1
|
Nawaito SA, Esmael M, Souchkova O, Cardinal T, Bernas G, Bergeron KF, Gayda F, Bergeron F, Bouchard MF, Zhou X, Ongaro L, Bernard DJ, Short J, Wray S, Viger RS, Mounier C, Pilon N. Brain-Specific Gata4 Downregulation in Greywick Female Mice Models the Metabolic Subtype of Polycystic Ovary Syndrome. FASEB J 2025; 39:e70717. [PMID: 40515561 DOI: 10.1096/fj.202401718rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 05/28/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogenous disorder characterized by reproductive and metabolic abnormalities. PCOS etiology remains poorly understood, although the hypothalamus is suspected to play a central role in many cases. Human genetic studies have also shown an association with the transcription factor-coding gene GATA4, but without providing a functional link. Here, we show that adult Greywick female mice may bridge this gap. These mice phenocopy PCOS with partial penetrance, due to the serendipitous insertion of a Gata4 promoter-driven transgene in a strong enhancer region. Resulting robust transgene expression in subsets of hypothalamic neurons and glia impairs endogenous Gata4 expression, resulting in misexpression of genes linked to the control of fertility and food intake. We also show that this previously overlooked role of GATA4 in the hypothalamus can be replicated by conditional knockout approaches. Overall, this study sheds light not only on PCOS etiology but also on the role played by GATA4 in the central control of reproduction.
Collapse
Affiliation(s)
- Sherin A Nawaito
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
- Department of Physiology, Suez Canal University, Ismailia, Egypt
| | - Mostafa Esmael
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Guillaume Bernas
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Karl-F Bergeron
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
- Lipid Metabolism Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Fanny Gayda
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Marie-France Bouchard
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jacob Short
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
- Department of Obstetrics, Gynecology, and Reproduction, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, Canada
| | - Catherine Mounier
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
- Lipid Metabolism Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Canada
| |
Collapse
|
2
|
Sheridan D, Chakravarty P, Golan G, Shiakola Y, Olsen J, Burnett E, Galichet C, Fiordelisio T, Mollard P, Melamed P, Lovell-Badge R, Rizzoti K. Gonadotrophs have a dual origin, with most derived from early postnatal pituitary stem cells. Nat Commun 2025; 16:4280. [PMID: 40399281 PMCID: PMC12095566 DOI: 10.1038/s41467-025-59495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/24/2025] [Indexed: 05/23/2025] Open
Abstract
Gonadotrophs are the essential pituitary endocrine cells for reproduction. They produce both luteinizing (LH) and follicle-stimulating (FSH) hormones that act on the gonads to promote germ cell maturation and steroidogenesis. Their secretion is controlled by the hypothalamic gonadotrophin-releasing hormone (GnRH), and gonadal steroid feedback. Gonadotrophs first appear in the embryonic pituitary, along with other endocrine cell types, and all expand after birth. While gonadotrophs may display heterogeneity in their response to GnRH, they appear, at least transcriptionally, as a homogenous population. The pituitary also contains a population of stem cells (SCs), whose contribution to postnatal growth is unclear, in part because endocrine cells maintain the ability to proliferate. Here we show an unsuspected dual origin of the murine adult gonadotroph population, with most gonadotrophs originating from postnatal pituitary stem cells starting early postnatally and up to puberty, while embryonic gonadotrophs are maintained. We further demonstrate that postnatal gonadotroph differentiation happens independently of gonadal signals and is not affected by impairment of GnRH signalling. The division of gonadotrophs based on separate origins has implications for our understanding of the establishment and regulation of reproductive functions, both in health and in disease.
Collapse
Affiliation(s)
- Daniel Sheridan
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Gil Golan
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Yiolanda Shiakola
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, London, NW1 1AT, UK
| | - Elise Burnett
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, NW1 1AT, UK
| | - Christophe Galichet
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, NW1 1AT, UK
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinologia Comparada, Laboratorio Nacional de Soluciones Biomimeticas para Diagnostico y Terapia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, Inserm, 34094, Montpellier, France
| | - Philippa Melamed
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Karine Rizzoti
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
3
|
Gombert-Labedens M, Vesterdorf K, Fuller A, Maloney SK, Baker FC. Effects of menopause on temperature regulation. Temperature (Austin) 2025; 12:92-132. [PMID: 40330614 PMCID: PMC12051537 DOI: 10.1080/23328940.2025.2484499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/08/2025] Open
Abstract
Changes in thermoregulation, notably the emergence of hot flashes, occur during the menopause transition in association with reproductive hormonal changes. Hot flashes constitute the most characteristic symptom of menopause (prevalence of 50-80%), and have a substantial negative effect on quality of life. Here, we review the endocrine changes associated with menopause and the thermoregulatory system and its sensitivity to female sex hormones. We then review current knowledge on the underlying neural mechanisms of hot flashes and how the reproductive and thermoregulatory systems interact in females. We consider the kisspeptin-neurokinin B-dynorphin (KNDy) neuron complex, which becomes hyperactive when estradiol levels decrease. KNDy neurons project from the arcuate nucleus to thermoregulatory areas within the hypothalamic preoptic area, where heat loss mechanisms are triggered, including cutaneous vasodilation and sweating - characteristics of the hot flash. We describe the physiology and measurement of hot flashes and discuss the mixed research findings about thresholds for sweating in symptomatic individuals. We consider the unique situation of hot flashes that arise during sleep, and discuss the relationships between the environment, exercise, and body mass index with hot flashes. We also discuss the unique situation of surgical menopause (with oophorectomy) and cancer therapy, conditions that are associated with frequent, severe, hot flashes. We then provide an overview of treatments of hot flashes, including hormone therapy and targeted neurokinin B-antagonists, recently developed to target the neural mechanism of hot flashes. Finally, we highlight gaps in knowledge about menopausal thermoregulation and hot flashes and suggest future directions for research.
Collapse
Affiliation(s)
| | - Kristine Vesterdorf
- School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane K. Maloney
- School of Human Sciences, The University of Western Australia, Perth, Australia
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Cotellessa L, Sobrino V, Silva MSB, Delit M, Maitre H, Caron E, Ternier G, da Silva Lima N, Lhomme T, Giton F, Sorrentino A, Carraresi L, Di Nardo G, Nogueiras R, Tena-Sempere M, Prevot V, Giacobini P. Preventing and correcting polycystic ovary syndrome by targeting anti-Müllerian hormone signaling in minipuberty and adulthood in mice. Cell Metab 2025:S1550-4131(25)00116-0. [PMID: 40220763 DOI: 10.1016/j.cmet.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrinopathy in women, causes significant reproductive and metabolic comorbidities, with no current cure. Gestational androgen and anti-Müllerian hormone (AMH) excess are linked to PCOS, and prenatal aberrant exposure to these hormones induces PCOS-like traits in animal models. However, whether the AMH effects on PCOS programming could extend to early postnatal life remains unknown. Clinical observations showed higher AMH levels during minipuberty in infants of mothers with PCOS, but whether this contributes to PCOS development is uncertain. Here, we show that exposure to high AMH levels during minipuberty in mice causes PCOS-like reproductive and metabolic defects in both sexes. A neutralizing antibody targeting AMH receptor 2 (AMHR2) prevented these defects when administered during minipuberty and alleviated symptoms when given in adulthood. These findings highlight the causal role of elevated AMH in PCOS and suggest AMHR2-targeting therapy as a potential preventive or curative approach.
