Transition in Deep Eutectic Solvent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400938. [PMID: 38885493 PMCID: PMC11336952 DOI: 10.1002/advs.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Indexed: 06/20/2024]
Abstract
It remains a great challenge to achieve strong and reversible hydrogel adhesion. Hydrogel adhesives also suffer from poor environmental stability due to dehydration. To overcome these problems, here reversible adhesive gels are designed using a new switching mechanism and new solvent. For the first time, the study observes UCST (upper critical solution temperature)-type thermosensitive behaviors of poly(benzyl acrylate) (PBnA) polymer and gel in menthol:thymol deep eutectic solvents (DESs). The temperature-induced phase transition allows adjusting cohesive force, and hence adhesion strength of PBnA gels by temperature. To further improve the mechanical and adhesion properties, a peptide crosslinker is used to allow energy dissipation when deforming. The resulting eutectogel exhibits thermal reversible adhesion with a high switching ratio of 14.0. The adhesion strength at attachment state reaches 0.627 MPa, which is much higher than most reversible adhesive hydrogels reported before. The low vapor pressure of DES endows the gel excellent environmental stability. More importantly, the gel can be repeatedly switched between attachment and detachment states. The strong and reversible gel adhesive is successfully used to design soft gripper for the transport of heavy cargos and climbing robot capable of moving on vertical and inverted surface in a manner similar to gecko.
Collapse
Affiliation(s)
- Huiyao Xu
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Haocheng Li
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Yan Zhang
- School of Pharmaceutical SciencesTiangong UniversityTianjin300387China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Yongjun Zhang
- School of Pharmaceutical SciencesTiangong UniversityTianjin300387China
- Cangzhou Institute of Tiangong UniversityCangzhou061000China
| |
Collapse
|
28
|
Wu X, Li M, Li H, Gao H, Wang Z, Wang Z. Autonomous Underwater Self-Healable Adhesive Elastomers Enabled by Dynamical Hydrophobic Phase-Separated Microdomains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311131. [PMID: 38644339 DOI: 10.1002/smll.202311131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Indexed: 04/23/2024]
Abstract
High-efficient underwater self-healing materials with reliable mechanical attributes hold great promise for applications in ocean explorations and diverse underwater operations. Nevertheless, achieving these functions in aquatic environments is challenging because the recombination of dynamic interactions will suffer from resistance to interfacial water molecules. Herein, an ultra-robust and all-environment stable self-healable polyurethane-amide supramolecular elastomer is developed through rational engineering of hydrophobic domains and multistrength hydrogen bonding interactions to provide mechanical and healing compatibility as well as efficient suppression of water ingress. The coupling of hydrophobic chains and hierarchical hydrogen bonds within a multiphase matrix self-assemble to generate dynamical hydrophobic hard-phase microdomains, which synergistically realize high stretchability (1601%), extreme toughness (87.1 MJ m-3), and outstanding capability to autonomous self-healing in various harsh aqueous conditions with an efficiency of 58% and healed strength of 12.7 MPa underwater. Furthermore, the self-aggregation of hydrophobic clusters with sufficient dynamic interactions endows the resultant elastomer with effective instantaneous adhesion (6.2 MPa, 941.9 N m-1) in extremely harsh aqueous conditions. It is revealed that the dynamical hydrophobic hard-phase microdomain composed of hydrophobic barriers and cooperative reversible interactions allows for regulating its mechanical enhancement and underwater self-healing efficiency, enabling the elastomers as intelligent sealing devices in marine applications.
