1
|
Cui Z, Huang F, Fang K, Yan J, Zhang Y, Kang DD, Zhou Y, Zhao Y, Everitt JI, Hankey W, Armstrong AJ, Huang J, Wang H, Jin VX, Dong Y, Wang Q. SCORT-Cas13d Nanotherapy Precisely Targets the 'Undruggable' Transcription Factor HoxB13 in Metastatic Prostate Cancer In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417605. [PMID: 40349174 DOI: 10.1002/advs.202417605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/01/2025] [Indexed: 05/14/2025]
Abstract
Metastatic cancer, the primary cause of cancer mortality, frequently exhibits heightened dependence on certain transcription factors (TFs), which serve as master regulators of oncogenic signaling yet are often untargetable by small molecules. Selective Cell in ORgan Targeting (SCORT) nanoparticles are developed for precise CRISPR/Cas13d mRNA and gRNA delivery to metastatic cancer cells in vivo, aiming to knock down the undruggable oncogenic TF HoxB13. In prostate cancer liver metastasis models driven by HoxB13, repeated systemic SCORT-Cas13d-gHoxB13 treatment significantly decreases HoxB13 expression, reduces metastasis, and extends mouse survival. Prolonged treatment shows no significant impact on major organ function, histology or immune markers. Mechanistically, SCORT-Cas13d-gHoxB13 treatment suppresses metastatic tumor proliferation and angiogenesis while promoting apoptosis by regulating multiple gene pathways. Unexpectedly, it inhibits the non-canonical, EMT-independent oncogenic function of Snail. These findings suggest that SCORT-Cas13d-gHoxB13 can effectively and safely target the undruggable HoxB13 in metastatic prostate cancer, positioning CRISPR/Cas13d as a potential treatment.
Collapse
Affiliation(s)
- Zhifen Cui
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Furong Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kun Fang
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute Center for Prostate and Urologic Cancer, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hongyan Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Victor X Jin
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute Center for Prostate and Urologic Cancer, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
2
|
Lv XL, Peng QL, Wang XP, Fu ZC, Cao JP, Wang J, Wang LL, Jiao Y. Snail family transcriptional repressor 1 radiosensitizes esophageal cancer via epithelial-mesenchymal transition signaling: From bioinformatics to integrated study. World J Gastrointest Oncol 2025; 17:97644. [PMID: 40235866 PMCID: PMC11995309 DOI: 10.4251/wjgo.v17.i4.97644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/09/2024] [Accepted: 01/15/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) poses a significant challenge in oncology because of the limited treatment options and poor prognosis. Therefore, enhancing the therapeutic effects of radiotherapy for ESCA and identifying relevant therapeutic targets are crucial for improving both the survival rate and quality of life of patients. AIM To define the role of the transcription factor Snail family transcriptional repressor 1 (SNAI1) in ESCA, particularly its regulation of radiosensitivity. METHODS A comprehensive analysis of TCGA data assessed SNAI1 expression in ESCA. Survival curves correlated SNAI1 levels with radiotherapy outcomes. Colony formation assays, flow cytometry, and a xenograft model were used to evaluate tumor radiosensitivity and apoptosis. Western blot validated protein expression, while Chromatin immunoprecipitation assays examined SNAI1's role in regulating epithelial-mesenchymal transition (EMT). RESULTS SNAI1 expression in ESCA cell lines and clinical specimens emphasizes its central role in this disease. Elevated SNAI1 expression is correlated with unfavorable outcomes in radiotherapy. Downregulation of SNAI1 enhances the sensitivity of ESCA cells to ionizing radiation (IR), resulting in remarkable tumor regression upon IR treatment in vivo. This study underscores the direct involvement of SNAI1 in the regulation of EMT, particularly under IR-induced conditions. Furthermore, inhibiting deacetylation effectively suppresses EMT, suggesting a potential avenue to enhance the response to radiotherapy in ESCA. CONCLUSION This study highlights SNAI1's role in ESCA radiosensitivity, offering prognostic insights and therapeutic strategies to enhance radiotherapy by targeting SNAI1 and modulating EMT processes.