Collapse
Affiliation(s)
- Ludovica Cotellessa
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Veronica Sobrino
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC) and Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Mauro S B Silva
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Maxime Delit
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Hélène Maitre
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Emilie Caron
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Gaëtan Ternier
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Natalia da Silva Lima
- CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Tori Lhomme
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Frank Giton
- IMRB - Inserm U955, Faculté de Santé, Créteil, France
| | - Andrea Sorrentino
- DIVAL Toscana Srl, Sesto Fiorentino, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Carraresi
- DIVAL Toscana Srl, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ruben Nogueiras
- CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC) and Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Paolo Giacobini
- University Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France.
| |
Collapse
|
5
|
Goto T, Hagihara M, Irie S, Abe T, Kiyonari H, Miyamichi K. Dietary availability acutely influences puberty onset via a hypothalamic neural circuit. Neuron 2025; 113:1036-1050.e5. [PMID: 39999843 DOI: 10.1016/j.neuron.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/21/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Reproduction poses a substantial burden, especially for mammalian females. Puberty onset serves as a vital checkpoint, regulated based on the body's energy state, to prevent inappropriate reproductive activity under malnutrition. However, the neural basis of this puberty checkpoint remains poorly understood. Here, we demonstrate that peripubertal malnutrition in female mice reduces the synchronous activity episodes of arcuate kisspeptin neurons, which are critical regulators of the gonadotropin axis. Improved dietary availability increased the frequency of this pulsatile activity, facilitating puberty onset. Using a viral-genetic approach, we show that the activity of agouti-related protein neurons in the arcuate nucleus, a hunger center, can bidirectionally regulate the pulsatile activity of kisspeptin neurons and follicular maturation in the ovaries. Collectively, a neural circuit connecting feeding to reproductive centers acts as an adjuster of the frequency of pulsatile kisspeptin neuron activity based on dietary availability, contributing to the neural basis of the puberty checkpoint.
Collapse
Affiliation(s)
- Teppei Goto
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| | - Mitsue Hagihara
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
6
|
Lin YF, Buddle ERS, Schultz H, Zhou X, Ongaro L, Loka M, Alonso CAI, Boehm U, Duggavathi R, Bernard DJ. Gonadotropin-releasing hormone regulates transcription of the inhibin B co-receptor, TGFBR3L, via early growth response one. J Biol Chem 2025; 301:108405. [PMID: 40090584 PMCID: PMC12018112 DOI: 10.1016/j.jbc.2025.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Follicle-stimulating hormone (FSH), a product of pituitary gonadotrope cells, regulates gonadal function and fertility. FSH production is stimulated by gonadotropin-releasing hormone (GnRH) and activin-class ligands of the TGFβ family. Inhibin A and B are TGFβ proteins that suppress FSH synthesis by competitively binding activin type II receptors in concert with the co-receptors betaglycan (TGFBR3) and TGFBR3L. Betaglycan mediates the actions of both inhibins and is broadly expressed. In contrast, TGFBR3L is inhibin B-specific and selectively expressed in gonadotropes. This cell-restricted expression is driven, in part, by steroidogenic factor 1 (SF-1, NR5A1), which stimulates Tgfbr3l/TGFBR3L transcription via two conserved promoter elements. Tgfbr3l expression is lost in mice lacking SF-1 in gonadotropes. However, SF-1 alone is unlikely to fully explain gonadotrope-restricted Tgfbr3l/TGFBR3L expression. Here, we report that GnRH induces binding of the transcription factor, early growth response 1 (EGR1), to the murine Tgfbr3l and human TGFBR3L promoters at a conserved cis-element between the two SF-1 binding sites. In homologous LβT2 cells, GnRH stimulation of Tgfbr3l/TGFBR3L promoter-reporters depends on EGR1 binding to this cis-element. In heterologous cells, over-expressed EGR1 independently and synergistically with SF-1 activates Tgfbr3l/TGFBR3L promoter-reporter activities. In vivo, Tgfbr3l mRNA expression is reduced in the pituitaries of: 1) GnRH-deficient mice, 2) wild-type mice treated with a GnRH receptor antagonist, and 3) gonadotrope-specific Egr1 knockout mice. Gonadectomy, which increases GnRH pulse frequency, enhances Tgfbr3l expression in control but not gonadotrope-specific Egr1 knockouts. Collectively, these data indicate that GnRH stimulates Tgfbr3l/TGFBR3L transcription via EGR1, which acts with SF-1 through conserved promoter elements.
Collapse
Affiliation(s)
- Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Mary Loka
- Integrated Program in Neuroscience, McGill University Montréal, Québec, Canada
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Montréal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University Montréal, Québec, Canada.
| |
Collapse
|
7
|
Koysombat K, Tsoutsouki J, Patel AH, Comninos AN, Dhillo WS, Abbara A. Kisspeptin and neurokinin B: roles in reproductive health. Physiol Rev 2025; 105:707-764. [PMID: 39813600 DOI: 10.1152/physrev.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which coexpress NKB, regulate the activity of gonadotropin-releasing hormone (GnRH) neurons and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health. Over the last two decades, research findings have considerably enhanced our understanding of the physiological regulation of the hypothalamic-pituitary-gonadal (HPG) axis and identified potential therapeutic applications. For example, recognition of the role of kisspeptin as the natural inductor of ovulation has led to research investigating its use as a safer, more physiological trigger of oocyte maturation in in vitro fertilization (IVF) treatment. Moreover, the key role of NKB in the pathophysiology of menopausal hot flashes has led to the development of pharmacological antagonism of this pathway. Indeed, fezolinetant, a neurokinin 3 receptor antagonist, has recently received Food and Drug Administration (FDA) approval for clinical use to treat menopausal vasomotor symptoms. Here, we discuss the roles of kisspeptin and NKB in human physiology, including in the regulation of puberty, menstrual cyclicity, reproductive behavior, pregnancy, menopause, and bone homeostasis. We describe how perturbations of these key physiological processes can result in disease states and consider how kisspeptin and NKB could be exploited diagnostically as well as therapeutically to treat reproductive disorders.
