1
|
Guan Q, Hou S, Wang K, Li L, Cheng Y, Zheng M, Liu C, Zhao X, Zhou J, Li P, Niu X, Wang L, Fan Y. Micropore structure engineering of injectable granular hydrogels via controlled liquid-liquid phase separation facilitates regenerative wound healing in mice and pigs. Biomaterials 2025; 318:123192. [PMID: 39965423 DOI: 10.1016/j.biomaterials.2025.123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Biomaterials can play a crucial role in facilitating tissue regeneration, but their application is often limited by that they induce scarring rather than complete tissue restoration. Hydrogels with microporous architectures, engineered via 3D printing techniques or particle packing (granular hydrogels), have shown promise in providing a conducive microenvironment for cellular infiltration and favorable immune response. Nonetheless, there is a notably lacking in studies that demonstrate scarless regeneration solely through pore structure engineering. In this study, we demonstrate that optimizing micropore structure of injectable granular hydrogels via controlled liquid-liquid phase separation facilitates scarless wound healing. The building block particles are fabricated by precisely controlling the separation kinetics of two immiscible aqueous phases (gelling and porogenic) and timely arresting phase separation, to generate bicontinuous, hollow or closed porous structure. Employing a murine model, we reveal that the optimized pore structure significantly facilitates mature vascular network boosts pro-regenerative macrophage polarization (M2/M1) and CD4+/Foxp3+ regulatory T cells, culminating in scarless skin regeneration enriched with hair follicles. Moreover, our hydrogels outperform the clinical gold-standard collagen/proteoglycan scaffolds in a porcine model, showcasing superior cell infiltration, epidermal integration, and dermal regeneration. Micropore structure engineering of biomaterials presents a promising and biologics free pathway for tissue regeneration.
Collapse
Affiliation(s)
- Qifeng Guan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115, Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Kai Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Linhao Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yating Cheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Mingxia Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Chen Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinbin Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jin Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lizhen Wang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115, Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115, Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
2
|
Luo H, Huang W, He Z, Fang Y, Tian Y, Xiong Z. Engineered Living Memory Microspheroid-Based Archival File System for Random Accessible In Vivo DNA Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415358. [PMID: 39981833 DOI: 10.1002/adma.202415358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Given its exceptional durability and high information density, deoxyribonucleic acid (DNA) has the potential to meet the escalating global demand for data storage if it can be stored efficiently and accessed randomly in exabyte-to-yottabyte-scale databases. Here, this work introduces the Engineered Living Memory Microspheroid (ELMM) as a novel material for DNA data storage, retrieval, and management. This work engineers a plasmid library and devises a random access strategy pairing plasmid function with DNA data in a key-value format. Each DNA segment is integrated with its corresponding plasmid, introduced into bacteria, and encapsulated within matrix material via droplet microfluidics within 5 min. ELMMs can be stored at room temperature following lyophilization and, upon rehydration, each type of ELMM exhibits specific functions expressed by the plasmids, allowing for physical differentiation based on these characteristics. This work demonstrates fluorescent expression as the plasmid function and employs fluorescence-based sorting access image files in a prototype database. By utilizing N optical channels, to retrieve 2N file types, each with a minimum of 10 copies. ELMM offers a digital-to-biological information solution, ensuring the preservation, access, replication, and management of files within large-scale DNA databases.
Collapse
Affiliation(s)
- Hao Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Wen Huang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - ZhongHui He
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yueming Tian
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| |
Collapse
|
3
|
Yue J, Liu Z, Wang L, Wang M, Pan G. Recent advances in bioactive hydrogel microspheres: Material engineering strategies and biomedical prospects. Mater Today Bio 2025; 31:101614. [PMID: 40104647 PMCID: PMC11919335 DOI: 10.1016/j.mtbio.2025.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Hydrogel microspheres are a class of hydrophilic polymeric particles in microscale, which has been developed as a new type of functional biomaterials for wide-range biomedical applications in recent years. This review provides a comprehensive overview of the preparation methods for hydrogel microspheres, including droplet microfluidics, electrospray and emulsion was first summarized. At the same time, we analyze the impacts of these methods on the properties of hydrogel microspheres and explore various functionalization strategies for enhancing their bioactivity and expanding their biomedical applications. In addition, we discuss the recent advances and the further prospect of hydrogel microspheres in life science applications, particularly in cell biology research, bioanalysis and detection, as well as tissue repair and regeneration. By synthesizing the latest developments, this review aims to offer valuable insights and strategies for optimizing hydrogel microspheres in diverse application scenarios and inspire future research and practical innovations.