Collapse
Affiliation(s)
- Xiankun Wu
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Min Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Haonan Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Huihui Gao
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhong Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
29
|
Sanchez-Fernandez A, Poon JF, Leung AE, Prévost SF, Dicko C. Stabilization of Non-Native Folds and Programmable Protein Gelation in Compositionally Designed Deep Eutectic Solvents. ACS NANO 2024; 18:18314-18326. [PMID: 38949563 PMCID: PMC11256765 DOI: 10.1021/acsnano.4c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Proteins are adjustable units from which biomaterials with designed properties can be developed. However, non-native folded states with controlled topologies are hardly accessible in aqueous environments, limiting their prospects as building blocks. Here, we demonstrate the ability of a series of anhydrous deep eutectic solvents (DESs) to precisely control the conformational landscape of proteins. We reveal that systematic variations in the chemical composition of binary and ternary DESs dictate the stabilization of a wide range of conformations, that is, compact globular folds, intermediate folding states, or unfolded chains, as well as controlling their collective behavior. Besides, different conformational states can be visited by simply adjusting the composition of ternary DESs, allowing for the refolding of unfolded states and vice versa. Notably, we show that these intermediates can trigger the formation of supramolecular gels, also known as eutectogels, where their mechanical properties correlate to the folding state of the protein. Given the inherent vulnerability of proteins outside the native fold in aqueous environments, our findings highlight DESs as tailorable solvents capable of stabilizing various non-native conformations on demand through solvent design.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Center
for Research in Biological Chemistry and Molecular Materials (CiQUS),
Department of Chemical Engineering, Universidade
de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Jia-Fei Poon
- European
Spallation Source, Lund University, Lund SE-22100, Sweden
| | | | | | - Cedric Dicko
- Pure
and Applied Biochemistry, Department of Chemistry, Lund University, Lund SE-22100, Sweden
- Lund
Institute of Advanced Neutron and X-ray Science, Lund SE-22370, Sweden
| |
Collapse
|
30
|
Zhong D, Wang Z, Xu J, Liu J, Xiao R, Qu S, Yang W. A strategy for tough and fatigue-resistant hydrogels via loose cross-linking and dense dehydration-induced entanglements. Nat Commun 2024; 15:5896. [PMID: 39003311 PMCID: PMC11246433 DOI: 10.1038/s41467-024-50364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Outstanding overall mechanical properties are essential for the successful utilization of hydrogels in advanced applications such as human-machine interfaces and soft robotics. However, conventional hydrogels suffer from fracture toughness-stiffness conflict and fatigue threshold-stiffness conflict, limiting their applicability. Simultaneously enhancing the fracture toughness, fatigue threshold, and stiffness of hydrogels, especially within a homogeneous single network structure, has proven to be a formidable challenge. In this work, we overcome this challenge through the design of a loosely cross-linked hydrogel with slight dehydration. Experimental results reveal that the slightly-dehydrated, loosely cross-linked polyacrylamide hydrogel, with an original/current water content of 87%/70%, exhibits improved mechanical properties, which is primarily attributed to the synergy between the long-chain structure and the dense dehydration-induced entanglements. Importantly, the creation of these microstructures does not require intricate design or processing. This simple approach holds significant potential for hydrogel applications where excellent anti-fracture and fatigue-resistant properties are necessary.
Collapse
Affiliation(s)
- Danming Zhong
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zhicheng Wang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Junwei Xu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Junjie Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Wei Yang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
31
|
Qin J, Wang Y, Wang T, Wang N, Xu W, Cheng L, Yu W, Yan X, Gao L, Zheng B, Wu B. Anion-Coordination Foldamer-Based Polymer Network: from Molecular Spring to Elastomer. Angew Chem Int Ed Engl 2024; 63:e202400989. [PMID: 38623921 DOI: 10.1002/anie.202400989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligo(urea) ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer networks shows a dramatic increase from P-L2UCl (non-folding), to P-L4UCl (a full turn), and then to P-L6UCl (1.5 turns), in terms of strength (2.62 MPa; 14.26 MPa; 22.93 MPa), elongation at break (70 %; 325 %; 352 %), Young's modulus (2.69 MPa; 63.61 MPa; 141.50 MPa), and toughness (1.12 MJ/m3; 21.39 MJ/m3; 49.62 MJ/m3), respectively, which is also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented.
Collapse
Affiliation(s)
- Jiangping Qin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Tian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Na Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China
| |
Collapse
|
32
|
Wang Y, Geng Q, Lyu H, Sun W, Fan X, Ma K, Wu K, Wang J, Wang Y, Mei D, Guo C, Xiu P, Pan D, Tao K. Bioinspired Flexible Hydrogelation with Programmable Properties for Tactile Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401678. [PMID: 38678380 DOI: 10.1002/adma.202401678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Tactile sensing requires integrated detection platforms with distributed and highly sensitive haptic sensing capabilities along with biocompatibility, aiming to replicate the physiological functions of the human skin and empower industrial robotic and prosthetic wearers to detect tactile information. In this regard, short peptide-based self-assembled hydrogels show promising potential to act as bioinspired supramolecular substrates for developing tactile sensors showing biocompatibility and biodegradability. However, the intrinsic difficulty to modulate the mechanical properties severely restricts their extensive employment. Herein, by controlling the self-assembly of 9-fluorenylmethoxycarbonyl-modifid diphenylalanine (Fmoc-FF) through introduction of polyethylene glycol diacrylate (PEGDA), wider nanoribbons are achieved by untwisting from well-established thinner nanofibers, and the mechanical properties of the supramolecular hydrogels can be enhanced 10-fold, supplying bioinspired supramolecular encapsulating substrate for tactile sensing. Furthermore, by doping with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and 9-fluorenylmethoxycarbonyl-modifid 3,4-dihydroxy-l-phenylalanine (Fmoc-DOPA), the Fmoc-FF self-assembled hydrogels can be engineered to be conductive and adhesive, providing bioinspired sensing units and adhesive layer for tactile sensing applications. Therefore, the integration of these modules results in peptide hydrogelation-based tactile sensors, showing high sensitivity and sustainable responses with intrinsic biocompatibility and biodegradability. The findings establish the feasibility of developing programmable peptide self-assembly with adjustable features for tactile sensing applications.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Hao Lyu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Wuxuepeng Sun
