1
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
2
|
Cheng D, Guo Y, Lyu J, Liu Y, Xu W, Zheng W, Wang Y, Qiao P. Advances and challenges in preparing membrane proteins for native mass spectrometry. Biotechnol Adv 2025; 78:108483. [PMID: 39571766 DOI: 10.1016/j.biotechadv.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Native mass spectrometry (nMS) is becoming a crucial tool for analyzing membrane proteins (MPs), yet challenges remain in solubilizing and stabilizing their native conformations while resolving and characterizing the heterogeneity introduced by post-translational modifications and ligand binding. This review highlights recent advancements and persistent challenges in preparing MPs for nMS. Optimizing detergents and additives can significantly reduce sample heterogeneity and surface charge, enhancing MP signal quality and structural preservation in nMS. A strategic workflow incorporating affinity capture, stabilization agents, and size-exclusion chromatography to remove unfolded species demonstrates success in improving nMS characterization. Continued development of customized detergents and reagents tailored for specific MPs may further minimize heterogeneity and boost signals. Instrumental advances are also needed to elucidate more dynamically complex and labile MPs. Effective sample preparation workflows may provide insights into MP structures, dynamics, and interactions underpinning membrane biology. With ongoing methodological innovation, nMS shows promise to complement biophysical studies and facilitate drug discovery targeting this clinically important yet technically demanding protein class.
Collapse
Affiliation(s)
- Di Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yang Liu
- Regenxbox In., Rockville, MD 20850, USA
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
3
|
Zhang T, Lyu J, Yang B, Yun SD, Scott E, Zhao M, Laganowsky A. Native mass spectrometry and structural studies reveal modulation of MsbA-nucleotide interactions by lipids. Nat Commun 2024; 15:5946. [PMID: 39009687 PMCID: PMC11251056 DOI: 10.1038/s41467-024-50350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/07/2024] [Indexed: 07/17/2024] Open
Abstract
The ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5'-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5'-triphosphate (ATP) over ADP. Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure. The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Bowei Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sangho D Yun
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Stover L, Zhu Y, Schrecke S, Laganowsky A. TREK2 Lipid Binding Preferences Revealed by Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1516-1522. [PMID: 38843438 PMCID: PMC11228984 DOI: 10.1021/jasms.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
TREK2, a two-pore domain potassium channel, is recognized for its regulation by various stimuli, including lipids. While previous members of the TREK subfamily, TREK1 and TRAAK, have been investigated to elucidate their lipid affinity and selectivity, TREK2 has not been similarly studied in this regard. Our findings indicate that while TRAAK and TREK2 exhibit similarities in terms of electrostatics and share an overall structural resemblance, there are notable distinctions in their interaction with lipids. Specifically, SAPI(4,5)P2,1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate) exhibits a strong affinity for TREK2, surpassing that of dOPI(4,5)P2,1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate), which differs in its acyl chains. TREK2 displays lipid binding preferences not only for the headgroup of lipids but also toward the acyl chains. Functional studies draw a correlation for lipid binding affinity and activity of the channel. These findings provide important insight into elucidating the molecular prerequisites for specific lipid binding to TREK2 important for function.
Collapse
Affiliation(s)
- Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Zhu S, Alexander MK, Paiva TO, Rachwalski K, Miu A, Xu Y, Verma V, Reichelt M, Dufrêne YF, Brown ED, Cox G. The inactivation of tolC sensitizes Escherichia coli to perturbations in lipopolysaccharide transport. iScience 2024; 27:109592. [PMID: 38628966 PMCID: PMC11019271 DOI: 10.1016/j.isci.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The Escherichia coli outer membrane channel TolC complexes with several inner membrane efflux pumps to export compounds across the cell envelope. All components of these complexes are essential for robust efflux activity, yet E. coli is more sensitive to antimicrobial compounds when tolC is inactivated compared to the inactivation of genes encoding the inner membrane drug efflux pumps. While investigating these susceptibility differences, we identified a distinct class of inhibitors targeting the core-lipopolysaccharide translocase, MsbA. We show that tolC null mutants are sensitized to structurally unrelated MsbA inhibitors and msbA knockdown, highlighting a synthetic-sick interaction. Phenotypic profiling revealed that tolC inactivation induced cell envelope softening and increased outer membrane permeability. Overall, this work identified a chemical probe of MsbA, revealed that tolC is associated with cell envelope mechanics and integrity, and highlighted that these findings should be considered when using tolC null mutants to study efflux deficiency.