Collapse
Affiliation(s)
- Kanyada Koysombat
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jovanna Tsoutsouki
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aaran H Patel
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
8
|
Rousselle D, Silveyra P. Acute Exposure to Ozone Affects Circulating Estradiol Levels and Gonadotropin Gene Expression in Female Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:222. [PMID: 40003448 PMCID: PMC11855596 DOI: 10.3390/ijerph22020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Ozone, a critical air pollutant, has been shown to lead to systemic inflammation that can alter bodily functions, including hormone secretion, fertility, and the hypothalamic-pituitary-gonadal (HPG) axis. This study aimed to quantify changes in hormone production and follicle development after acute exposure to ozone using an animal model to identify the potential mechanisms underlying the observed effects of air pollution exposures on fertility and hormone secretion. To accomplish this, regularly cycling 8-week-old female C57BL/6J mice were exposed to 2 ppm of ozone or filtered air (control) for 3 h on the day of proestrus. Blood, ovaries, brain tissues, and pituitary glands were collected at 4 h after exposure to evaluate hormone levels, ovarian follicle distribution, and gene expression. Ovaries were also harvested at 24 h post-exposure. We found that at 4 h after ozone exposure, mice had significantly higher (30%) circulating estradiol levels than mice exposed to filtered air. This effect was accompanied by a decrease in mRNA expression of gonadotropin genes (LH, FSH) and gonadotropin-releasing hormone in the pituitary gland. Analysis of ovarian tissue at 4 h and 24 h after exposure showed no significant changes in follicle composition or the expression of steroidogenesis genes. We conclude that acute ozone exposure affects sex hormone levels and disrupts the HPG axis. Future studies addressing chronic or long-term effects of air pollution exposure are needed to elucidate the mechanisms by which ambient ozone affects endocrine function.
Collapse
Affiliation(s)
- Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Kraynak M, Willging MM, Uhlrich DJ, Shapiro RA, Flowers MT, Manning KA, John SD, Williams SM, Henjum LJ, Marrah RC, Yohnk HR, Berg CB, Brunner K, Colman RJ, Alexander AL, Abbott DH, Levine JE. Hypothalamic Estrogen Receptor α Is Essential for Female Marmoset Sexual Behavior Without Protecting From Obesity. J Endocr Soc 2025; 9:bvaf012. [PMID: 39911518 PMCID: PMC11795203 DOI: 10.1210/jendso/bvaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Indexed: 02/07/2025] Open
Abstract
Context Estrogen receptor α (ERα) in the ventromedial (VMN) and arcuate (ARC) nuclei of female rodent mediobasal hypothalami (MBHs) provides a crucial molecular gateway facilitating estradiol (E2) regulation of sexual behavior, reproductive neuroendocrinology, and metabolic function. In female nonhuman primates (NHPs) and women, however, its hypothalamic counterpart remains unknown. Objective We hypothesized that knockdown (KD) of ERα expression in the hypothalamic VMN and ARC of female marmosets would diminish sexual receptivity, while simultaneously disrupting gonadotropic and metabolic homeostasis. Methods We ovariectomized (OVX) adult female marmosets of comparable age and weight, immediately replaced E2 at midcycle levels, and approximately 1 month later assigned monkeys to diet-induced obesity (DIO) within group (1) control, receiving scrambled short hairpin RNA (shRNA), or (2) ERαKD, receiving selective ERα gene silencing shRNA. Magnetic resonance imaging-guided neural surgery enabled hypothalamic infusion of viral vector shRNA and subsequent brain immunohistochemistry enabled observer-validated, NIS-elements computer software quantification of ERα knockdown. Results ERα expression was significantly diminished in the VMN and ARC, but not the preoptic area (POA), of ERαKD females coincident with elimination of timely female sexual responses, more than 80% loss of female receptivity, modestly elevated gonadotropin levels, hyperglycemia, and diminished calorie consumption. Density and intensity of ERα-expressing cells in the VMN correlated positively with female sexual receptivity and calorie consumption, negatively with timeliness of female sexual responses, and in the ARC, correlated negatively with calorie consumption. Conclusion ERα activation in the female NHP MBH is critically important for female sexual behavior and modestly contributes to gonadotropic and metabolic control.
Collapse
Affiliation(s)
- Marissa Kraynak
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Molly M Willging
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Robert A Shapiro
- Department of Neuroscience, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Matthew T Flowers
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Sara D John
- Department of Radiology, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Samantha M Williams
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Lukas J Henjum
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Rebecca C Marrah
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Hannah R Yohnk
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Carter B Berg
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Kevin Brunner
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Andrew L Alexander
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Neuroscience, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
10
|
Long BY, Liao X, Liang X. The Hypothalamus and Pituitary Gland Regulate Reproduction and Are Involved in the Development of Polycystic Ovary Syndrome. Neuroendocrinology 2025; 115:315-334. [PMID: 39894018 DOI: 10.1159/000543877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex condition with unclear mechanisms, posing a challenge for prevention and treatment of PCOS. The role of the hypothalamus and pituitary gland in regulating female reproduction is critical. Abnormalities in the hypothalamus and pituitary can impair reproductive function. It is important to study hypothalamic and pituitary changes in patients with PCOS. SUMMARY This article reviews articles on the hypothalamus and PCOS with the goal of summarizing what abnormalities of the hypothalamic-pituitary-ovarian axis are present in patients with PCOS and to clarify the pathogenesis of PCOS. We find that the mechanisms by which the hypothalamus and pituitary regulate reproduction in girls are complex and are associated with altered sex hormone levels, obesity, and insulin resistance. Different animal models of PCOS are characterized by different alterations in the hypothalamus and pituitary and respond differently to different treatments, which correspond to the complex pathogenesis of patients with PCOS. KEY MESSAGES Arcuate nucleus (ARC) is associated with luteinizing hormone (LH) surges. Suprachiasmatic nucleus, ARC, and RP3V are associated with LH surges. Animal models of PCOS have different characteristics.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xipeng Liao
- Tianjin University of Technology, Tianjin, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Hackwell E, Ladyman SR, Clarkson J, McQullian HJ, Boehm U, Herbison AE, Brown R, Grattan DR. Prolactin-mediates a lactation-induced suppression of arcuate kisspeptin neuronal activity necessary for lactational infertility in mice. eLife 2025; 13:RP94570. [PMID: 39819370 PMCID: PMC11741520 DOI: 10.7554/elife.94570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.