Collapse
Affiliation(s)
- Xiao-Li Lv
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Qi-Liang Peng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Xin-Peng Wang
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Zhi-Chao Fu
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Jian-Ping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jian Wang
- Department of Radiotherapy, The Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin 214400, Jiangsu Province, China
| | - Li-Li Wang
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
3
|
Kielbik M, Szulc-Kielbik I, Klink M. Snail transcription factors - Characteristics, regulation and molecular targets relevant in vital cellular activities of ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119705. [PMID: 38513918 DOI: 10.1016/j.bbamcr.2024.119705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Snail transcription factors play essential roles in embryonic development and participate in many physiological processes. However, these genes have been implicated in the development and progression of various types of cancer. In epithelial ovarian cancer, high expression of these transcription factors is usually associated with the acquisition of a more aggressive phenotype and thus, considered to be a poor prognostic factor. Numerous molecular signals create a complex network of signaling pathways regulating the expression and stability of Snails, which in turn control genes involved in vital cellular functions of ovarian cancer cells, such as invasion, survival, proliferation and chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology Polish Academy of Sciences, Lodz, Poland.
| | | | - Magdalena Klink
- Institute of Medical Biology Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
4
|
Deng Z, Xu M, Ding Z, Kong J, Liu J, Zhang Z, Cao P. ID2 promotes tumor progression and metastasis in thyroid cancer. Endocrine 2024; 84:1051-1063. [PMID: 38195969 PMCID: PMC11208273 DOI: 10.1007/s12020-023-03674-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Inhibitor of DNA Binding 2 (ID2) plays a crucial role in tumor cell proliferation, invasion, metastasis, and stemness. Aberrant ID2 expression is associated with poor prognosis in various cancers. However, the specific function of ID2 in thyroid cancer remain unclear. METHOD The TCGA database were utilized to explore the clinical relevance of ID2 in cancer. GO, KEGG, and TIMER were employed to predict the potential roles of ID2 in cancer. Functional analysis, including CCK-8, colony formation, transwell, wound healing, and sphere formation experiments, were conducted to determine the biological functions of ID2 in human cancers. Western blot (WB), RT-qPCR, and immunohistochemical (IHC) analyses were used to investigate the relationship between ID2 and downstream targets. RESULTS Our study revealed significant overexpression of ID2 in various malignant tumor cells. Knocking ID2 significantly inhibited cancer cell proliferation and invasion, while overexpressing ID2 enhanced these capabilities. Additionally, ID2 mediates resistance of cancer cells to protein kinase B (or Akt) inhibitions. Further WB and IHC experiments indicated that ID2 promotes the phosphorylation activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, thereby upregulating the expression of downstream proliferation, epithelial-mesenchymal transition (EMT), and stemness-related markers. CONCLUSION We found that ID2 significantly promotes thyroid cancer cell proliferation, migration, EMT, and stemness through the PI3K/Akt pathway. Moreover, ID2 plays a crucial role in regulating cancer immune responses. It may serve as a potential biomarker for enhancing the efficacy of chemotherapy, targeted therapy, and immunotherapy against cancer.