Collapse
Affiliation(s)
- Junjiang Yue
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhengbiao Liu
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Lu Wang
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
4
|
Friend NE, Zhang IW, Hu MM, McCoy AJ, Kent RN, DePalma SJ, Baker BM, Lesher-Pérez SC, Stegemann JP, Putnam AJ. Biofabrication and Characterization of Vascularizing PEG-Norbornene Microgels. J Biomed Mater Res A 2025; 113:e37900. [PMID: 40135515 PMCID: PMC11956422 DOI: 10.1002/jbm.a.37900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
Establishing a robust, functional microvascular network remains a critical challenge for both the revascularization of damaged or diseased tissues and the development of engineered biological materials. Vascularizing microgels may aid in efforts to develop complex, multiphasic tissues by providing discrete, vascularized tissue modules that can be distributed throughout engineered constructs to vascularize large volumes. Here, we fabricated poly(ethylene glycol)-norbornene (PEGNB) microgels containing endothelial and stromal cells via flow-focusing microfluidic droplet generation. When embedded in bulk fibrin hydrogels, these cell-laden microgels initiated the formation and development of robust microvascular networks. Furthermore, extended preculture of cell-laden PEGNB microgels enabled the formation of vessel-like structures supported by basement membrane within the matrix without aggregation. Our findings highlight the suitability of PEG-based matrices for the development of vascularizing microgels capable of forming well-distributed, robust microvascular networks.
Collapse
Affiliation(s)
- Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Irene W. Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Michael M. Hu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Atticus J. McCoy
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Robert N. Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Sasha Cai Lesher-Pérez
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Wu Z, Liu R, Shao N, Zhao Y. Developing 3D bioprinting for organs-on-chips. LAB ON A CHIP 2025; 25:1081-1096. [PMID: 39775492 DOI: 10.1039/d4lc00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Organs-on-chips (OoCs) have significantly advanced biomedical research by precisely reconstructing human microphysiological systems with biomimetic functions. However, achieving greater structural complexity of cell cultures on-chip for enhanced biological mimicry remains a challenge. To overcome these challenges, 3D bioprinting techniques can be used in directly building complex 3D cultures on chips, facilitating the in vitro engineering of organ-level models. Herein, we review the distinctive features of OoCs, along with the technical and biological challenges associated with replicating complex organ structures. We discuss recent bioprinting innovations that simplify the fabrication of OoCs while increasing their architectural complexity, leading to breakthroughs in the field and enabling the investigation of previously inaccessible biological problems. We highlight the challenges for the development of 3D bioprinted OoCs, concluding with a perspective on future directions aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ning Shao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Shenzhen Research Institute, Southeast University, Shenzhen 518071, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou 450009, China
| |
Collapse
|
6
|
Zhang Y, Ding X, Yang Z, Wang J, Li C, Zhou G. Emerging Microfluidic Building Blocks for Cultured Meat Construction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8771-8793. [PMID: 39884858 DOI: 10.1021/acsami.4c19276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cultured meat aims to produce meat mass by culturing cells and tissues based on the muscle regeneration mechanism, and is considered an alternative to raising and slaughtering livestock. Hydrogel building blocks are commonly used as substrates for cell culture in tissue engineering and cultured meat because of their high water content, biocompatibility, and similar three-dimensional (3D) environment to the cellular niche in vivo. With the characteristics of precise manipulation of fluids, microfluidics exhibits advantages in the fabrication of building blocks with different structures and components, which have been widely applied in tissue regeneration. Microfluidic building blocks show promising prospects in the field of cultured meat; however, few reviews on the application of microfluidic building blocks in cultured meat have been published. This review outlines the recent status and prospects of the use of microfluidic building blocks in cultured meat. Starting with the introduction of cells and materials for cultured meat tissue construction, we then describe the diverse structures of the fabricated building blocks, including microspheres, microfibers, and microsphere-microfiber hybrid systems. Next, the stacking strategies for tissue construction are highlighted in detail. Finally, challenges and future prospects for developing microfluidic building blocks for cultured meat are discussed.