Collapse
Affiliation(s)
- Eleni Hackwell
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
| | - Sharon R Ladyman
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| | - Jenny Clarkson
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - H James McQullian
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
| | - Ulrich Boehm
- Saarland University School of Medicine, Centre for Molecular Signalling (PZMS), Experimental PharmacologyHomburgGermany
| | - Allan Edward Herbison
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Rosemary Brown
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - David R Grattan
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| |
Collapse
|
12
|
Zhou Z, Han SY, Pardo-Navarro M, Wall EG, Desai R, Vas S, Handelsman DJ, Herbison AE. GnRH pulse generator activity in mouse models of polycystic ovary syndrome. eLife 2025; 13:RP97179. [PMID: 39761106 DOI: 10.7554/elife.97179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARNKISS) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS. We began with the peripubertal androgen (PPA) mouse model of PCOS but found that it had a reduction in the frequency of ARNKISS neuron synchronization events (SEs) that drive LH pulses. Examining the prenatal androgen (PNA) model of PCOS, we observed highly variable patterns of pulse generator activity with no significant differences detected in ARNKISS neuron SEs, pulsatile LH secretion, or serum testosterone, estradiol, and progesterone concentrations. However, a machine learning approach identified that the ARNKISS neurons of acyclic PNA mice continued to exhibit cyclical patterns of activity similar to that of normal mice. The frequency of ARNKISS neuron SEs was significantly increased in algorithm-identified 'diestrous stage' PNA mice compared to controls. In addition, ARNKISS neurons exhibited reduced feedback suppression to progesterone in PNA mice and their gonadotrophs were also less sensitive to GnRH. These observations demonstrate the importance of understanding GnRH pulse generator activity in mouse models of PCOS. The existence of cyclical GnRH pulse generator activity in the acyclic PNA mouse indicates the presence of a complex phenotype with deficits at multiple levels of the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Ziyue Zhou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Su Young Han
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria Pardo-Navarro
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ellen G Wall
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Szilvia Vas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Allan E Herbison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Watanabe Y, Fisher L, Campbell RE, Jasoni CL. Developmental expression patterns of gonadal hormone receptors in arcuate kisspeptin and GABA neurons of the postnatal female mouse. J Neuroendocrinol 2025; 37:e13477. [PMID: 39605295 DOI: 10.1111/jne.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
The arcuate nucleus of the hypothalamus (ARC) is central in the neuronal regulation of fertility and reproduction through translating gonadal steroid hormone cues into the GnRH signaling pathway in the brain. Evidence suggests that circulating gonadal steroids play an important role in modulating female reproduction via kisspeptin and γ-aminobutyric acid (GABA) neurons in the ARC in both development and adulthood. However, the temporal onset of these ARC neurons' sensitivity to gonadal steroids is unknown. Using RNAscope® in situ hybridization, we localized androgen receptor (Ar), estrogen receptor alpha (Esr1), and progesterone receptor (Pgr) expression in ARC kisspeptin or GABA neurons of female mice at postnatal day (P)4, P8, P12, P20, and P60. A probe that binds to kiss1 mRNA or vGat mRNA was used to produce signal in kisspeptin or GABA neurons, respectively. In adult, we identified that the vast majority of kisspeptin neurons coexpressed Esr1 (95%) and Pgr (93%), while a smaller proportion coexpressed Ar (66%). Similar proportions of Ar- or Esr1-positive kisspeptin neurons were seen from P4, suggesting that kisspeptin neurons develop adult-like sensitivity to androgen and estrogen in early postnatal life. In contrast, the proportion of Pgr-positive kisspeptin cells in early life was significantly lower than in adulthood, suggesting that progesterone sensitivity develops over time in the ARC kisspeptin population. ARC GABA neurons also colocalized with Ar (70%), Esr1 (64%), or Pgr (85%) in adulthood. GABA neurons continuously expressed Esr1 or Pgr from the postnatal stages to adulthood, while the proportion of Ar-positive GABA neurons gradually increased from P4 (24%) to P20 (59%). These results suggest that while ARC GABA neurons can respond to circulating estrogen and progesterone from early postnatal ages, this same population may become more sensitive to androgens during later postnatal life. Our findings identified the expression patterns of Ar, Esr1, and Pgr by ARC kisspeptin and GABA neurons during early postnatal life. These data provide the understanding for the hormone sensitivity of these populations during early postnatal life, the critical time for the formation and regulation of female reproductive physiology.Esr1 (95%) and Pgr (93%), while a smaller proportion coexpressed Ar (66%). Similar proportions of Ar- or Esr1-positive kisspeptin neurons were seen from P4, suggesting that kisspeptin neurons develop adult-like sensitivity to androgen and estrogen in early postnatal life. In contrast, the proportion of Pgr-positive kisspeptin cells in early life was significantly lower than in adulthood, suggesting that progesterone sensitivity develops over time in the ARC kisspeptin population. ARC GABA neurons also colocalized with Ar (70%), Esr1 (64%), or Pgr (85%) in adulthood. GABA neurons continuously expressed Esr1 or Pgr from the postnatal stages to adulthood, while the proportion of Ar-positive GABA neurons gradually increased from P4 (24%) to P20 (59%). These results suggest that while ARC GABA neurons can respond to circulating estrogen and progesterone from early postnatal ages, this same population may become more sensitive to androgens during later postnatal life. Our findings identified the expression patterns of Ar, Esr1, and Pgr by ARC kisspeptin and GABA neurons during early postnatal life. These data provide the understanding for the hormone sensitivity of these populations during early postnatal life, the critical time for the formation and regulation of female reproductive physiology.
Collapse
Affiliation(s)
- Yugo Watanabe
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Lorryn Fisher
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
14
|
Bearss RJ, Oliver IA, Neuman PN, Abdulmajeed WI, Ackerman JM, Piet R. Activation of ionotropic and group I metabotropic glutamate receptors stimulates kisspeptin neuron activity in mice. J Neuroendocrinol 2025; 37:e13456. [PMID: 39414384 PMCID: PMC11750333 DOI: 10.1111/jne.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Different populations of hypothalamic kisspeptin (KISS1) neurons located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARC) are thought to generate the sex-specific patterns of gonadotropin secretion. These neuronal populations integrate gonadal sex steroid feedback with internal and external cues relayed via the actions of neurotransmitters and neuropeptides. The excitatory amino acid neurotransmitter glutamate, the main excitatory neurotransmitter in the brain, plays a role in regulating gonadotropin secretion, at least partially through engaging KISS1 signaling. The expression and function of individual glutamate receptor subtypes in KISS1 neurons, however, are not well characterized. Here, we used GCaMP-based calcium imaging and patch-clamp electrophysiology to assess the impact of activating individual ionotropic (iGluR) and group I metabotropic (mGluR) glutamate receptors on KISS1 neuron activity in the mouse RP3V and ARC. Our results indicate that activation of all iGluR subtypes and of group I mGluRs, likely mGluR1, consistently drives activity in the majority of KISS1 neurons within the RP3V and ARC of males and females. Our results also revealed, somewhat unexpectedly, sex- and region-specific differences. Indeed, activating (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type iGluRs evoked larger responses in female ARCKISS1 neurons than in their male counterparts whereas activating group I mGluRs induced larger responses in RP3VKISS1 neurons than in ARCKISS1 neurons in females. Together, our findings suggest that glutamatergic neurotransmission in KISS1 neurons, and its impact on the activity of these cells, might be sex- and region-dependent in mice.
