1
|
Wu D, Wei J, Luo B, Zhou L, Chen P, Tian J, Pan J, Emeline AV, Zhang JZ, Pang Q. Circularly Polarized Luminescence in Achiral Tin-Based Perovskites via Structural Isomer-Driven Coordination Interaction. J Phys Chem Lett 2025; 16:4181-4188. [PMID: 40251715 DOI: 10.1021/acs.jpclett.5c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
A chiral bidentate ligand, (R)-(-)-1-amino-2-propanol (denoted as R1) or (R)-(-)-2-amino-1-propanol (denoted as R2), was used to modify achiral 2D tin-based perovskite HDASnBr4 (HDA: 1,6-hexamethylenediamine) to form R1-HDASnBr4 or R2-HDASnBr4 by an acid precipitation method. R1-HDASnBr4 exhibits a near-unity photoluminescence quantum yield (PLQY) and strong yellow circularly polarized luminescence (CPL) with a luminescence asymmetry g-factor (|glum|) of 8.3 × 10-3, while R2-HDASnBr4 shows a PLQY of 95% and |glum| of 3.2 × 10-3. Both exhibit strong CPL activities, attributed to the significant centro-asymmetric distortion induced by the interaction between the chiral ligand and the inorganic lattice of 2D perovskites. The |glum| of R1-HDASnBr4 is 2.6× that of R2-HDASnBr4, resulting from the direct coordination of the hydroxyl group attached to the chiral carbons in R1 with the [SnBr6]4- inorganic framework, which induces a higher degree of distortion than the amino group in R2. Furthermore, we explored the potential of R1-HDASnBr4 as a chiral inducer and a CPL source to facilitate asymmetric polymerization. This work offers a simple strategy to introduce chirality to achiral perovskites.
Collapse
Affiliation(s)
- Dongmei Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jianwu Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Binbin Luo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jie Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiahong Pan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Alexei V Emeline
- Physics, Saint-Petersburg State University, Ulyanovskaya Str. 1, Petergof, Saint-Petersburg 198504, Russia
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Qi Pang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
2
|
Ge L, Li X, Zhu G, Niu B, Chen Q, Zhong D, Sun X. Recent developments and applications of solid membrane in chiral separation. J Chromatogr A 2025; 1743:465652. [PMID: 39827785 DOI: 10.1016/j.chroma.2025.465652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Chirality is a fundamental property in nature, and chiral molecules are closely related to human health and the origin of life. Therefore, the exploration and preparation of optically active compounds of paramount importance. Membrane separation is a large-scale and continuous separation technique that has been developing quickly in recent years. It has many potential applications, particularly in chiral membrane separation technology, which is currently a hotspot for study. Depending on the types of membranes, chiral membranes can be divided into two categories: chiral solid membranes and chiral liquid membranes. Solid membranes outperform the others in terms of better mechanical performance and separation efficiency. This review presents in-depth summaries of chiral solid membranes made of different materials, and their applications in drug separation. It also providing insights into the potential for the future development of chiral solid membranes.