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Kang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Kai Wu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Jinhe Wang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dingyi Pan
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| |
Collapse
|
33
|
Sun X, Mao Y, Yu Z, Yang P, Jiang F. A Biomimetic "Salting Out-Alignment-Locking" Tactic to Design Strong and Tough Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400084. [PMID: 38517475 DOI: 10.1002/adma.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Recently, hydrogel-based soft materials have demonstrated huge potential in soft robotics, flexible electronics as well as artificial skins. Although various methods are developed to prepare tough and strong hydrogels, it is still challenging to simultaneously enhance the strength and toughness of hydrogels, especially for protein-based hydrogels. Herein, a biomimetic "salting out-alignment-locking" tactic (SALT) is introduced for enhancing mechanical properties through the synergy of alignment and the salting out effect. As a typical example, tensile strength and modulus of initially brittle gelatin hydrogels increase 940 folds to 10.12 ± 0.50 MPa and 2830 folds to 34.26 ± 3.94 MPa, respectively, and the toughness increases up to 1785 folds to 14.28 ± 3.13 MJ m-3. The obtained strength and toughness hold records for the previously reported gelatin-based hydrogel and are close to the tendons. It is further elucidated that the salting out effect engenders hydrophobic domains, while prestretching facilitates chain alignment, both synergistically contributing to the outstanding mechanical properties. It is noteworthy that the SALT demonstrates remarkable versatility across different salt types and polymer systems, thus opening up new avenues for engineering strong, tough, and stiff hydrogels.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, MD, 20742, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
34
|
Li T, Yao R, Ma Z, Tong R, Wang Y, Gu P, Xu J, Ye H, Liu L. A universal solvent-replacement strategy to convert alginate hydrogels into mechanically strong and transparent alginate eutectogels for sensitive strain sensors. Int J Biol Macromol 2024; 271:132789. [PMID: 38845258 DOI: 10.1016/j.ijbiomac.2024.132789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Eutectogels based on natural polymers have attracted significant attention as an alternative to easily dehydrated hydrogels and expensive ionogels in the development of flexible strain sensors. The feasibility of employing eutectogels derived from pure natural polymers could be greatly enhanced if their mechanical properties satisfy the requirements of applications. Herein, alginate eutectogels (AEs) with high mechanical properties (tensile strain 217 % and strength 2.26 MPa at fracture), and excellent transparency (over 90 %) are acquired via CaCl2 inducing ionic crosslinking and subsequent deep eutectic solvents (DESs, composed of glycerol and choline chloride) initiating physical crosslinking with a universal solvent- replacement strategy. Among them, sodium alginate, a natural polysaccharide polymer, is selected as representative supporting scaffolds and forms water-insoluble alginate hydrogels (AHs) in CaCl2 coagulation bath. The exchange of DESs with water of AHs not only restrengthens the polymer network by physical crosslinking, but also endows the obtained AEs with long-term solvent retention and high temperature resistance. In addition, the AEs not only have high reliability but also exhibit better linear sensitivity in a wide strain range (0-200 %). In particular, the AEs display multiple sensitivity to stretching, bending, and human motions, demonstrating feasibility as sensitive strain sensors.
Collapse
Affiliation(s)
- Tengfei Li
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Rui Yao
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Zhihui Ma
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Ruiping Tong
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| | - Yifu Wang
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Ping Gu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Junfei Xu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| | - Huan Ye
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Linfeng Liu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
35
|
Ye H, Wu B, Sun S, Wu P. A Solid-Liquid Bicontinuous Fiber with Strain-Insensitive Ionic Conduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402501. [PMID: 38562038 DOI: 10.1002/adma.202402501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Stretchable ionic conductors are crucial for enabling advanced iontronic devices to operate under diverse deformation conditions. However, when employed as interconnects, existing ionic conductors struggle to maintain stable ionic conduction under strain, hindering high-fidelity signal transmission. Here, it is shown that strain-insensitive ionic conduction can be achieved by creating a solid-liquid bicontinuous microstructure. A bicontinuous fiber from polymerization-induced phase separation, which contains a solid elastomer phase interpenetrated by a liquid ion-conducting phase, is fabricated. The spontaneous partitioning of dissolved salts leads to the formation of a robust self-wrinkled interface, fostering the development of highly tortuous ionic channels. Upon stretch, these meandering ionic channels are straightened, effectively enhancing ionic conductivity to counteract the strain effect. Remarkably, the fiber retains highly stable ionic conduction till fracture, with only 7% resistance increase at 200% strain. This approach presents a promising avenue for designing durable ionic cables capable of signal transmission with minimal strain-induced distortion.