Collapse
Affiliation(s)
- Robin J. Bearss
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Brain Health Research InstituteKent State UniversityKentOhioUSA
| | | | - Peighton N. Neuman
- Brain Health Research InstituteKent State UniversityKentOhioUSA
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | - Wahab I. Abdulmajeed
- Brain Health Research InstituteKent State UniversityKentOhioUSA
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | - Jennifer M. Ackerman
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Brain Health Research InstituteKent State UniversityKentOhioUSA
| | - Richard Piet
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Brain Health Research InstituteKent State UniversityKentOhioUSA
- Department of Biological SciencesKent State UniversityKentOhioUSA
| |
Collapse
|
15
|
Fernandois D, Rusidzé M, Mueller-Fielitz H, Sauve F, Deligia E, Silva MSB, Evrard F, Franco-García A, Mazur D, Martinez-Corral I, Jouy N, Rasika S, Maurage CA, Giacobini P, Nogueiras R, Dehouck B, Schwaninger M, Lenfant F, Prevot V. Estrogen receptor-α signaling in tanycytes lies at the crossroads of fertility and metabolism. Metabolism 2024; 158:155976. [PMID: 39019342 PMCID: PMC7616427 DOI: 10.1016/j.metabol.2024.155976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with viral-mediated, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.
Collapse
Affiliation(s)
- Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Helge Mueller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Florence Evrard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain, Instituto Murciano de Investigación Biosanitaria (IMIB), Pascual Parrilla, Murcia, Spain
| | - Daniele Mazur
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ines Martinez-Corral
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | | | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Benedicte Dehouck
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Francoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France.
| |
Collapse
|
16
|
Dillon KM, Lohr DB, Novak AG, Petriv AMV, Neifert NT, Moore AM. Deletion of Nuclear Progesterone Receptors From Kisspeptin Cells Does Not Impair Negative Feedback in Female Mice. Endocrinology 2024; 165:bqae121. [PMID: 39253941 DOI: 10.1210/endocr/bqae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Reproductive function in mammals depends on the ability of progesterone (P4) to suppress pulsatile gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion in a homeostatic-negative feedback loop. Previous research identified that cells upstream from GnRH neurons expressing the nuclear progesterone receptor (PGR) are required for P4-negative feedback. However, the identity of these cells and the mechanism by which they reduce GnRH/LH pulsatile secretion is unknown. We aimed to address the hypothesis that PGR expressed by a neural population in the arcuate nucleus recently identified as the GnRH pulse generator, cells expressing kisspeptin, neurokinin B, and dynorphin (KNDy cells), mediate P4-negative feedback. To achieve this, we used female mice with the PGR gene conditionally deleted from kisspeptin cells (KPRKO mice) and observed a substantial decrease in the percentage of KNDy neurons coexpressing PGR messenger RNA (mRNA) (11% in KPRKO mice vs 86% in wild-type [WT] mice). However, KPRKO mice did not display changes in the frequency or amplitude of LH pulses in diestrus or estrus, nor in the ability of exogenous P4 to blunt a postcastration increase in LH. Further, mRNA expression of arcuate kisspeptin and dynorphin, which are excitatory and inhibitory to GnRH secretion, respectively, remained unaltered in KPRKO mice compared to WT controls. Together, these findings show that the near-complete loss of PGR signaling from KNDy cells does not affect negative feedback regulation of GnRH pulse generation in mice, suggesting that feedback through this receptor can occur via a small number of KNDy cells or a yet unidentified cell population.
Collapse
Affiliation(s)
- Kendra M Dillon
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Dayanara B Lohr
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Alyssa G Novak
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Anna-Maria V Petriv
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Nicole T Neifert
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Aleisha M Moore
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| |
Collapse
|
17
|
Dardente H, Lomet D, Robert V, Lasserre O, Gonzalez AA, Mialhe X, Beltramo M. Photoperiod, but not progesterone, has a strong impact upon the transcriptome of the medio-basal hypothalamus in female goats and ewes. Mol Cell Endocrinol 2024; 588:112216. [PMID: 38556161 DOI: 10.1016/j.mce.2024.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Photoperiod is the main environmental driver of seasonal responses in organisms living at temperate and polar latitudes. Other external cues such as food and temperature, and internal cues including hormones, intervene to fine-tune phasing of physiological functions to the solar year. In mammals, the medio-basal hypothalamus (MBH) is the key integrator of these cues, which orchestrates a wide array of seasonal functions, including breeding. Here, using RNAseq and RT-qPCR, we demonstrate that molecular components of the photoperiodic response previously identified in ewes are broadly conserved in does (female goats, Capra hircus), with a common core of ∼50 genes. This core group can be defined as the "MBH seasonal trancriptome", which includes key players of the pars tuberalis-tanycytes neuroendocrine retrograde pathway that governs intra-MBH photoperiodic switches of triiodothyronine (T3) production (Tshb, Eya3, Dio2 and SlcO1c1), the two histone methyltransferases Suv39H2 and Ezh2 and the secreted protein Vmo1. Prior data in ewes revealed that T3 and estradiol (E2), both key hormones for the proper timing of seasonal breeding, differentially impact the MBH seasonal transcriptome, and identified cellular and molecular targets through which these hormones might act. In contrast, information regarding the potential impact of progesterone (P4) upon the MBH transcriptome was nonexistent. Here, we demonstrate that P4 has no discernible transcriptional impact in either does or ewes. Taken together, our data show that does and ewes possess a common core set of photoperiod-responsive genes in the MBH and conclusively demonstrate that P4 is not a key regulator of the MBH transcriptome.
Collapse
Affiliation(s)
- Hugues Dardente
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Didier Lomet
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Vincent Robert
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | | |
Collapse
|
18
|
Moffa JC, Bland IN, Tooley JR, Kalyanaraman V, Heitmeier M, Creed MC, Copits BA. Cell-Specific Single Viral Vector CRISPR/Cas9 Editing and Genetically Encoded Tool Delivery in the Central and Peripheral Nervous Systems. eNeuro 2024; 11:ENEURO.0438-23.2024. [PMID: 38871457 PMCID: PMC11228695 DOI: 10.1523/eneuro.0438-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
CRISPR/Cas9 gene editing represents an exciting avenue to study genes of unknown function and can be combined with genetically encoded tools such as fluorescent proteins, channelrhodopsins, DREADDs, and various biosensors to more deeply probe the function of these genes in different cell types. However, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 from a genomic locus affords space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three common tools in neuroscience: ChRonos, a channelrhodopsin, for studying synaptic transmission using optogenetics, GCaMP8f for recording Ca2+ transients using photometry, and mCherry for tracing axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens, glutamatergic neurons projecting from the ventral pallidum to the lateral habenula, dopaminergic neurons in the ventral tegmental area, and proprioceptive neurons in the periphery. This flexible approach could help identify and test the function of novel genes affecting synaptic transmission, circuit activity, or morphology with a single viral injection.