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zijiang Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Pal V, Gupta D, Liu S, Namli I, Rizvi SHA, Yilmaz YO, Haugh L, Gerhard EM, Ozbolat IT. Interparticle Crosslinked Ion-responsive Microgels for 3D and 4D (Bio)printing Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635095. [PMID: 39975099 PMCID: PMC11838323 DOI: 10.1101/2025.01.28.635095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microgels offer unique advantages over bulk hydrogels due to their improved diffusion limits for oxygen and nutrients. Particularly, stimuli-responsive microgels with inherently bioactive and self-supporting properties emerge as highly promising biomaterials. This study unveils the development of interparticle-crosslinked, self-supporting, ion-responsive microgels tailored for 3D and 4D (bio)printing applications. A novel strategy was proposed to develop microgels that enabled interparticle crosslinking, eliminating the need for filler hydrogels and preserving essential microscale void spaces to support cell migration and vascularization. Additionally, these microgels possessed unique, ion-responsive shrinking behavior primarily by the Hofmeister effect, reversible upon the removal of the stimulus. Two types of microgels, spherical (µS) and random-shaped (µR), were fabricated, with µR exhibiting superior mechanical properties and higher packing density. Fabricated microgel-based constructs supported angiogenesis with tunable vessel size based on interstitial void spaces while demonstrating excellent shear-thinning and self-healing properties and high print fidelity. Various bioprinting techniques were employed and validated using these microgels, including extrusion-based, embedded, intraembedded, and aspiration-assisted bioprinting, facilitating the biofabrication of scalable constructs. Multi-material 4D printing was achieved by combining ion-responsive microgels with non-responsive microgels, enabling programmable shape transformations upon exposure to ionic solutions. Utilizing 4D printing, complex, dynamic structures were generated such as coiling filaments, grippers, and folding sheets, providing a foundation for the development of advanced tissue models and devices for regenerative medicine and soft robotics, respectively.
Collapse
|
8
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. Tissue Eng Part A 2025; 31:195-207. [PMID: 39556321 DOI: 10.1089/ten.tea.2024.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo, thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization and that release from Hep would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells were analyzed by flow cytometry 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (day 7 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by day 7, particularly in the MTJ region of the muscle. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear.
Collapse
Affiliation(s)
- Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Jiahui Mao
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Zhao R, Amstad E. Bio-Informed Porous Mineral-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401052. [PMID: 39221524 PMCID: PMC11840473 DOI: 10.1002/smll.202401052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Certain biominerals, such as sea sponges and echinoderm skeletons, display a fascinating combination of mechanical properties and adaptability due to the well-defined structures spanning various length scales. These materials often possess high density normalized mechanical properties because they contain well-defined pores. The density-normalized mechanical properties of synthetic minerals are often inferior because the pores are stochastically distributed, resulting in an inhomogeneous stress distribution. The mechanical properties of synthetic materials are limited by the degree of structural and compositional control currently available fabrication methods offer. In the first part of this review, examples of structural elements nature uses to impart exceptional density normalized Young's moduli to its porous biominerals are showcased. The second part highlights recent advancements in the fabrication of bio-informed mineral-based composites possessing pores with diameters that span a wide range of length scales. The influence of the processing of mineral-based composites on their structures and mechanical properties is summarized. Thereby, it is aimed at encouraging further research directed to the sustainable, energy-efficient fabrication of synthetic lightweight yet stiff mineral-based composites.
Collapse
Affiliation(s)
- Ran Zhao
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Esther Amstad
- Swiss National Center for Competence in Research (NCCR) Bio‐inspired materialsUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
10
|
Xu Y, Shen Y. The Assembly of Miniaturized Droplets toward Functional Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404366. [PMID: 39380419 DOI: 10.1002/smll.202404366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Indexed: 10/10/2024]
Abstract
Recent explorations of bioengineering have generated new concepts and strategies for the processing of soft and functional materials. Droplet assembly techniques can address problems in the construction of extremely soft architectures by expanding the manufacturing capabilities using droplets containing liquid or hydrogels including weak hydrogels. This Perspective sets out to provide a brief overview of this growing field, and discusses the challenges and opportunities ahead. The study highlights the recent key advances of materials and architectures from hitherto effective droplet-assembly technologies, as well as the applications in biomedical and bioengineering fields from artificial tissues to bioreactors. It is envisaged that these assembled architectures, as nature-inspired models, will stimulate the discovery of biomaterials and miniaturized platforms for interdisciplinary research in health, biotechnology, and sustainability.
