1
|
Ramirez-Moreno D, Galizia CG, Nouvian M. Division of labour during honeybee colony defence: poetic and scientific views. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230272. [PMID: 40109103 PMCID: PMC11923620 DOI: 10.1098/rstb.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 03/22/2025] Open
Abstract
Poets, philosophers and politicians have used bees, and often projected an idealized human society into their view of how beehives are organized, from the ancient Greeks to present times. We first review how division of labour in honeybees was perceived by human observers, before presenting our current understanding. We focus specifically on defensive behaviour and show that this model provides an interesting case study for our conceptual understanding of division of labour as a whole. We distinguish three phases of the defensive response: detection of an intruder, recruitment of individuals into collective defence and attack. Individual bees may selectively contribute to one or more of these steps. Guard bees monitor entering conspecifics or attacking mammals, and release an alarm pheromone to recruit stinging soldiers. However, we are still far from understanding why only subsets of bees become guards or soldiers (or even if soldiering can be considered a task per se). We discuss the stimuli associated with each of these steps, how they define the number of bees needed and how they might combine with individual and developmental characteristics such that individuals take on a particular task. We also highlight pending questions and interesting avenues for future research.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
Collapse
Affiliation(s)
- Daniela Ramirez-Moreno
- Department of Biology, University of Konstanz, KonstanzD-78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, KonstanzD-78457, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, KonstanzD-78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, KonstanzD-78457, Germany
- Zukunftskolleg, University of Konstanz, KonstanzD-78457, Germany
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, KonstanzD-78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, KonstanzD-78457, Germany
- Zukunftskolleg, University of Konstanz, KonstanzD-78457, Germany
| |
Collapse
|
2
|
Taborsky M. The evolution of division of labour: preconditions and evolutionary feedback. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230262. [PMID: 40109117 PMCID: PMC11923618 DOI: 10.1098/rstb.2023.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 03/22/2025] Open
Abstract
Division of Labour (DoL) among group members reflects the pinnacle of social complexity. The synergistic effects created by task specialization and the sharing of duties benefitting the group raise the efficiency of the acquisition, use, management and defence of resources by a fundamental step above the potential of individual agents. At the same time, it may stabilize societies because of the involved interdependence among collaborators. Here, I review the conditions associated with the emergence of DoL, which include the existence of (i) sizeable groups with enduring membership; (ii) individual specialization improving the efficiency of task performance; and (iii) low conflict of interest among group members owing to correlated payoffs. This results in (iv) a combination of intra-individual consistency with inter-individual variance in carrying out different tasks, which creates (v) some degree of mutual interdependence among group members. DoL typically evolves 'bottom-up' without external regulatory forces, but the latter may gain importance at a later stage of the evolution of social complexity. Owing to the involved feedback processes, cause and effect are often difficult to disentangle in the evolutionary trajectory towards structured societies with well-developed DoL among their members. Nevertheless, the emergence of task specialization and DoL may entail a one-way street towards social complexity, with retrogression getting increasingly difficult the more individual agents depend on each other at progressing stages of social evolution.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
Collapse
Affiliation(s)
- Michael Taborsky
- Behavioural Ecology, University of Bern, Hinterkappelen,CH-3032, Switzerland
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, D-78467, Germany
- Institute for Advanced Study Berlin, (Wissenschaftskolleg zu Berlin), Berlin, D-14193, Germany
| |
Collapse
|
3
|
Taborsky M, Fewell JH, Gilles R, Taborsky B. Division of labour as key driver of social evolution. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230261. [PMID: 40109104 PMCID: PMC11923610 DOI: 10.1098/rstb.2023.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
The social division of labour (DoL) has been renowned as a key driver of the economic success of human societies dating back to ancient philosophers such as Plato (in The Republic, ca 380 BCE), Xenophon (in Cyropaedia, ca 370 BCE) and Aristotle (in Politics, ca 350 BCE, and Nicomachean Ethics, ca 340 BCE). Over time, this concept evolved into a cornerstone of political economic thought, most prominently expressed in Smith (in The Wealth of Nations, 1776). In his magnum opus, Adam Smith posited that DoL has caused a greater increase in production than any other factor in human history. There is little doubt that DoL immensely increases productive output, both in humans and in other organisms, but it is less clear how it comes about, how it is organized and what the biological roots are of this human 'turbo enhancer'. We address these questions here using results from studies of a wide range of organisms and various modelling approaches.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
Collapse
Affiliation(s)
- Michael Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Hinterkappelen3032, Switzerland
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz78467, Germany
- Institute for Advanced Study (Wissenschaftskolleg zu Berlin), Berlin14193, Germany
| | | | - Robert Gilles
- Economics Department, The Queen’s University of Belfast, BelfastBT9 5EE, UK
| | - Barbara Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Hinterkappelen3032, Switzerland
| |
Collapse
|
4
|
Rojas V, Rivera D, Ruiz C, Larrondo LF. A new flavor of synthetic yeast communities sees the light. mBio 2025; 16:e0200823. [PMID: 39912663 PMCID: PMC11898667 DOI: 10.1128/mbio.02008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
No organism is an island: organisms of varying taxonomic complexity, including genetic variants of a single species, can coexist in particular niches, cooperating for survival while simultaneously competing for environmental resources. In recent years, synthetic biology strategies have witnessed a surge of efforts focused on creating artificial microbial communities to tackle pressing questions about the complexity of natural systems and the interactions that underpin them. These engineered ecosystems depend on the number and nature of their members, allowing complex cell communication designs to recreate and create diverse interactions of interest. Due to its experimental simplicity, the budding yeast Saccharomyces cerevisiae has been harnessed to establish a mixture of varied cell populations with the potential to explore synthetic ecology, metabolic bioprocessing, biosensing, and pattern formation. Indeed, engineered yeast communities enable advanced molecule detection dynamics and logic operations. Here, we present a concise overview of the state-of-the-art, highlighting examples that exploit optogenetics to manipulate, through light stimulation, key yeast phenotypes at the community level, with unprecedented spatial and temporal regulation. Hence, we envision a bright future where the application of optogenetic approaches in synthetic communities (optoecology) illuminates the intricate dynamics of complex ecosystems and drives innovations in metabolic engineering strategies.