Collapse
Affiliation(s)
- Jamie C Moffa
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri 63110
| | - India N Bland
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jessica R Tooley
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Division of Biological and Behavioral Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Vani Kalyanaraman
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Monique Heitmeier
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Departments of Neuroscience, Psychiatry, and Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
19
|
Dorfman VB. Distribution of the kisspeptin system and its relation with gonadotropin-releasing hormone in the hypothalamus. VITAMINS AND HORMONES 2024; 127:51-78. [PMID: 39864946 DOI: 10.1016/bs.vh.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Kisspeptin (KISS1), originally catalogued as metastin because of its capacity as a metastasis suppressor in human melanoma and breast cancer, is now recognized as the major puberty gatekeeper and gonadotropin-releasing hormone (GnRH) neuroendocrine system modulator. It is a member of the family of RFamide-related peptides that also includes the neuropeptide FF group, the gonadotropin-inhibitory hormone, the prolactin-releasing peptide, and the 26RFa peptides. The KISS1 precursor peptide is processed into a family of peptides known as kisspeptins. Its expression has been described in the hypothalamus as well as in the whole reproductive axis and several extra reproductive tissues of mammals as well as fish and amphibians, but not in birds. KISS1 plays an essential role as a regulator of the reproductive axis by inducing the synthesis and release of GnRH, acting through specific receptors. The study of the kisspeptin system and its relation with reproduction in wild and non-classical laboratory species is extremely useful to understand and become aware of the role of KISS1 in the wide variety of possible different reproductive strategies. In this chapter, KISS1 involvement in non-classical laboratory rodents, fishes, and birds is discussed.
Collapse
Affiliation(s)
- Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
20
|
Torres T, Adam N, Mhaouty-Kodja S, Naulé L. Reproductive function and behaviors: an update on the role of neural estrogen receptors alpha and beta. Front Endocrinol (Lausanne) 2024; 15:1408677. [PMID: 38978624 PMCID: PMC11228153 DOI: 10.3389/fendo.2024.1408677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Infertility is becoming a major public health problem, with increasing frequency due to medical, environmental and societal causes. The increasingly late age of childbearing, growing exposure to endocrine disruptors and other reprotoxic products, and increasing number of medical reproductive dysfunctions (endometriosis, polycystic ovary syndrome, etc.) are among the most common causes. Fertility relies on fine-tuned control of both neuroendocrine function and reproductive behaviors, those are critically regulated by sex steroid hormones. Testosterone and estradiol exert organizational and activational effects throughout life to establish and activate the neural circuits underlying reproductive function. This regulation is mediated through estrogen receptors (ERs) and androgen receptor (AR). Estradiol acts mainly via nuclear estrogen receptors ERα and ERβ. The aim of this review is to summarize the genetic studies that have been undertaken to comprehend the specific contribution of ERα and ERβ in the neural circuits underlying the regulation of the hypothalamic-pituitary-gonadal axis and the expression of reproductive behaviors, including sexual and parental behavior. Particular emphasis will be placed on the neural role of these receptors and the underlying sex differences.
Collapse
Affiliation(s)
| | | | | | - Lydie Naulé
- Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
21
|
Szabó F, Köves K, Gál L. History of the Development of Knowledge about the Neuroendocrine Control of Ovulation-Recent Knowledge on the Molecular Background. Int J Mol Sci 2024; 25:6531. [PMID: 38928237 PMCID: PMC11203711 DOI: 10.3390/ijms25126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.
Collapse
Affiliation(s)
- Flóra Szabó
- Division of Gastroenterology and Nutrition, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Levente Gál
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
22
|
Sucquart IE, Coyle C, Rodriguez Paris V, Prescott M, Glendining KA, Potapov K, Begg DP, Gilchrist RB, Walters KA, Campbell RE. Investigating GABA Neuron-Specific Androgen Receptor Knockout in two Hyperandrogenic Models of PCOS. Endocrinology 2024; 165:bqae060. [PMID: 38788194 PMCID: PMC11151696 DOI: 10.1210/endocr/bqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Androgen excess is a hallmark feature of polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Clinical and preclinical evidence links developmental or chronic exposure to hyperandrogenism with programming and evoking the reproductive and metabolic traits of PCOS. While critical androgen targets remain to be determined, central GABAergic neurons are postulated to be involved. Here, we tested the hypothesis that androgen signaling in GABAergic neurons is critical in PCOS pathogenesis in 2 well-characterized hyperandrogenic mouse models of PCOS. Using cre-lox transgenics, GABA-specific androgen receptor knockout (GABARKO) mice were generated and exposed to either acute prenatal androgen excess (PNA) or chronic peripubertal androgen excess (PPA). Females were phenotyped for reproductive and metabolic features associated with each model and brains of PNA mice were assessed for elevated GABAergic input to gonadotropin-releasing hormone (GnRH) neurons. Reproductive and metabolic dysfunction induced by PPA, including acyclicity, absence of corpora lutea, obesity, adipocyte hypertrophy, and impaired glucose homeostasis, was not different between GABARKO and wild-type (WT) mice. In PNA mice, acyclicity remained in GABARKO mice while ovarian morphology and luteinizing hormone secretion was not significantly impacted by PNA or genotype. However, PNA predictably increased the density of putative GABAergic synapses to GnRH neurons in adult WT mice, and this PNA-induced plasticity was absent in GABARKO mice. Together, these findings suggest that while direct androgen signaling in GABA neurons is largely not required for the development of PCOS-like traits in androgenized models of PCOS, developmental programming of GnRH neuron innervation is dependent upon androgen signaling in GABA neurons.
Collapse
Affiliation(s)
- Irene E Sucquart
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Randwick, NSW 2031, Australia
| | - Chris Coyle
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Valentina Rodriguez Paris
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Randwick, NSW 2031, Australia
- School of Biomedical Sciences, University of New South Wales Sydney, Randwick, NSW 2052, Australia
| | - Melanie Prescott
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Kelly A Glendining
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Kyoko Potapov
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Denovan P Begg
- Department of Behavioural Neuroscience, School of Psychology, University of New South Wales Sydney, Randwick, NSW, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Randwick, NSW 2031, Australia
| | - Kirsty A Walters
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Randwick, NSW 2031, Australia
| | - Rebecca E Campbell
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| |
Collapse
|
23
|
Abbott DH, Hutcherson B, Dumesic DA. Anti-Müllerian Hormone: A Molecular Key to Unlocking Polycystic Ovary Syndrome? Semin Reprod Med 2024; 42:41-48. [PMID: 38908381 PMCID: PMC12107497 DOI: 10.1055/s-0044-1787525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Anti-Müllerian hormone (AMH) is an important component within androgen receptor (AR)-regulated pathways governing the hyperandrogenic origin of polycystic ovary syndrome (PCOS). In women with PCOS, granulosa cell AMH overexpression in developing ovarian follicles contributes to elevated circulating AMH levels beginning at birth and continuing in adolescent daughters of PCOS women. A 6 to 7% incidence among PCOS women of gene variants coding for AMH or its receptor, AMHR2, suggests genetic contributions to AMH-related pathogenesis. Discrete gestational AMH administration to pregnant mice induces hypergonadotropic hyperandrogenic, PCOS-like female offspring with high circulating AMH levels that persist over three generations, suggesting epigenetic contributions to PCOS through developmental programming. Moreover, adult-onset, selective hyperactivation of hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH) induces hypergonadotropic hyperandrogenism and PCOS-like traits in female mice. Both gestational and adult AMH inductions of PCOS-like traits are prevented by GnRH antagonist coadministration, implicating luteinizing hormone-dependent ovarian theca cell testosterone (T) action, mediated through the AR in AMH-induced pathogenesis. Interestingly, gestational or peripubertal exogenous T or dihydrotestosterone induction of PCOS-like traits in female mice, rats, sheep, and monkeys fails to elicit ovarian AMH hypersecretion; thus, AMH excess per se may lead to a distinct pathogenic contribution to hyperandrogenic PCOS origins.