Collapse
Affiliation(s)
- Zhongming Deng
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Min Xu
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zhenghua Ding
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Jianqiao Kong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Juanjuan Liu
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zelin Zhang
- Department of Oncology Department, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Ping Cao
- Department of Oncology Department, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| |
Collapse
|
5
|
Rashid M, Devi BM, Banerjee M. Combinatorial Cooperativity in miR200-Zeb Feedback Network can Control Epithelial-Mesenchymal Transition. Bull Math Biol 2024; 86:48. [PMID: 38555331 DOI: 10.1007/s11538-024-01277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Carcinomas often utilize epithelial-mesenchymal transition (EMT) programs for cancer progression and metastasis. Numerous studies report SNAIL-induced miR200/Zeb feedback circuit as crucial in regulating EMT by placing cancer cells in at least three phenotypic states, viz. epithelial (E), hybrid (h-E/M), mesenchymal (M), along the E-M phenotypic spectrum. However, a coherent molecular-level understanding of how such a tiny circuit controls carcinoma cell entrance into and residence in various states is lacking. Here, we use molecular binding data and mathematical modeling to report that the miR200/Zeb circuit can essentially utilize combinatorial cooperativity to control E-M phenotypic plasticity. We identify minimal combinatorial cooperativities that give rise to E, h-E/M, and M phenotypes. We show that disrupting a specific number of miR200 binding sites on Zeb as well as Zeb binding sites on miR200 can have phenotypic consequences-the circuit can dynamically switch between two (E, M) and three (E, h-E/M, M) phenotypes. Further, we report that in both SNAIL-induced and SNAIL knock-out miR200/Zeb circuits, cooperative transcriptional feedback on Zeb as well as Zeb translation inhibition due to miR200 are essential for the occurrence of intermediate h-E/M phenotype. Finally, we demonstrate that SNAIL can be dispensable for EMT, and in the absence of SNAIL, the transcriptional feedback can control cell state transition from E to h-E/M, to M state. Our results thus highlight molecular-level regulation of EMT in miR200/Zeb circuit and we expect these findings to be crucial to future efforts aiming to prevent EMT-facilitated dissemination of carcinomas.
Collapse
Affiliation(s)
- Mubasher Rashid
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Brasanna M Devi
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
6
|
Adzraku SY, Cao C, Zhou Q, Yuan K, Hao X, Li Y, Yuan S, Huang Y, Xu K, Qiao J, Ju W, Zeng L. Endothelial Robo4 suppresses endothelial-to-mesenchymal transition induced by irradiation and improves hematopoietic reconstitution. Cell Death Dis 2024; 15:159. [PMID: 38383474 PMCID: PMC10881562 DOI: 10.1038/s41419-024-06546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bone marrow ablation is routinely performed before hematopoietic stem cell transplantation (HSCT). Hematopoietic stem and progenitor cells (HSPCs) require a stable bone marrow microenvironment to expand and refill the peripheral blood cell pool after ablation. Roundabout guidance receptor 4 (Robo4) is a transmembrane protein exclusive to endothelial cells and is vital in preserving vascular integrity. Hence, the hypothesis is that Robo4 maintains the integrity of bone marrow endothelial cells following radiotherapy. We created an endothelial cell injury model with γ-radiation before Robo4 gene manipulation using lentiviral-mediated RNAi and gene overexpression techniques. We demonstrate that Robo4 and specific mesenchymal proteins (Fibronectin, Vimentin, αSma, and S100A4) are upregulated in endothelial cells exposed to irradiation (IR). We found that Robo4 depletion increases the expression of endoglin (CD105), an auxiliary receptor for the transforming growth factor (TGF-β) family of proteins, and promotes endothelial-to-mesenchymal transition (End-MT) through activation of both the canonical (Smad) and non-canonical (AKT/NF-κB) signaling pathways to facilitate Snail1 activation and its nuclear translocation. Endothelial Robo4 overexpression stimulates the expression of immunoglobulin-like adhesion molecules (ICAM-1 and VCAM-1) and alleviates irradiation-induced End-MT. Our coculture model showed that transcriptional downregulation of endothelial Robo4 reduces HSPC proliferation and increases HSC quiescence and apoptosis. However, Robo4 overexpression mitigated the damaged endothelium's suppressive effects on HSC proliferation and differentiation. These findings indicate that by controlling End-MT, Robo4 preserves microvascular integrity after radiation preconditioning, protects endothelial function, and lessens the inhibitory effect of damaged endothelium on hematopoietic reconstitution.