Collapse
Affiliation(s)
- Li Ge
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Yang X, Wang K. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci 2025; 335:103342. [PMID: 39561657 DOI: 10.1016/j.cis.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Chirality is a common phenomenon in nature, including the dominance preference of small biomolecules, the special spatial conformation of biomolecules, and the biological and physiological processes triggered by chirality. The selective chiral recognition of molecules in nature from up-bottom or bottom-up is of great significance for living organisms. Such as the transcription of DNA, the recognition of membrane proteins, and the catalysis of enzymes all involve chiral recognition processes. The selective recognition between these macromolecules is mainly achieved through non covalent interactions such as hydrophobic interactions, ammonia bonding, electrostatic interactions, metal coordination, van der Waals forces, and π-π stacking. Researchers have been committed to studying how to convert this weak non covalent interaction into macroscopic visualization, which has further understood of the interactions between chiral molecules and is of great significance for simulating the interactions between molecules in living organisms. This article reviews several models of chiral recognition mechanisms, the interaction forces involved in the chiral recognition process, and the research progress of chiral recognition mechanisms. The outlook in this review points out that studying chiral recognition interactions provides an important bridge between chiral materials and the life sciences, providing an ideal platform for studying chiral phenomena in biological systems.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| |
Collapse
|
4
|
Wang Y, Zhang X, Xie D, Chen C, Huang Z, Li ZA. Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202419610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/03/2025]
Abstract
AbstractChirality, the property of objects that are nonsuperimposable on their mirror images, plays a crucial role in biological processes and cellular behaviors. Chiral engineered biomaterials have emerged as a promising approach to regulating cellular fate in regenerative medicine. However, few reviews provide a comprehensive examination of recent advancements in chiral biomaterials and their applications in cellular fate regulation. Herein, various fabrication techniques available for chiral biomaterials, including the use of chiral molecules, surface patterning, and self‐assembly are discussed. The mechanisms through which chiral biomaterials influence cellular responses, such as modulation of adhesion receptors, intracellular signaling, and gene expression, are explored. Notably, chiral biomaterials have demonstrated their ability to guide stem cell differentiation and augment tissue‐specific functions. The potential applications of chiral biomaterials in musculoskeletal disorders, neurodegenerative diseases, cardiovascular diseases, and wound healing are highlighted. Challenges and future perspectives, including standardization of fabrication methods and translation to clinical settings, are addressed. In conclusion, chiral engineered biomaterials offer exciting prospects for precisely controlling cellular fate, advancing regenerative medicine, and enabling personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Xin Zhang
- Institute of Sports Medicine Beijing Key Laboratory of Sports Injuries Peking University Third Hospital Beijing 100191 China
| | - Denghui Xie
- Department of Orthopaedic Surgery Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou 510630 China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases Guangzhou 510630 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety New Cornerstone Science Laboratory National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifeng Huang
- Department of Chemistry The Chinese University of Hong Kong Shatin Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Zhong Alan Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shun Hing Institute of Advanced Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shenzhen Research Institute The Chinese University of Hong Kong No.10, 2nd Yuexing Road, Nanshan Shenzhen Guangdong Province 518057 China
| |
Collapse
|
5
|
Pei R, Tan J, Luo Y, Ye S. Close Packing in Trans Conformers Promotes the Formation of Supramolecular Structures with C 1 Symmetry. J Phys Chem Lett 2024; 15:8797-8803. [PMID: 39166774 DOI: 10.1021/acs.jpclett.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Assemblies with C1 symmetry exhibit important applications in many fields such as enantioselective catalysis. However, their formation is challenging due to their large entropic disadvantage, and molecular information on their formation dynamics is limited because of the lack of effective characterization techniques. Here, using achiral amphiphilic molecules such as N-oleoyl ethanolamide (OEA) and its analogues as modeling assembly units, we demonstrated that the sss polarization signals, generated by femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), provide a powerful tool to monitor the formation dynamics of the C1 symmetric supramolecular structures at the interfaces. The trans conformation of the assembly units can provide strong π-π interactions and thus produce enough enthalpy to drive the formation of C1 symmetric supramolecular structures. However, the cis conformation impedes the assembly of C1 symmetric structures and cannot generate sss and chiral polarization SFG signals. These findings may aid in rationally constructing ordered and functional superstructures and understanding the mechanism of chirality formation.