Collapse
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology
- Wisconsin National Primate Research Center
- Endocrinology and Reproductive Physiology Training Program
| | - Beverly Hutcherson
- Wisconsin National Primate Research Center
- Endocrinology and Reproductive Physiology Training Program
- Dean’s Office, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, California, United States
| |
Collapse
|
24
|
Vas S, Wall E, Zhou Z, Kalmar L, Han SY, Herbison AE. Long-term Recordings of Arcuate Nucleus Kisspeptin Neurons Across the Mouse Estrous Cycle. Endocrinology 2024; 165:bqae009. [PMID: 38279940 PMCID: PMC10873703 DOI: 10.1210/endocr/bqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
The arcuate nucleus kisspeptin (ARNKISS) neurons represent the GnRH pulse generator that likely drives pulsatile gonadotropin secretion in all mammals. Using an improved GCaMP fiber photometry system enabling long-term continuous recordings, we aimed to establish a definitive profile of ARNKISS neuronal activity across the murine estrous cycle. As noted previously, a substantial reduction in the frequency of ARNKISS neuron synchronization events (SEs) occurs on late proestrus and extends into estrus. The SE amplitude remains constant throughout the cycle. During metestrus, we unexpectedly detected many multipeak SEs where many SEs occurred rapidly, within 160 seconds of each other. By applying a machine learning-based, k-means clustering analysis, we were further able to detect substantial within-stage variability in the patterns of pulse generator activity. Estrous cycle-dependent changes in SE activity occurred around the time of lights on and off. We also find that a mild stressor such as vaginal lavage reduces ARNKISS neuron SE frequency for up to 3 hours. These observations provide a comprehensive account of ARNKISS neuron activity across the estrous cycle, highlight a new pattern of multipeak SE activity, and introduce a new k-means clustering approach for analyzing ARNKISS neuron population behavior.
Collapse
Affiliation(s)
- Szilvia Vas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ellen Wall
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ziyue Zhou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Lajos Kalmar
- Department of Toxicology, University of Cambridge, Cambridge CB2 1QR, UK
| | - Su Young Han
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Allan E Herbison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
25
|
Moore AM, Novak AG, Lehman MN. KNDy Neurons of the Hypothalamus and Their Role in GnRH Pulse Generation: an Update. Endocrinology 2023; 165:bqad194. [PMID: 38170643 PMCID: PMC10768882 DOI: 10.1210/endocr/bqad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
There is considerable evidence that synchronized activity within a reciprocally connected population of cells in the arcuate nucleus (ARC) coexpressing kisspeptin, neurokinin B (NKB), and dynorphin (KNDy cells) is crucial for the generation of gonadotrophin-releasing hormone (GnRH) pulses in mammals. The initial "KNDy hypothesis" proposed that pulsatile GnRH secretion is elicited by episodic kisspeptin release from KNDy cells following synchronized activation and termination of the population by NKB and dynorphin, respectively. Since then, the role of KNDy cells as a critical component of the pulse generator has been further supported by studies at the single-cell level, demonstrating that the population is both necessary and sufficient for pulsatility. In addition, there have been considerable modifications and expansion of the original hypothesis, including work demonstrating the critical role of glutamate in synchronization of the KNDy cell network, functional interactions with other ARC subpopulations, and the existence of species differences in the role of dynorphin in pulse generation. Here we review these recent changes and discuss how the translation of these findings has led to the development of new therapies for disorders related to pulse generation. We also outline critical gaps in knowledge that are currently limiting the application of KNDy research in the clinic, particularly regarding the role of dynorphin in pulse generation in primates.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Alyssa G Novak
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
26
|
Clarkson J, Yip SH, Porteous R, Kauff A, Heather AK, Herbison AE. CRISPR-Cas9 knockdown of ESR1 in preoptic GABA-kisspeptin neurons suppresses the preovulatory surge and estrous cycles in female mice. eLife 2023; 12:RP90959. [PMID: 38126277 PMCID: PMC10735218 DOI: 10.7554/elife.90959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Evidence suggests that estradiol-sensing preoptic area GABA neurons are involved in the preovulatory surge mechanism necessary for ovulation. In vivo CRISPR-Cas9 editing was used to achieve a 60-70% knockdown in estrogen receptor alpha (ESR1) expression by GABA neurons located within the regions of the rostral periventricular area of the third ventricle (RP3V) and medial preoptic nuclei (MPN) in adult female mice. Mice exhibited variable reproductive phenotypes with the only significant finding being mice with bilateral ESR1 deletion in RP3V GABA neurons having reduced cFos expression in gonadotropin-releasing hormone (GnRH) neurons at the time of the surge. One sub-population of RP3V GABA neurons expresses kisspeptin. Re-grouping ESR1-edited mice on the basis of their RP3V kisspeptin expression revealed a highly consistent phenotype; mice with a near-complete loss of kisspeptin immunoreactivity displayed constant estrus and failed to exhibit surge activation but retained pulsatile luteinizing hormone (LH) secretion. These observations demonstrate that ESR1-expressing GABA-kisspeptin neurons in the RP3V are essential for the murine preovulatory LH surge mechanism.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, University of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Siew Hoong Yip
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, University of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Robert Porteous
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, University of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Alexia Kauff
- Department of Physiology, University of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Alison K Heather
- Department of Physiology, University of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Allan E Herbison
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, University of Otago School of Biomedical SciencesDunedinNew Zealand
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
27
|
Nagae M, Yamada K, Enomoto Y, Kometani M, Tsuchida H, Panthee A, Nonogaki M, Matsunaga N, Takizawa M, Matsuzaki S, Hirabayashi M, Inoue N, Tsukamura H, Uenoyama Y. Conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons caused estrogen-dependent LH pulse disruption and LH surge attenuation in female rats. Sci Rep 2023; 13:20495. [PMID: 37993510 PMCID: PMC10665460 DOI: 10.1038/s41598-023-47222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre. The Kiss1-floxed/Oprk1-Cre female rats, with Kiss1 deleted in a majority of KNDy neurons, showed normal puberty while having a one-day longer estrous cycle and fewer pups than Kiss1-floxed controls. Notably, ovariectomized (OVX) Kiss1-floxed/Oprk1-Cre rats showed profound disruption of LH pulses in the presence of a diestrous level of estrogen but showed apparent LH pulses without estrogen treatment. Furthermore, Kiss1-floxed/Oprk1-Cre rats, with Kiss1 deleted in approximately half of AVPV kisspeptin neurons, showed a lower peak of the estrogen-induced LH surge than controls. These results suggest that arcuate and AVPV kisspeptin neurons expressing or having expressed Oprk1 have a role in maintaining normal GnRH pulse and surge generation, the normal length of the estrous cycle, and the normal offspring number in female rats.