Collapse
Affiliation(s)
- Vicente Rojas
- ANID-Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera
- ANID-Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Ruiz
- ANID-Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago, Chile
| | - Luis F. Larrondo
- ANID-Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Lagos-Oviedo JJ, Pen I, Kreider JJ. Coevolution of larval signalling and worker response can trigger developmental caste determination in social insects. Proc Biol Sci 2024; 291:20240538. [PMID: 39013422 PMCID: PMC11251759 DOI: 10.1098/rspb.2024.0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 07/18/2024] Open
Abstract
Eusocial insects belong to distinct queen and worker castes, which, in turn, can be divided into several morphologically specialized castes of workers. Caste determination typically occurs by differential nutrition of developing larvae. We present a model for the coevolution of larval signalling and worker task allocation-both modelled by flexible smooth reaction norms-to investigate the evolution of caste determination mechanisms and worker polymorphism. In our model, larvae evolve to signal their nutritional state to workers. The workers evolve to allocate time to foraging for resources versus feeding the brood, conditional on the larval signals and their body size. Worker polymorphism evolves under accelerating foraging returns of increasing body size, which causes selection to favour large foraging and small nursing workers. Worker castes emerge because larvae evolve to amplify their signals after obtaining some food, which causes them to receive more food, while the other larvae remain unfed. This leads to symmetry-breaking among the larvae, which are either well-nourished or malnourished, thus emerging as small or large workers. Our model demonstrates the evolution of nutrition-dependent caste determination and worker polymorphism by a self-reinforcement mechanism that evolves from the interplay of larval signalling and worker response to the signals.
Collapse
Affiliation(s)
- Juan J. Lagos-Oviedo
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ido Pen
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Jan J. Kreider
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| |
Collapse
|
6
|
Hamrick GS, Maddamsetti R, Son HI, Wilson ML, Davis HM, You L. Programming Dynamic Division of Labor Using Horizontal Gene Transfer. ACS Synth Biol 2024; 13:1142-1151. [PMID: 38568420 DOI: 10.1021/acssynbio.3c00615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The metabolic engineering of microbes has broad applications, including biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multistep pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is the division of labor (DOL) in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted interstrain population dynamics. Through modeling, we show that dynamic division of labor (DDOL), which we define as the DOL between indiscrete populations capable of dynamic and reversible interchange, can overcome these limitations and enable the robust maintenance of burdensome, multistep pathways. We propose that DDOL can be mediated by horizontal gene transfer (HGT) and use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.
Collapse
Affiliation(s)
- Grayson S Hamrick
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rohan Maddamsetti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Maggie L Wilson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Harris M Davis
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Pequeno PACL. Resource adaptation drives the size-complexity rule in termites. Proc Biol Sci 2024; 291:20232363. [PMID: 38196360 PMCID: PMC10777143 DOI: 10.1098/rspb.2023.2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The size-complexity rule posits that the evolution of larger cooperative groups should favour more division of labour. Examples include more cell types in larger multicellular organisms, and more polymorphic castes in larger eusocial colonies. However, a correlation between division of labour and group size may reflect a shared response of both traits to resource availability and/or profitability. Here, this possibility was addressed by investigating the evolution of sterile caste number (worker and soldier morphotypes) in termites, a major clade of eusocial insects in which the drivers of caste polymorphism are poorly understood. A novel dataset on 90 termite species was compiled from the published literature. The analysis showed that sterile caste number did increase markedly with colony size. However, after controlling for resource adaptations and phylogeny, there was no evidence for this relationship. Rather, sterile caste number increased with increasing nest-food separation and decreased with soil-feeding, through changes in worker (but not soldier) morphotype number. Further, colony size increased with nest-food separation, thus driving the false correlation between sterile caste number and colony size. These findings support adaptation to higher energy acquisition as key to the rise of complex insect societies, with larger size being a by-product.
Collapse
Affiliation(s)
- Pedro A. C. L. Pequeno
- Natural Resources Program, Federal University of Roraima, Av. Nova Iorque, Aeroporto, Boa Vista – RR, CEP: 69.304-000, Brazil
| |
Collapse
|
8
|
Liu F, Yu S, Chen N, Ren C, Li S. Nutrition- and hormone-controlled developmental plasticity in Blattodea. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101128. [PMID: 37806339 DOI: 10.1016/j.cois.2023.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Blattodea, which includes cockroaches and termites, possesses high developmental plasticity that is mainly controlled by nutritional conditions and insect hormones. Insulin/insulin-like growth factor signaling (IIS), target of rapamycin complex 1 (TORC1), and adenosine monophosphate-activated protein complex are the three primary nutrition-responsive signals. Juvenile hormone (JH) and 20-hydroxyecdysone (20E) constitute the two most vital insect hormones that might interact with each other through the Met, Kr-h1, E93 (MEKRE93) pathway. Nutritional and hormonal signals interconnect to create a complex regulatory network. Here we summarize recent progress in our understanding of how nutritional and hormonal signals coordinately control the developmental plasticity of metamorphosis, reproduction, and appendage regeneration in cockroaches as well as caste differentiation in termites. We also highlight several perspectives that should be further emphasized in the studies of developmental plasticity in Blattodea. This review provides a general landscape in the field of nutrition- and hormone-controlled developmental plasticity in insects.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shuxin Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|