Collapse
Affiliation(s)
- Seyram Yao Adzraku
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Can Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Qi Zhou
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaowen Hao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shengnan Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yujin Huang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China.
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
7
|
Fang XL, Li QJ, Lin JY, Huang CL, Huang SY, Tan XR, He SW, Zhu XH, Li JY, Gong S, Qiao H, Li YQ, Liu N, Ma J, Zhao Y, Tang LL. Transcription factor ATMIN facilitates chemoresistance in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:112. [PMID: 38321024 PMCID: PMC10847093 DOI: 10.1038/s41419-024-06496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients' survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.
Collapse
Affiliation(s)
- Xue-Liang Fang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Qing-Jie Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jia-Yi Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Cheng-Long Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Sheng-Yan Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Xi-Rong Tan
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Shi-Wei He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Xun-Hua Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jun-Yan Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Sha Gong
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Han Qiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Ying-Qin Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Na Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Yin Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China.
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China.
| |
Collapse
|
8
|
Acloque H, Yang J, Theveneau E. Epithelial-to-mesenchymal plasticity from development to disease: An introduction to the special issue. Genesis 2024; 62:e23581. [PMID: 38098257 PMCID: PMC11021161 DOI: 10.1002/dvg.23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Epithelial-Mesenchymal Transition (EMT) refers to the ability of cells to switch between epithelial and mesenchymal states, playing critical roles in embryonic development, wound healing, fibrosis, and cancer metastasis. Here, we discuss some examples that challenge the use of specific markers to define EMT, noting that their expression may not always correspond to the expected epithelial or mesenchymal identity. In concordance with recent development in the field, we emphasize the importance of generalizing the use of the term Epithelial-Mesenchymal Plasticity (EMP), to better capture the diverse and context-dependent nature of the bidirectional journey that cells can undertake between the E and M phenotypes. We highlight the usefulness of studying a wide range of physiological EMT scenarios, stress the value of the dynamic of expression of EMP regulators and advocate, whenever possible, for more systematic functional assays to assess cellular states.
Collapse
Affiliation(s)
- Hervé Acloque
- INRAE, AgroParisTech, GABI, Université Paris Saclay, Jouy en Josas, France
| | - Jing Yang
- Department of Pharmacology and of Pediatrics, Moores Cancer Center, University of California San Diego, School of Medicine, La Jolla, California, USA
| | - Eric Theveneau
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
9
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
10
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
11
|
Song X, Lan Y, Zheng X, Zhu Q, Liao X, Liu K, Zhang W, Peng Q, Zhu Y, Zhao L, Chen X, Shu Y, Yang K, Hu J. Targeting drug-tolerant cells: A promising strategy for overcoming acquired drug resistance in cancer cells. MedComm (Beijing) 2023; 4:e342. [PMID: 37638338 PMCID: PMC10449058 DOI: 10.1002/mco2.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Drug resistance remains the greatest challenge in improving outcomes for cancer patients who receive chemotherapy and targeted therapy. Surmounting evidence suggests that a subpopulation of cancer cells could escape intense selective drug treatment by entering a drug-tolerant state without genetic variations. These drug-tolerant cells (DTCs) are characterized with a slow proliferation rate and a reversible phenotype. They reside in the tumor region and may serve as a reservoir for resistant phenotypes. The survival of DTCs is regulated by epigenetic modifications, transcriptional regulation, mRNA translation remodeling, metabolic changes, antiapoptosis, interactions with the tumor microenvironment, and activation of signaling pathways. Thus, targeting the regulators of DTCs opens a new avenue for the treatment of therapy-resistant tumors. In this review, we first provide an overview of common characteristics of DTCs and the regulating networks in DTCs development. We also discuss the potential therapeutic opportunities to target DTCs. Last, we discuss the current challenges and prospects of the DTC-targeting approach to overcome acquired drug resistance. Reviewing the latest developments in DTC research could be essential in discovering of methods to eliminate DTCs, which may represent a novel therapeutic strategy for preventing drug resistance in the future.