Collapse
Affiliation(s)
- Huating Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
36
|
Wu S, Liu Z, Gong C, Li W, Xu S, Wen R, Feng W, Qiu Z, Yan Y. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties. Nat Commun 2024; 15:4441. [PMID: 38789409 PMCID: PMC11126733 DOI: 10.1038/s41467-024-48745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Ideal hydrogel fibers with high toughness and environmental tolerance are indispensable for their long-term application in flexible electronics as actuating and sensing elements. However, current hydrogel fibers exhibit poor mechanical properties and environmental instability due to their intrinsically weak molecular (chain) interactions. Inspired by the multilevel adjustment of spider silk network structure by ions, bionic hydrogel fibers with elaborated ionic crosslinking and crystalline domains are constructed. Bionic hydrogel fibers show a toughness of 162.25 ± 21.99 megajoules per cubic meter, comparable to that of spider silks. The demonstrated bionic structural engineering strategy can be generalized to other polymers and inorganic salts for fabricating hydrogel fibers with broadly tunable mechanical properties. In addition, the introduction of inorganic salt/glycerol/water ternary solvent during constructing bionic structures endows hydrogel fibers with anti-freezing, water retention, and self-regeneration properties. This work provides ideas to fabricate hydrogel fibers with high mechanical properties and stability for flexible electronics.
Collapse
Affiliation(s)
- Shaoji Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Zhao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Caihong Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Wanjiang Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Sijia Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Rui Wen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Wen Feng
- Guangdong Medical Products Administration Key Laboratory for Quality Research and Evaluation of Medical Textile Products, Guangzhou, 511447, PR China.
| | - Zhiming Qiu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
- Key Lab of Guangdong High Property & Functional Polymer Materials, Guangzhou, 510640, PR China.
| |
Collapse
|
37
|
Yang C, Ji C, Guo F, Mi H, Wang Y, Qiu J. Wireless Sensor System Based on Organohydrogel Ionic Skin for Physiological Activity Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38698676 DOI: 10.1021/acsami.3c19473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Supermolecular hydrogel ionic skin (i-skin) linked with smartphones has attracted widespread attention in physiological activity detection due to its good stability in complex scenarios. However, the low ionic conductivity, inferior mechanical properties, poor contact adhesion, and insufficient freeze resistance of most used hydrogels limit their practical application in flexible electronics. Herein, a novel multifunctional poly(vinyl alcohol)-based conductive organohydrogel (PCEL5.0%) with a supermolecular structure was constructed by innovatively employing sodium carboxymethyl cellulose (CMC-Na) as reinforcement material, ethylene glycol as antifreeze, and lithium chloride as a water retaining agent. Thanks to the synergistic effect of these components, the PCEL5.0% organohydrogel shows excellent performance in terms of ionic conductivity (1.61 S m-1), mechanical properties (tensile strength of 70.38 kPa and elongation at break of 537.84%), interfacial adhesion (1.06 kPa to pig skin), frost resistance (-50.4 °C), water retention (67.1% at 22% relative humidity), and remoldability. The resultant PCEL5.0%-based i-skin delivers satisfactory sensitivity (GF = 1.38) with fast response (348 ms) and high precision under different deformations and low temperature (-25 °C). Significantly, the wireless sensor system based on the PCEL5.0% organohydrogel i-skin can transmit signals from physiological activities and sign language to a smartphone by Bluetooth technology and dynamically displays the status of these movements. The organohydrogel i-skin shows great potential in diverse fields of physiological activity detection, human-computer interaction, and rehabilitation medicine.
Collapse
Affiliation(s)
- Congcong Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Fengjiao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Hongyu Mi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Yongwei Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
38
|
Zhang D, Li X, Li J, Wang Q, Dong X, Wu Y, Li Z, Xie X, Liu Z, Xiu F, Huang W, Liu J. Phase-Segregated Ductile Eutectogels with Ultrahigh Modulus and Toughness for Antidamaging Fabric Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306557. [PMID: 38063820 DOI: 10.1002/smll.202306557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/01/2023] [Indexed: 05/18/2024]
Abstract
Ionogels are extremely soft ionic materials that can undergo large deformation while maintaining their structural and functional integrity. Ductile ionogels can absorb energy and resist fracture under external load, making them an ideal candidate for wearable electronics, soft robotics, and protective gear. However, developing high-modulus ionogels with extreme toughness remains challenging. Here, a facile one-step photopolymerization approach to construct an acrylic acid (AA)-2-hydroxyethylacrylate (HEA)-choline chloride (ChCl) eutectogel (AHCE) with ultrahigh modulus and toughness is reported. With rich hydrogen bonding crosslinks and phase segregation, this gel has a 99.1 MPa Young's modulus and a 70.6 MJ m-3 toughness along with 511.4% elongation, which can lift 12 000 times its weight. These features provide extreme damage resistance and electrical healing ability, offering it a protective and strain-sensitive coating to innovate anticutting fabric with motion detection for human healthcare. The work provides an effective strategy to construct robust ionogel materials and smart wearable electronics for intelligent life.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Xiujuan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Junyue Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Qiye Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Xuemei Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Zifan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Xinyi Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Fei Xiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Pu Zhu Road, Nanjing, 211816, China