Collapse
Affiliation(s)
- Yufan Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
11
|
Wei Y, Zhang F, Li J, Qi Z, Wang JH, Wang Z. Composition Tuning of Semi-Open Cell Carriers via Phase Freeze-Shrink Self-Molding. ACS NANO 2024; 18:26872-26881. [PMID: 39299910 DOI: 10.1021/acsnano.4c08148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Extracellular matrix (ECM)-mimicking microsized cell carriers featuring a semi-isolated chamber facilitate the study of cellular heterogeneity as well as intercellular communication. However, the semiopen shaping of the designated gel mixture remains unattainable with current methods. We report an oil-phase freeze-shrink self-molding mechanism for generating size- and composition-tunable cradle-shaped microgels (microcradles) from water-in-oil droplets. The universality of this shape transition principle is demonstrated with six types of polysaccharides dispersed in a poly(ethylene glycol) diacrylate (PEGDA) or methacrylate gelatin (GelMA) matrix. By doping the microcradles with the major ECM component, hyaluronic acid sodium, we demonstrate a label-free selective culture of CD44 receptor-rich cells and the formation of cell spheroids within 3 days. This cryo-induced cradle-shaping strategy enables the functionalization of microcarriers for selective cell culture, thereby allowing them to be used for intercellular communication, drug delivery, and the construction of structural units for osteogenesis and 3D printing.
Collapse
Affiliation(s)
- Yanan Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fei Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiaqi Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhijie Qi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
12
|
Tang RC, Shang L, Scumpia PO, Di Carlo D. Injectable Microporous Annealed Crescent-Shaped (MAC) Particle Hydrogel Scaffold for Enhanced Cell Infiltration. Adv Healthc Mater 2024; 13:e2302477. [PMID: 37985462 PMCID: PMC11102933 DOI: 10.1002/adhm.202302477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels are widely used for tissue engineering applications to support cellular growth, yet the tightly woven structure often restricts cell infiltration and expansion. Consequently, granular hydrogels with microporous architectures have emerged as a new class of biomaterial. Particularly, the development of microporous annealed particle (MAP) hydrogel scaffolds has shown improved stability and integration with host tissue. However, the predominant use of spherically shaped particles limits scaffold porosity, potentially limiting the level of cell infiltration. Here, a novel microporous annealed crescent-shaped particle (MAC) scaffold that is predicted to have improved porosity and pore interconnectivity in silico is presented. With microfluidic fabrication, tunable cavity sizes that optimize interstitial void space features are achieved. In vitro, cells incorporated into MAC scaffolds form extensive 3D multicellular networks. In vivo, the injectable MAC scaffold significantly enhances cell infiltration compared to spherical MAP scaffolds, resulting in increased numbers of myofibroblasts and leukocytes present within the gel without relying on external biomolecular chemoattractants. The results shed light on the critical role of particle shape in cell recruitment, laying the foundation for MAC scaffolds as a next-generation granular hydrogel for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Rui-Chian Tang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lily Shang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Dermatology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
- Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI) University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Deo KA, Murali A, Tronolone JJ, Mandrona C, Lee HP, Rajput S, Hargett SE, Selahi A, Sun Y, Alge DL, Jain A, Gaharwar AK. Granular Biphasic Colloidal Hydrogels for 3D Bioprinting. Adv Healthc Mater 2024; 13:e2303810. [PMID: 38749006 DOI: 10.1002/adhm.202303810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Indexed: 05/30/2024]
Abstract
Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear-thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces. To overcome this challenge, a novel solution: a biphasic, granular colloidal bioink designed to optimize cell viability and printing fidelity is introduced. The biphasic ink consists of cell-laden polyethylene glycol (PEG) hydrogel microparticles embedded in a continuous gelatin methacryloyl (GelMA)-nanosilicate colloidal network. Here, it is demonstrated that this biphasic bioink offers outstanding rheological properties, print fidelity, and structural stability. Furthermore, its utility for engineering complex tissues with multiple cell types and heterogeneous microenvironments is demonstrated, by incorporating β-islet cells into the PEG microparticles and endothelial cells in the GelMA-nanosilicate colloidal network. Using this approach, it is possible to induce cell patterning, enhance vascularization, and direct cellular function. The proposed biphasic bioink holds significant potential for numerous emerging biomedical applications, including tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Kaivalya A Deo
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Aparna Murali
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - James J Tronolone
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Cole Mandrona
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Hung Pang Lee
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Satyam Rajput
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sarah E Hargett
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Amirali Selahi
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Nutrition, College of Agriculture, Texas A&M University, College Station, TX, 77843, USA