Collapse
Affiliation(s)
- Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | | | - Telmo O. Paiva
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Anh Miu
- Genentech Inc, Biochemical and Cellular Pharmacology, South San Francisco, CA, USA
| | - Yiming Xu
- Genentech Inc, Infectious Diseases, South San Francisco, CA, USA
| | - Vishal Verma
- Genentech Inc, Discovery Chemistry, South San Francisco, CA, USA
| | - Mike Reichelt
- Genentech Inc, Pathology, South San Francisco, CA, USA
| | - Yves F. Dufrêne
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Eric D. Brown
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Urner LH, Fiorentino F, Shutin D, Sauer JB, Agasid MT, El-Baba TJ, Bolla JR, Stansfeld PJ, Robinson CV. Detergents with Scalable Properties Identify Noncanonical Lipopolysaccharide Binding to Bacterial Inner Membrane Proteins. J Am Chem Soc 2024; 146. [PMID: 38604609 PMCID: PMC11046432 DOI: 10.1021/jacs.3c14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lipopolysaccharide (LPS) is vital for maintaining the outer membrane barrier in Gram-negative bacteria. LPS is also frequently obtained in complex with the inner membrane proteins after detergent purification. The question of whether or not LPS binding to inner membrane proteins not involved in outer membrane biogenesis reflects native lipid environments remains unclear. Here, we leverage the control of the hydrophilic-lipophilic balance and packing parameter concepts to chemically tune detergents that can be used to qualitatively differentiate the degree to which proteins copurify with phospholipids (PLs) and/or LPS. Given the scalable properties of these detergents, we demonstrate a detergent fine-tuning that enables the facile investigation of intact proteins and their complexes with lipids by native mass spectrometry (nMS). We conclude that LPS, a lipid that is believed to be important for outer membranes, can also affect the activity of membrane proteins that are currently not assigned to be involved in outer membrane biogenesis. Our results deliver a scalable detergent chemistry for a streamlined biophysical characterization of protein-lipid interactions, provide a rationale for the high affinity of LPS-protein binding, and identify noncanonical associations between LPS and inner membrane proteins with relevance for membrane biology and antibiotic research.
Collapse
Affiliation(s)
- Leonhard H. Urner
- TU
Dortmund University, Department of Chemistry
and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
- Kavli
Institute for Nanoscience Discovery,
South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Denis Shutin
- Kavli
Institute for Nanoscience Discovery,
South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Joshua B. Sauer
- Kavli
Institute for Nanoscience Discovery,
South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Mark T. Agasid
- Kavli
Institute for Nanoscience Discovery,
South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Tarick J. El-Baba
- Kavli
Institute for Nanoscience Discovery,
South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jani R. Bolla
- Kavli
Institute for Nanoscience Discovery,
South Parks Road, Oxford OX1 3QU, United Kingdom
- Department
of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Phillip J. Stansfeld
- School
of Life Sciences, Gibbet Hill Campus, The
University of Warwick, Coventry CV4 7AL, United
Kingdom
| | - Carol V. Robinson
- Kavli
Institute for Nanoscience Discovery,
South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
7
|
Lyu J, Zhang T, Marty MT, Clemmer D, Russell DH, Laganowsky A. Double and triple thermodynamic mutant cycles reveal the basis for specific MsbA-lipid interactions. eLife 2024; 12:RP91094. [PMID: 38252560 PMCID: PMC10945598 DOI: 10.7554/elife.91094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Structural and functional studies of the ATP-binding cassette transporter MsbA have revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the other at a membrane-facing, exterior site. Although these binding sites are known to be important for MsbA function, the thermodynamic basis for these specific MsbA-LPS interactions is not well understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA interacting with the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL). The binding of KDL is solely driven by entropy, despite the transporter adopting an inward-facing conformation or trapped in an outward-facing conformation with adenosine 5'-diphosphate and vanadate. An extension of the mutant cycle approach is employed to probe basic residues that interact with KDL. We find the molecular recognition of KDL is driven by a positive coupling entropy (as large as -100 kJ/mol at 298 K) that outweighs unfavorable coupling enthalpy. These findings indicate that alterations in solvent reorganization and conformational entropy can contribute significantly to the free energy of protein-lipid association. The results presented herein showcase the advantage of native MS to obtain thermodynamic insight into protein-lipid interactions that would otherwise be intractable using traditional approaches, and this enabling technology will be instrumental in the life sciences and drug discovery.