| |
Collapse
|
39
|
Yin A, Chen R, Yin R, Zhou S, Ye Y, Wang Y, Wang P, Qi X, Liu H, Liu J, Yu S, Wei J. An ultra-soft conductive elastomer for multifunctional tactile sensors with high range and sensitivity. MATERIALS HORIZONS 2024; 11:1975-1988. [PMID: 38353589 DOI: 10.1039/d3mh02074f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Flexible tactile sensors have become important as essential tools for facilitating human and object interactions. However, the materials utilized for the electrodes of capacitive tactile sensors often cannot simultaneously exhibit high conductivity, low modulus, and strong adhesiveness. This limitation restricts their application on flexible interfaces and results in device failure due to mechanical mismatch. Herein, we report an ultra-low modulus, highly conductive, and adhesive elastomer and utilize it to fabricate a microstructure-coupled multifunctional flexible tactile sensor. We prepare a supramolecular conductive composite film (SCCF) as the electrode of the tactile sensor using a supramolecular deep eutectic solvent, polyvinyl alcohol (PVA) solution, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and MXene suspension. We employ a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) film containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) as the dielectric layer to fabricate capacitive sensors with an electrical double layer structure. Furthermore, we enhance the performance of the device by incorporating coupled pyramid and dome microstructures, which endow the sensor with multi-directional force detection. Our SCCF exhibits extremely high conductivity (reaching 710 S cm-1), ultra-low modulus (0.8 MPa), and excellent interface adhesion strength (>120 J m-2). Additionally, due to the outstanding conductivity and unique structure of the SCCF, it possesses remarkable electromagnetic shielding ability (>50 dB). Moreover, our device demonstrates a high sensitivity of up to 1756 kPa-1 and a wide working range reaching 400 kPa, combining these attributes with the requirements of an ultra-soft human-machine interface to ensure optimal contact between the sensor and interface materials. This innovative and flexible tactile sensor holds great promise and potential for addressing various and complex demands of human-machine interaction.
Collapse
Affiliation(s)
- Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ruiguang Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Rui Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Ye
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuxin Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiang Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
40
|
Chen S, Chen X, Luo K, Yang W, Yan X, Liu L. Thermo-growing ion clusters enabled healing strengthening and tough adhesion for highly reliable skin electronics. MATERIALS HORIZONS 2024; 11:1923-1933. [PMID: 38343364 DOI: 10.1039/d3mh01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Self-healing and self-adhesion capacities are essential for many modern applications such as skin-interfaced electronics for improving longevity and reliability. However, the self-healing efficiency and adhesive toughness of most synthetic polymers are limited to their original network, making reliability under dynamic deformation still challenging. Herein, inspired by the growth of living organisms, a highly stretchable supramolecular elastomer based on thermo-responsive ion clusters and a dynamic polysulfide backbone was developed. Attributed to the synergic growth of ion clusters and dynamic exchange of disulfide bonds, the elastomer exhibited unique healing strengthening (healing efficiency >200%) and thermo-enhanced tough adhesion (interfacial toughness >500 J m-2) performances. To prove its practical application in highly reliable skin electronics, we further composited the elastomer with a zwitterion to prepare a highly conductive ionic elastomer and applied it in wearable strain sensing and long-term electrophysiological detection. This work provides a new avenue to realize high reliability in skin interfaced electronics.
Collapse
Affiliation(s)
- Song Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xinyu Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Kaiying Luo
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Wenwei Yang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Xueling Yan
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Lan Liu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| |
Collapse
|
41
|
Zhao C, Li X, Han X, Li Z, Bian S, Zeng W, Ding M, Liang J, Jiang Q, Zhou Z, Fan Y, Zhang X, Sun Y. Molecular co-assembled strategy tuning protein conformation for cartilage regeneration. Nat Commun 2024; 15:1488. [PMID: 38374253 PMCID: PMC10876949 DOI: 10.1038/s41467-024-45703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
The assembly of oligopeptide and polypeptide molecules can reconstruct various ordered advanced structures through intermolecular interactions to achieve protein-like biofunction. Here, we develop a "molecular velcro"-inspired peptide and gelatin co-assembly strategy, in which amphiphilic supramolecular tripeptides are attached to the molecular chain of gelatin methacryloyl via intra-/intermolecular interactions. We perform molecular docking and dynamics simulations to demonstrate the feasibility of this strategy and reveal the advanced structural transition of the co-assembled hydrogel, which brings more ordered β-sheet content and 10-fold or more compressive strength improvement. We conduct transcriptome analysis to reveal the role of co-assembled hydrogel in promoting cell proliferation and chondrogenic differentiation. Subcutaneous implantation evaluation confirms considerably reduced inflammatory responses and immunogenicity in comparison with type I collagen. We demonstrate that bone mesenchymal stem cells-laden co-assembled hydrogel can be stably fixed in rabbit knee joint defects by photocuring, which significantly facilitates hyaline cartilage regeneration after three months. This co-assembly strategy provides an approach for developing cartilage regenerative biomaterials.