| | - Daniel L Alge
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abhishek Jain
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
- Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
14
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608812. [PMID: 39229126 PMCID: PMC11370378 DOI: 10.1101/2024.08.20.608812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated (Hep) and fully desulfated (Hep-)) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of Tumor Necrosis Factor Stimulated Gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo , thus facilitating comparisons between delivery from heparin derivatives on level of tissue repair in two different areas of muscle (near the myotendious junction (MTJ) and in the muscle belly (MB)) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization, and that release from a fully sulfated heparin derivative (Hep) would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells, were analyzed by flow cytometery 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to Day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (Day 14 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by Day 7, particularly in the MTJ region of the muscle, compared to release from desulfated heparin hydrogels. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear. IMPACT STATEMENT Rotator cuff tear is a significant problem that can cause muscle degeneration. In this study, a hydrogel particle system was developed for sustained release of an anti-inflammatory protein, Tumor Necrosis Factor Stimulated Gene 6 (TSG-6), to injured muscle. Release of the protein from a fully sulfated heparin hydrogel-based carrier demonstrated greater changes in amount inflammatory cells and more early regenerative effects than a less-sulfated carrier. Thus, this work provides a novel strategy for localized, controlled delivery of an anti-inflammatory protein to enhance muscle healing after rotator cuff tear.
Collapse
|
15
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
16
|
Wang H, Tao J, Wu Z, Weiland K, Wang Z, Masania K, Wang B. Fabrication of Living Entangled Network Composites Enabled by Mycelium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309370. [PMID: 38477443 PMCID: PMC11200020 DOI: 10.1002/advs.202309370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Organic polymer-based composite materials with favorable mechanical performance and functionalities are keystones to various modern industries; however, the environmental pollution stemming from their processing poses a great challenge. In this study, by finding an autonomous phase separating ability of fungal mycelium, a new material fabrication approach is introduced that leverages such biological metabolism-driven, mycelial growth-induced phase separation to bypass high-energy cost and labor-intensive synthetic methods. The resulting self-regenerative composites, featuring an entangled network structure of mycelium and assembled organic polymers, exhibit remarkable self-healing properties, being capable of reversing complete separation and restoring ≈90% of the original strength. These composites further show exceptional mechanical strength, with a high specific strength of 8.15 MPa g.cm-3, and low water absorption properties (≈33% after 15 days of immersion). This approach spearheads the development of state-of-the-art living composites, which directly utilize bioactive materials to "self-grow" into materials endowed with exceptional mechanical and functional properties.
Collapse
Affiliation(s)
- Hao Wang
- Department of Mechanical EngineeringCity University of Hong KongKowloonHong Kong
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyDelft2629 HSNetherlands
| | - Jie Tao
- School of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingJiangsu211106China
| | - Zhangyu Wu
- School of Materials Science and EngineeringSoutheast UniversityNanjing211189China
| | - Kathrin Weiland
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyDelft2629 HSNetherlands
| | - Zuankai Wang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kunal Masania
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyDelft2629 HSNetherlands
| | - Bin Wang
- Department of Mechanical EngineeringCity University of Hong KongKowloonHong Kong
| |
Collapse
|
17
|
Kim S, Lam PY, Jayaraman A, Han A. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review. Biomed Microdevices 2024; 26:26. [PMID: 38806765 PMCID: PMC11241584 DOI: 10.1007/s10544-024-00712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Three-dimensional (3D) cell culture models have been extensively utilized in various mechanistic studies as well as for drug development studies as superior in vitro platforms than conventional two-dimensional (2D) cell culture models. This is especially the case in cancer biology, where 3D cancer models, such as spheroids or organoids, have been utilized extensively to understand the mechanisms of cancer development. Recently, many sophisticated 3D models such as organ-on-a-chip models are emerging as advanced in vitro models that can more accurately mimic the in vivo tissue functions. Despite such advancements, spheroids are still considered as a powerful 3D cancer model due to the relatively simple structure and compatibility with existing laboratory instruments, and also can provide orders of magnitude higher throughput than complex in vitro models, an extremely important aspects for drug development. However, creating well-defined spheroids remain challenging, both in terms of throughputs in generation as well as reproducibility in size and shape that can make it challenging for drug testing applications. In the past decades, droplet microfluidics utilizing hydrogels have been highlighted due to their potentials. Importantly, core-shell structured gel droplets can avoid spheroid-to-spheroid adhesion that can cause large variations in assays while also enabling long-term cultivation of spheroids with higher uniformity by protecting the core organoid area from external environment while the outer porous gel layer still allows nutrient exchange. Hence, core-shell gel droplet-based spheroid formation can improve the predictivity and reproducibility of drug screening assays. This review paper will focus on droplet microfluidics-based technologies for cancer spheroid production using various gel materials and structures. In addition, we will discuss emerging technologies that have the potential to advance the production of spheroids, prospects of such technologies, and remaining challenges.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