Collapse
Affiliation(s)
- Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yuki Enomoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Mari Kometani
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Arvinda Panthee
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Miku Nonogaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Nao Matsunaga
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Sena Matsuzaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
28
|
Berndt A, Cai D, Cohen A, Juarez B, Iglesias JT, Xiong H, Qin Z, Tian L, Slesinger PA. Current Status and Future Strategies for Advancing Functional Circuit Mapping In Vivo. J Neurosci 2023; 43:7587-7598. [PMID: 37940594 PMCID: PMC10634581 DOI: 10.1523/jneurosci.1391-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 11/10/2023] Open
Abstract
The human brain represents one of the most complex biological systems, containing billions of neurons interconnected through trillions of synapses. Inherent to the brain is a biochemical complexity involving ions, signaling molecules, and peptides that regulate neuronal activity and allow for short- and long-term adaptations. Large-scale and noninvasive imaging techniques, such as fMRI and EEG, have highlighted brain regions involved in specific functions and visualized connections between different brain areas. A major shortcoming, however, is the need for more information on specific cell types and neurotransmitters involved, as well as poor spatial and temporal resolution. Recent technologies have been advanced for neuronal circuit mapping and implemented in behaving model organisms to address this. Here, we highlight strategies for targeting specific neuronal subtypes, identifying, and releasing signaling molecules, controlling gene expression, and monitoring neuronal circuits in real-time in vivo Combined, these approaches allow us to establish direct causal links from genes and molecules to the systems level and ultimately to cognitive processes.
Collapse
Affiliation(s)
| | - Denise Cai
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | | | | | - Zhenpeng Qin
- University of Texas-Dallas, Richardson, TX 75080
| | - Lin Tian
- University of California-Davis, Davis, CA 95616
| | | |
Collapse
|
29
|
Moffa JC, Bland IN, Tooley JR, Kalyanaraman V, Heitmeier M, Creed MC, Copits BA. Cell specific single viral vector CRISPR/Cas9 editing and genetically encoded tool delivery in the central and peripheral nervous systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561249. [PMID: 37873336 PMCID: PMC10592710 DOI: 10.1101/2023.10.10.561249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gene manipulation strategies using germline knockout, conditional knockout, and more recently CRISPR/Cas9 are crucial tools for advancing our understanding of the nervous system. However, traditional gene knockout approaches can be costly and time consuming, may lack cell-type specificity, and can induce germline recombination. Viral gene editing presents and an exciting alternative to more rapidly study genes of unknown function; however, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we have developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 in specific cell types in transgenic mouse lines affords more space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three commonly used tools in neuroscience: ChRonos, a channelrhodopsin, for manipulating synaptic transmission using optogenetics; GCaMP8f for recording Ca2+ transients using fiber photometry, and mCherry for anatomical tracing of axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens (NAc), glutamatergic neurons projecting from the ventral pallidum (VP) to the lateral habenula (LHb), dopaminergic neurons in the ventral tegmental area (VTA), and parvalbumin (PV)-positive proprioceptive neurons in the periphery. This flexible approach should be useful to identify novel genes that affect synaptic transmission, circuit activity, or morphology with a single viral injection.
Collapse
Affiliation(s)
- Jamie C. Moffa
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Washington University Medical Scientist Training Program, Washington University School of Medicine; St. Louis, MO
| | - India N. Bland
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Jessica R. Tooley
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Washington University Division of Biological and Behavioral Sciences, Washington University School of Medicine; St. Louis, MO
| | - Vani Kalyanaraman
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Monique Heitmeier
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Meaghan C. Creed
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Departments of Neuroscience, Psychiatry, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| |
Collapse
|
30
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
31
|
Ramos-Pittol JM, Fernandes-Freitas I, Milona A, Manchishi SM, Rainbow K, Lam BYH, Tadross JA, Beucher A, Colledge WH, Cebola I, Murphy KG, Miguel-Aliaga I, Yeo GSH, Dhillo WS, Owen BM. Dax1 modulates ERα-dependent hypothalamic estrogen sensing in female mice. Nat Commun 2023; 14:3076. [PMID: 37248237 PMCID: PMC10227040 DOI: 10.1038/s41467-023-38618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.
Collapse
Affiliation(s)
- Jose M Ramos-Pittol
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | | | - Alexandra Milona
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen M Manchishi
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Kara Rainbow
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - John A Tadross
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
- Department of Histopathology and East Midlands & East of England Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anthony Beucher
- Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - William H Colledge
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Inês Cebola
- Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - Kevin G Murphy
- Section of Investigative Medicine, Imperial College London, London, United Kingdom
| | - Irene Miguel-Aliaga
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.
| | - Bryn M Owen
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
32
|
Goto T, Hagihara M, Miyamichi K. Dynamics of pulsatile activities of arcuate kisspeptin neurons in aging female mice. eLife 2023; 12:82533. [PMID: 37223988 DOI: 10.7554/elife.82533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Reproductive senescence is broadly observed across mammalian females, including humans, eventually leading to a loss of fertility. The pulsatile secretion of gonadotropin-releasing hormone (GnRH), which is essential for gonad function, is primarily controlled by kisspeptin neurons in the hypothalamic arcuate nucleus (ARCkiss), the pulse generator of GnRH. The pulsatility of GnRH release, as assessed by the amount of circulating gonadotropin, is markedly reduced in aged animals, suggesting that the malfunctions of ARCkiss may be responsible for reproductive aging and menopause-related disorders. However, the activity dynamics of ARCkiss during the natural transition to reproductive senescence remain unclear. Herein, we introduce chronic in vivo Ca2+ imaging of ARCkiss in female mice by fiber photometry to monitor the synchronous episodes of ARCkiss (SEskiss), a known hallmark of GnRH pulse generator activity, from the fully reproductive to acyclic phase over 1 year. During the reproductive phase, we find that not only the frequency, but also the intensities and waveforms of individual SEskiss, vary depending on the stage of the estrus cycle. During the transition to reproductive senescence, the integrity of SEskiss patterns, including the frequency and waveforms, remains mostly unchanged, whereas the intensities tend to decline. These data illuminate the temporal dynamics of ARCkiss activities in aging female mice. More generally, our findings demonstrate the utility of fiber-photometry-based chronic imaging of neuroendocrine regulators in the brain to characterize aging-associated malfunction.
Collapse
Affiliation(s)
- Teppei Goto
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mitsue Hagihara
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
33
|
Greenhill C. Uncovering how the GnRH pulse generator is controlled in female mice. Nat Rev Endocrinol 2023; 19:63. [PMID: 36550299 DOI: 10.1038/s41574-022-00795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|