Collapse
Affiliation(s)
- Chengkun Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xiaowen Han
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan, 621099, P. R. China
| | - Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Shaoquan Bian
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Weinan Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Zongke Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
42
|
Zheng S, Chen X, Shen K, Cheng Y, Ma L, Ming X. Hydrogen Bonds Reinforced Ionogels with High Sensitivity and Stable Autonomous Adhesion as Versatile Ionic Skins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4035-4044. [PMID: 38200632 DOI: 10.1021/acsami.3c16195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Flexible wearable sensors have demonstrated enormous potential in various fields such as human health monitoring, soft robotics, and motion detection. Among them, sensors based on ionogels have garnered significant attention due to their wide range of applications. However, the fabrication of ionogels with high sensitivity and stable autonomous adhesion remains a challenge, thereby limiting their potential applications. Herein, we present an advanced ionogel (PACG-MBAA) with exceptional performances based on multiple hydrogen bonds, which is fabricated through one-step radical polymerization of N-acryloylglycine (ACG) in 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES) in the presence of N,N'-methylenebis(acrylamide) (MBAA). Compared with the ionogel (PAA-MBAA) formed by polymerization of acrylic acid (AA) in EMIES, the resulting ionogel exhibits tunable mechanical strength (35-130 kPa) and Young's modulus comparable to human skin (60-70 kPa) owing to the multiple hydrogen bonds formation. Importantly, they demonstrate stable autonomous adhesion to various substrates and good self-healing capabilities. Furthermore, the ionogel-based sensor shows high sensitivity (with a gauge factor up to 6.16 in the tensile range of 300-700%), enabling the detection of both gross and subtle movements in daily human activities. By integration of the International Morse code, the ionogel-based sensor enables the encryption, decryption, and transmission of information, thus expanding its application prospects.
Collapse
Affiliation(s)
- Shuquan Zheng
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Xuelian Chen
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Ma
- College of Science, Chan'an University, Xi'an 710064, China
| | - Xiaoqing Ming
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
43
|
Lu C, Wang X, Jia Q, Xu S, Wang C, Du S, Wang J, Yong Q, Chu F. 3D printed mechanical robust cellulose derived liquid-free ionic conductive elastomer for multifunctional electronic devices. Carbohydr Polym 2024; 324:121496. [PMID: 37985087 DOI: 10.1016/j.carbpol.2023.121496] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Ionic gel-based wearable electronic devices with robust sensing performance have gained extensive attention. However, the development of mechanical robustness, high conductivity, and customizable bio-based ionic gel for multifunctional wearable sensors still is a challenge. Herein, we first report the preparation of 3D printed cellulose derived ionic conductive elastomers (ICEs) with high mechanical toughness, high conductivity, and excellent environment stability through one-step photo-polymerization of polymerizable deep eutectic solvents. In the ICEs, carboxylate cellulose nanocrystals (C-CNCs) were used as a bio-template for the in-situ polymerization of the aniline to avoid the aggregation of polyaniline and yield a high conductivity (58.7 mS/m). More importantly, the well-defined structural design combining multiple hydrogen bonds with strong coordination bonds endows the ICEs with extremely high mechanical strength (4.4 MPa), toughness (13.33 MJ*m-3), high elasticity and excellent environment stability. Given by these features, the ICE was utilized to assemble multifunctional strain, humidity, and temperature sensors for real-time and reliable detection the human motions, respiration, and body temperature. This work provides a promising strategy for designing the new generation of strong, tough bio-based ionic gel for multifunctional wearable electronic devices.
Collapse
Affiliation(s)
- Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, China
| | - Xinyu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shijian Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jifu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, China.
| |
Collapse
|
44
|
Zhang X, Liu S, Wang X, Peng J, Yang W, Ma Y, Fan K. Hydrophobic deep eutectic solvent-based eutectogels for underwater sensing. J Colloid Interface Sci 2024; 654:1348-1355. [PMID: 37913724 DOI: 10.1016/j.jcis.2023.10.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Eutectogels derived from deep eutectic solvents (DESs) exhibit great potential for the fabrication of flexible sensors. However, the hygroscopicity of eutectogels hinders their applications in underwater sensing. In this work, a hydrophobic eutectogel with exceptional long-term underwater stability is produced through one-step polymerization of lauryl methacrylate and glycidyl methacrylate in a hydrophobic DES. The hydrophobic gel network and hydrophobic DES fulfill the eutectogel with outstanding water resistance (water contact angle > 110°) and excellent mechanical properties in an aqueous environment, thus leading to extraordinary durability (over 1000 testing cycles). Additionally, based on this eutectogel, underwater strain and pressure sensors with high sensitivity, rapid responsiveness, and superior durability were fabricated for accurate real-time monitoring of human activity. Furthermore, it has been demonstrated that the eutectogel sensor can transmit information through Morse code, performing as a wearable underwater communicator. This research provides an exemplary way for a demonstration method of hydrophobic eutectogel for durable underwater applications.