An C, Zhang S, Xu J, Zhang Y, Dou Z, Shao F, Long C, yang J, Wang H, Liu J. The microparticulate inks for bioprinting applications. Mater Today Bio 2024; 24:100930. [PMID: 38293631 PMCID: PMC10825055 DOI: 10.1016/j.mtbio.2023.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a groundbreaking technology for fabricating intricate and functional tissue constructs. Central to this technology are the bioinks, which provide structural support and mimic the extracellular environment, which is crucial for cellular executive function. This review summarizes the latest developments in microparticulate inks for 3D bioprinting and presents their inherent challenges. We categorize micro-particulate materials, including polymeric microparticles, tissue-derived microparticles, and bioactive inorganic microparticles, and introduce the microparticle ink formulations, including granular microparticles inks consisting of densely packed microparticles and composite microparticle inks comprising microparticles and interstitial matrix. The formulations of these microparticle inks are also delved into highlighting their capabilities as modular entities in 3D bioprinting. Finally, existing challenges and prospective research trajectories for advancing the design of microparticle inks for bioprinting are discussed.
Collapse
Affiliation(s)
- Chuanfeng An
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, China
| | - Jiqing Xu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianhua yang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
19
|
Cai B, Kilian D, Ramos Mejia D, Rios RJ, Ali A, Heilshorn SC. Diffusion-Based 3D Bioprinting Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306470. [PMID: 38145962 PMCID: PMC10885663 DOI: 10.1002/advs.202306470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Indexed: 12/27/2023]
Abstract
3D bioprinting has enabled the fabrication of tissue-mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity-modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion-induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion-based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion-based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion-based strategies to overcome current limitations in biofabrication.
Collapse
Affiliation(s)
- Betty Cai
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - David Kilian
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Daniel Ramos Mejia
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ricardo J. Rios
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ashal Ali
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| |
Collapse
|
20
|
Gao H, Jiang W, Zhang W, Jiang M, Xin F. Customized spatial niches for synthetic microbial consortia. Trends Biotechnol 2023; 41:1463-1466. [PMID: 37270330 DOI: 10.1016/j.tibtech.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
The construction of synthetic microbial consortia has been considered a new frontier. However, maintaining artificial microbial communities remains challenging because the dominant strain eventually outcompetes the others. Inspired by natural ecosystems, one promising approach to assemble stable consortia is to construct spatial niches partitioning subpopulations and overlapping abiotic requirements.
Collapse
Affiliation(s)
- Hao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, P.R. China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, P.R. China.
| |
Collapse
|
21
|
Vitalis C, Wenzel T. Leveraging interactions in microfluidic droplets for enhanced biotechnology screens. Curr Opin Biotechnol 2023; 82:102966. [PMID: 37390513 DOI: 10.1016/j.copbio.2023.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Microfluidic droplet screens serve as an innovative platform for high-throughput biotechnology, enabling significant advancements in discovery, product optimization, and analysis. This review sheds light on the emerging trends of interaction assays in microfluidic droplets, underscoring the unique suitability of droplets for these applications. Encompassing a diverse range of biological entities such as antibodies, enzymes, DNA, RNA, various microbial and mammalian cell types, drugs, and other molecules, these assays demonstrate their versatility and scope. Recent methodological breakthroughs have escalated these screens to novel scales of bioanalysis and biotechnological product design. Moreover, we highlight pioneering advancements that extend droplet-based screens into new domains: cargo delivery within human bodies, application of synthetic gene circuits in natural environments, 3D printing, and the development of droplet structures responsive to environmental signals. The potential of this field is profound and only set to increase.
Collapse
Affiliation(s)
- Carolus Vitalis
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820244, Santiago, Chile
| | - Tobias Wenzel
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820244, Santiago, Chile.
| |
Collapse
|