Collapse
Affiliation(s)
- Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
6
|
Liu C, Qin X, Yu C, Guo Y, Zhang Z. Probing the adsorption configuration of methanol at a charged air/aqueous interface using nonlinear spectroscopy. Phys Chem Chem Phys 2024; 26:14336-14344. [PMID: 38699833 DOI: 10.1039/d3cp06317h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Investigating the effects of electrolyte ions on the adsorption configuration of methanol at a charged interface is important for studying the interface structure of electrolyte solutions and the oxidation mechanism of methanol in fuel cells. This study uses sum frequency generation (SFG) and heterodyne-detected second harmonic generation (HD-SHG) to investigate the adsorption configuration of methanol at the air/aqueous interface of 0.1 M NaClO4 solution, 0.1 M HClO4 solution and pure water. The results elucidate that the ion effect in the electrolyte solution affects the interface's charged state and the methanol's adsorption conformation at the interface. The negatively charged surface of the 0.1 M NaClO4 solution and the positively charged surface of the 0.1 M HClO4 solution arise from the corresponding specific ionic effects of the electrolyte solution. The orientation angle of methyl with respect to the surface normal is 43.4° ± 0.1° at the 0.1 M NaClO4 solution surface and 21.5° ± 0.2° at the 0.1 M HClO4 solution surface. Examining these adsorption configurations in detail, we find that at the negatively charged surface the inclined orientation angle (43.4°) of methanol favors the hydroxymethyl production by breaking the C-H bond, while at the positively charged surface the upright orientation angle (21.5°) of methanol promotes the methoxy formation by breaking the O-H bond. These findings not only illuminate the intricate ion effects on small organic molecules but also contribute to a molecular-level comprehension of the oxidation mechanism of methanol at electrode interfaces.
Collapse
Affiliation(s)
- Caihe Liu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xujin Qin
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changhui Yu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Noblet T, Busson B. Diagrammatic theory of magnetic and quadrupolar contributions to sum-frequency generation in composite systems. J Chem Phys 2024; 160:024704. [PMID: 38193549 DOI: 10.1063/5.0187520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Second-order nonlinear processes like Sum-Frequency Generation (SFG) are essentially defined in the electric dipolar approximation. However, when dealing with the SFG responses of bulk, big nanoparticles, highly symmetric objects, or chiral species, magnetic and quadrupolar contributions play a significant role in the process too. We extend the diagrammatic theory for linear and nonlinear optics to include these terms for single objects as well as for multipartite systems in interaction. Magnetic and quadrupolar quantities are introduced in the formalism as incoming fields, interaction intermediates, and sources of optical nonlinearity. New response functions and complex nonlinear processes are defined, and their symmetry properties are analyzed. This leads to a focus on several kinds of applications involving nanoscale coupled objects, symmetric molecular systems, and chiral materials, both in line with the existing literature and opening new possibilities for original complex systems.
Collapse
Affiliation(s)
- Thomas Noblet
- GRASP-Biophotonics, CESAM, University of Liege, Institute of Physics, Allée du 6 août 17, 4000 Liège, Belgium
| | - Bertrand Busson
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
8
|
Liu G, Tian C, Fan X, Xue X, Feng L, Wang C, Liu Y. Photocontrolled Reversibly Chiral-Ordered Assembly Based on Cucurbituril. JACS AU 2023; 3:2550-2556. [PMID: 37772187 PMCID: PMC10523366 DOI: 10.1021/jacsau.3c00342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023]
Abstract
Chirality transfer and regulation, accompanied by morphology transformation, arouse widespread interest for application in materials and biological science. Here, a photocontrolled supramolecular chiral switch is fabricated from chiral diphenylalanine (l-Phe-l-Phe, FF) modified with naphthalene (2), achiral dithienylethene (DTE) photoswitch (1), and cucurbit[8]uril (CB[8]). Chirality transfer from the chiral FF moiety of 2 to a charge-transfer (CT) heterodimer consisting of achiral guest 1 and achiral naphthalene (NP) in 2 has been unprecedented achieved via the encapsulation of CB[8]. On the contrary, chirality transfer from chiral FF to NP cannot be conducted in only guest 2. Crucially, induced circular dichroism of the heterodimer can be further modulated by distinct light, attributing to reversible photoisomerization of the DTE. Meanwhile, topological nanostructures are changed from one-dimensional (1D) nanofibers to two-dimensional (2D) nanosheets in the orderly assembling process of the heterodimer, which further achieved reversible interconversion between 2D nanosheets and 1D nanorods with tunable-induced chirality stimulated by diverse light.
Collapse
Affiliation(s)
- Guoxing Liu
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- College
of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Changming Tian
- College
of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Xinhui Fan
- College
of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Xiaoping Xue
- College
of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Li Feng
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Conghui Wang
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|