Collapse
Affiliation(s)
- Xiaojing Zhang
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Sen Liu
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Xiaobo Wang
- Journal Editorial Department, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Jiwei Peng
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Wentong Yang
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Yongpeng Ma
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Kaiqi Fan
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| |
Collapse
|
45
|
Zhang Y, Luo Y, Gao S, Zou L, Guan Y, Zhang Y. Liquid crystalline composite hydrogels with large pH-triggered anisotropic swelling for embolotherapy. Acta Biomater 2024; 174:206-216. [PMID: 38101558 DOI: 10.1016/j.actbio.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Inspired by the anisotropic structure of biological tissues, anisotropic hydrogels have been developed using various nanofillers, however, it remains a big challenge to synthesize hydrogels with large swelling anisotropy. Herein a single molecule filler, α-helical polypeptide, instead of nanoscale fillers, was used to synthesize anisotropic hydrogels. First nematic liquid crystal of poly(γ-benzyl l-glutamate) (PBLG) was prepared by shearing and stabilized by embedding in a crosslinked polymer matrix. The resulting PBLG composite gels were then converted to poly(L-glutamic acid) (PLGA) composite gels by debenzylation. The rigid rod-like structure of α-helical PBLG chains makes them easy to be orientated. The pH-sensitivity of PLGA makes the resulting composite gels pH-sensitive without the need to couple with a stimuli-responsive hydrogel matrix. In response to pH change PLGA composite gels swell anisotropically with a much larger swelling degree in the radial direction than in the axial direction. The swelling anisotropy (3.43) is much higher than most anisotropic hydrogels, particularly the stimuli-responsive ones reported previously. The composite gel also exhibits anisotropic mechanical properties with a larger Young's modulus in the axial direction than that in the radial direction. Preliminary test demonstrated that the composite gels have potential in embolotherapy thanks to its large pH-triggered anisotropic swelling. STATEMENT OF SIGNIFICANCE: Anisotropic hydrogels have important biomedical applications. Introduction of oriented nanofillers has been demonstrated a popular and versatile method for their synthesis, however, it remains a big challenge to achieve large swelling anisotropy. Herein a single molecule filler, α-helical polypeptide, instead of nanoscale fillers, was used to synthesize anisotropic hydrogels. This filler can be easily oriented by shearing. More importantly, as single molecule filler, it can constrain the swelling of hydrogel matrix more effectively. Using this filler, a pH-sensitive hydrogel with large swelling anisotropy (3.43) was successfully synthesized. Thanks to its large pH-triggered anisotropic swelling the hydrogel was successfully used as embolic agent to occlude vessels.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Luo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Sijia Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Zou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Guan
- Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| |
Collapse
|
46
|
Sun Z, Hu Y, Wei W, Li Y, Zhang Q, Li K, Wang H, Hou C. Hyperstable Eutectic Core-Spun Fiber Enabled Wearable Energy Harvesting and Personal Thermal Management Fabric. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310102. [PMID: 37865832 DOI: 10.1002/adma.202310102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Electronic textiles have gradually evolved into one of the most important mainstays of flexible electronics owing to their good wearability. However, textile multifunctionality is generally achieved by stacking functional modules, which is not conducive to wearability. Integrating these modules into a single fiber provides a better solution. In this work, a core-spun functional fiber (CSF) constructed from hyper-environmentally stable Zn-based eutectogel as the core layer and polytetrafluoroethylene as the sheath is designed. The CSF achieves a synergistic output effect of piezoelectricity-enhanced triboelectricity, as well as reliable hydrophobicity, and high mid-infrared emissivity and visible light reflectivity. A monolayer functionalized integrated textile is woven from the CSF to enable effective energy (mechanical and droplet energy) harvesting and personal thermal management functions. Furthermore, scenarios for the energy supply, motion detection, and outdoor use of electronic fabrics for electronics applications are demonstrated, opening new avenues for the functional integration of electronic textiles.