Collapse
Affiliation(s)
- Jixing Lyu
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, The University of ArizonaTucsonUnited States
| | - David Clemmer
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - David H Russell
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
8
|
Novischi SYP, Karoly-Lakatos A, Chok K, Bonifer C, Becker-Baldus J, Glaubitz C. Probing the allosteric NBD-TMD crosstalk in the ABC transporter MsbA by solid-state NMR. Commun Biol 2024; 7:43. [PMID: 38182790 PMCID: PMC10770068 DOI: 10.1038/s42003-023-05617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The ABC transporter MsbA plays a critical role in Gram-negative bacteria in the regulation of the outer membrane by translocating core-LPS across the inner membrane. Additionally, a broad substrate specificity for lipophilic drugs has been shown. The allosteric interplay between substrate binding in the transmembrane domains and ATP binding and turnover in the nucleotide-binding domains must be mediated via the NBD/TMD interface. Previous studies suggested the involvement of two intracellular loops called coupling helix 1 and 2 (CH1, CH2). Here, we demonstrate by solid-state NMR spectroscopy that substantial chemical shift changes within both CH1 and CH2 occur upon substrate binding, in the ATP hydrolysis transition state, and upon inhibitor binding. CH2 is domain-swapped within the MsbA structure, and it is noteworthy that substrate binding induces a larger response in CH2 compared to CH1. Our data demonstrate that CH1 and CH2 undergo structural changes as part of the TMD-NBD cross-talk.
Collapse
Affiliation(s)
- S Y Phoebe Novischi
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Andrea Karoly-Lakatos
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Kerby Chok
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Christian Bonifer
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
9
|
Zhu C, Shi Y, Yu J, Zhao W, Li L, Liang J, Yang X, Zhang B, Zhao Y, Gao Y, Chen X, Yang X, Zhang L, Guddat LW, Liu L, Yang H, Rao Z, Li J. Cryo-EM structures of a prokaryotic heme transporter CydDC. Protein Cell 2023; 14:919-923. [PMID: 37144855 PMCID: PMC10691846 DOI: 10.1093/procel/pwad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Yanfeng Shi
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lingqiao Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaobo Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| |
Collapse
|
10
|
Lyu J, Zhang T, Marty MT, Clemmer D, Russell DH, Laganowsky A. Double and triple thermodynamic mutant cycles reveal the basis for specific MsbA-lipid interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547565. [PMID: 37461710 PMCID: PMC10350010 DOI: 10.1101/2023.07.03.547565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Structural and functional studies of the ATP-binding cassette transporter MsbA have revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the other at a membrane-facing, exterior site. Although these binding sites are known to be important for MsbA function, the thermodynamic basis for these specific MsbA-LPS interactions is not well understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA interacting with the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL). The binding of KDL is solely driven by entropy, despite the transporter adopting an inward-facing conformation or trapped in an outward-facing conformation with adenosine 5'-diphosphate and vanadate. An extension of the mutant cycle approach is employed to probe basic residues that interact with KDL. We find the molecular recognition of KDL is driven by a positive coupling entropy (as large as -100 kJ/mol at 298K) that outweighs unfavorable coupling enthalpy. These findings indicate that alterations in solvent reorganization and conformational entropy can contribute significantly to the free energy of protein-lipid association. The results presented herein showcase the advantage of native MS to obtain thermodynamic insight into protein-lipid interactions that would otherwise be intractable using traditional approaches, and this enabling technology will be instrumental in the life sciences and drug discovery.
Collapse
Affiliation(s)
- Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Michael T. Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, The University of Arizona, Tucson, AZ 85721
| | - David Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| |
Collapse
|
11
|
Santos MFA, Pessoa JC. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB) since 2015. Molecules 2023; 28:6538. [PMID: 37764313 PMCID: PMC10536487 DOI: 10.3390/molecules28186538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.