Collapse
Affiliation(s)
- Zhouquan Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yunhao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
47
|
Chen H, Zheng C, Zhang F, Zhang Z, Zhang L. One-step synthesis of Janus hydrogel via heterogeneous distribution of sodium α-linoleate driven by surfactant self-aggregation. SCIENCE ADVANCES 2023; 9:eadj3186. [PMID: 37939195 PMCID: PMC10631740 DOI: 10.1126/sciadv.adj3186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Janus adhesive hydrogels have one-sided adhesive properties and hold promising applications in the health care field. However, a simple method for synthesizing Janus hydrogels is still lacking. In this study, we introduce an innovative method to prepare Janus hydrogels by harnessing a fundamental phenomenon: the self-aggregation of surfactants at high concentrations at the water-air interface. By combining a small amount [0.8 to 3.2 weight %, relative to mass of acrylamide (AM)] of sodium α-linoleate (LAS) with AM through free radical polymerization, we have synthesized Janus adhesive hydrogels. The Janus hydrogels exhibit remarkable adhesive strength and adhesive differences, with the top side (84 J m-2) being 21 times stronger than the bottom side, also an excellent elongation rate. Through comprehensive experiments, including chemical composition, surface morphology, and molecular dynamics (MD) simulations, we thoroughly investigate the mechanisms of the hydrogel's heterogeneous adhesion. This study presents an easy, efficient, and innovative method for preparing one-sided adhesive hydrogels.
Collapse
Affiliation(s)
- Huowen Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuchu Zheng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhuqin Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | | |
Collapse
|
48
|
Jin Y, Li J, Zhang M, He J, Ni P. Unexpected mechanically robust ionic conductive elastomer constructed from an itaconic acid-involved polymerizable DES. Chem Commun (Camb) 2023; 59:12998-13001. [PMID: 37830275 DOI: 10.1039/d3cc04161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
An ionic conductive elastomer with good comprehensive properties is constructed from a ternary polymerizable deep eutectic solvent (PDES) containing choline chloride, acrylic acid and itaconic acid (IA). The IA component is found to boost the synergetic hydrogen bonds and greatly improve the mechanical strength of elastomer.
Collapse
Affiliation(s)
- Yongtian Jin
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
49
|
Jin B, Wu W, Yuan Z, Wang C. Tough and Robust Metallosupramolecular Hydrogels Enabled by Ti 3C 2T x MXene Nanosheets. Polymers (Basel) 2023; 15:4025. [PMID: 37836074 PMCID: PMC10575237 DOI: 10.3390/polym15194025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, many tough synthetic hydrogels have been created as promising candidates in fields such as smart electronic devices. In this paper, we propose a simple strategy to construct tough and robust hydrogels. Two-dimensional Ti3C2Tx MXene nanosheets and metal ions were introduced into poly(acrylamide-co-acrylic acid) hydrogels, the MXene nanosheets acted as multifunctional cross-linkers and effective stress-transfer centers, and physical cross-links were formed between Fe3+ and carboxylic acid. Under deformation, the coordination interactions exhibit reversible dissociation and reorganization properties, suggesting a novel mechanism of energy dissipation and stress redistribution. The design enabled the hydrogel to exhibit outstanding and balanced mechanical properties (tensile strength of up to 5.67 MPa and elongation at break of up to 508%). This study will facilitate the diverse applications of metallosupramolecular hydrogels.
Collapse
Affiliation(s)
- Biqiang Jin
- College of Science, Xichang University, Xichang 615000, China
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.Y.); (C.W.)
| | - Wenqiang Wu
- Sichuan Dowhon New Material Co., Ltd., Chengdu 610036, China
| | - Zhaoyang Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.Y.); (C.W.)
| | - Changcheng Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.Y.); (C.W.)
| |
Collapse
|
50
|
Cui Z, Liu C, Fang S, Xu J, Zhao Z, Fang J, Shen Z, Cong Z, Niu J. Bio-Inspired Conductive Hydrogels with High Toughness and Ultra-Stability as Wearable Human-Machine Interfaces for all Climates. Macromol Rapid Commun 2023; 44:e2300324. [PMID: 37462222 DOI: 10.1002/marc.202300324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
Drawing inspiration from Salicornia, a plant with the remarkable ability to thrive in harsh environments, a conductive hydrogel with high toughness and ultra-stability is reported. Specifically, the strategy of pre-cross-linking followed by secondary soaking in saturated salt solutions is introduced to prepare the PAAM-alginate conductive hydrogel with dual cross-linked dual network structure. It allows the alginate network to achieve complete cross-linking, fully leveraging the structural advantages of the PAAM-alginate conductive hydrogel. The highest tensile strength of the obtained conductive hydrogel is 697.3 kPa and the fracture energy can reach 69.59 kJ m-2 , significantly higher than human cartilage and natural rubbers. Specially, by introducing saturated salt solutions within the hydrogel, the colligative properties endow the PAAM-alginate conductive hydrogel with excellent water retention and anti-freezing properties. The prepared conductive hydrogels can work stably in an ambient environment for more than 7 days and still maintain good mechanical behavior and ionic conductivity at -50 °C. Benefiting from the excellent comprehensive performance of conductive hydrogels, wearable human-machine interfaces that can withstand large joint movements and are adapted for extreme environments are prepared to achieve precise control of robots and prostheses, respectively.
Collapse
Affiliation(s)
- Zeyu Cui
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chen Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Shiqiang Fang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Junbin Xu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhi Zhao
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jiaquan Fang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zehao Shen
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zhenhua Cong
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Niu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|