Collapse
Affiliation(s)
- Marino F. A. Santos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
12
|
Zhu Y, Odenkirk MT, Qiao P, Zhang T, Schrecke S, Zhou M, Marty MT, Baker ES, Laganowsky A. Combining native mass spectrometry and lipidomics to uncover specific membrane protein-lipid interactions from natural lipid sources. Chem Sci 2023; 14:8570-8582. [PMID: 37593000 PMCID: PMC10430552 DOI: 10.1039/d3sc01482g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
While it is known that lipids play an essential role in regulating membrane protein structure and function, it remains challenging to identify specific protein-lipid interactions. Here, we present an innovative approach that combines native mass spectrometry (MS) and lipidomics to identify lipids retained by membrane proteins from natural lipid extracts. Our results reveal that the bacterial ammonia channel (AmtB) enriches specific cardiolipin (CDL) and phosphatidylethanolamine (PE) from natural headgroup extracts. When the two extracts are mixed, AmtB retains more species, wherein selectivity is tuned to bias headgroup selection. Using a series of natural headgroup extracts, we show TRAAK, a two-pore domain K+ channel (K2P), retains specific acyl chains that is independent of the headgroup. A brain polar lipid extract was then combined with the K2Ps, TRAAK and TREK2, to understand lipid specificity. More than a hundred lipids demonstrated affinity for each protein, and both channels were found to retain specific fatty acids and lysophospholipids known to stimulate channel activity, even after several column washes. Natural lipid extracts provide the unique opportunity to not only present natural lipid diversity to purified membrane proteins but also identify lipids that may be important for membrane protein structure and function.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Melanie T Odenkirk
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Pei Qiao
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine Houston TX 77030 USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona Tucson AZ 85721 USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina Chapel Hill NC 27514 USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
13
|
Lantz C, Schrader R, Meeuwsen J, Shaw J, Goldberg NT, Tichy S, Beckman J, Russell DH. Digital Quadrupole Isolation and Electron Capture Dissociation on an Extended Mass Range Q-TOF Provides Sequence and Structure Information on Proteins and Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1753-1760. [PMID: 37463113 PMCID: PMC10496594 DOI: 10.1021/jasms.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Electron capture dissociation (ECD) is now a well-established method for sequencing peptides and performing top-down analysis on proteins of less than 30 kDa, and there is growing interest in using this approach for studies of larger proteins and protein complexes. Although much progress on ECD has been made over the past few decades, establishing methods for obtaining informative spectra still poses a significant challenge. Here we describe how digital quadrupole (DigiQ) ion isolation can be used for the mass selection of single charge states of proteins and protein complexes prior to undergoing ECD and/or charge reduction. First, we demonstrate that the DigiQ can isolate single charge states of monomeric proteins such as ubiquitin (8.6 kDa) and charge states of large protein complexes such as pyruvate kinase (234 kDa) using a hybrid quadrupole-TOF-MS (Agilent extended m/z range 6545XT). Next, we demonstrate that fragment ions resulting from ECD can be utilized to provide information about the sequence and structure of the cytochrome c/heme complex and the ubiquitin monomer. Lastly, an especially interesting result for DigiQ isolation and electron capture (EC) was noted; namely, the 16+ charge state of the streptavidin/biotin complex reveals different electron capture patterns for the biotinylated proteoforms of streptavidin. This result is consistent with previous reports that apo streptavidin exists in multiple conformations and that biotin binding shifts the conformational dynamics of the complex (Quintyn, R. Chem. Biol. 2015, 22 (55), 583-592).
Collapse
Affiliation(s)
- Carter Lantz
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Robert Schrader
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph Meeuwsen
- e-MSion,
a part of Agilent, 2121
NE Jack London St, Ste 140, Corvallis, Oregon 97330, United States
| | - Jared Shaw
- e-MSion,
a part of Agilent, 2121
NE Jack London St, Ste 140, Corvallis, Oregon 97330, United States
| | - Noah T. Goldberg
- Agilent
Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Shane Tichy
- Agilent
Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Joe Beckman
- e-MSion,
a part of Agilent, 2121
NE Jack London St, Ste 140, Corvallis, Oregon 97330, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
15
|
Modi SK, Gaur S, Sengupta M, Singh MS. Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Front Microbiol 2023; 14:1135579. [PMID: 37152753 PMCID: PMC10160668 DOI: 10.3389/fmicb.2023.1135579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Antimicrobial Resistance (AMR) raises a serious concern as it contributes to the global mortality by 5 million deaths per year. The overall impact pertaining to significant membrane changes, through broad spectrum drugs have rendered the bacteria resistant over the years. The economic expenditure due to increasing drug resistance poses a global burden on healthcare community and must be dealt with immediate effect. Nanoparticles (NP) have demonstrated inherent therapeutic potential or can serve as nanocarriers of antibiotics against multidrug resistant (MDR) pathogens. These carriers can mask the antibiotics and help evade the resistance mechanism of the bacteria. The targeted delivery can be fine-tuned through surface functionalization of Nanocarriers using aptamers, antibodies etc. This review covers various molecular mechanisms acquired by resistant bacteria towards membrane modification. Mechanistic insight on 'NP surface-bacterial membrane' interactions are crucial in deciding the role of NP as therapeutic. Finally, we highlight the potential accessible membrane targets for designing smart surface-functionalized nanocarriers which can act as bacteria-targeted robots over the existing clinically available antibiotics. As the bacterial strains around us continue to evolve into resistant versions, nanomedicine can offer promising and alternative tools in overcoming AMR.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Smriti Gaur
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Mrittika Sengupta
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- Mrittika Sengupta, ;
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- *Correspondence: Manu Smriti Singh, ;
| |
Collapse
|