Collapse
Affiliation(s)
- Xiaohai Song
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Lan
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiuli Zheng
- Department of RadiologyHuaxi MR Research Center (HMRRC) and Critical Care MedicinePrecision Medicine Center, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Qianyu Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xuliang Liao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kai Liu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Weihan Zhang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - QiangBo Peng
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yunfeng Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Linyong Zhao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaolong Chen
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Shu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kun Yang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiankun Hu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Pan L, Mulaw MA, Gout J, Guo M, Zarrin H, Schwarz P, Baumann B, Seufferlein T, Wagner M, Oswald F. RBPJ Deficiency Sensitizes Pancreatic Acinar Cells to KRAS-Mediated Pancreatic Intraepithelial Neoplasia Initiation. Cell Mol Gastroenterol Hepatol 2023; 16:783-807. [PMID: 37543088 PMCID: PMC10520364 DOI: 10.1016/j.jcmgh.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND AND AIMS Development of pancreatic ductal adenocarcinoma (PDAC) is a multistep process intensively studied; however, precocious diagnosis and effective therapy still remain unsatisfactory. The role for Notch signaling in PDAC has been discussed controversially, as both cancer-promoting and cancer-antagonizing functions have been described. Thus, an improved understanding of the underlying molecular mechanisms is necessary. Here, we focused on RBPJ, the receiving transcription factor in the Notch pathway, examined its expression pattern in PDAC, and characterized its function in mouse models of pancreatic cancer development and in the regeneration process after acute pancreatitis. METHODS Conditional transgenic mouse models were used for functional analysis of RBPJ in the adult pancreas, initiation of PDAC precursor lesions, and pancreatic regeneration. Pancreata and primary acinar cells were tested for acinar-to-ductal metaplasia together with immunohistology and comprehensive transcriptional profiling by RNA sequencing. RESULTS We identified reduced RBPJ expression in a subset of human PDAC specimens. Ptf1α-CreERT-driven depletion of RBPJ in transgenic mice revealed that its function is dispensable for the homeostasis and maintenance of adult acinar cells. However, primary RBPJ-deficient acinar cells underwent acinar-to-ductal differentiation in ex vivo. Importantly, oncogenic KRAS expression in the context of RBPJ deficiency facilitated the development of pancreatic intraepithelial neoplasia lesions with massive fibrotic stroma formation. Interestingly, RNA-sequencing data revealed a transcriptional profile associated with the cytokine/chemokine and extracellular matrix changes. In addition, lack of RBPJ delays the course of acute pancreatitis and critically impairs it in the context of KRASG12D expression. CONCLUSIONS Our findings imply that downregulation of RBPJ in PDAC patients derepresses Notch targets and promotes KRAS-mediated pancreatic acinar cells transformation and desmoplasia development.
Collapse
Affiliation(s)
- Leiling Pan
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Medhanie A Mulaw
- Unit for Single-cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Johann Gout
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Min Guo
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hina Zarrin
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peggy Schwarz
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
13
|
Chang YF, Wang HH, Shu CW, Tsai WL, Lee CH, Chen CL, Liu PF. TMEM211 Promotes Tumor Progression and Metastasis in Colon Cancer. Curr Issues Mol Biol 2023; 45:4529-4543. [PMID: 37367036 DOI: 10.3390/cimb45060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Colon cancer is the third most important cancer type, leading to a remarkable number of deaths, indicating the necessity of new biomarkers and therapeutic targets for colon cancer patients. Several transmembrane proteins (TMEMs) are associated with tumor progression and cancer malignancy. However, the clinical significance and biological roles of TMEM211 in cancer, especially in colon cancer, are still unknown. In this study, we found that TMEM211 was highly expressed in tumor tissues and the increased TMEM211 was associated with poor prognosis in colon cancer patients from The Cancer Genome Atlas (TCGA) database. We also showed that abilities regarding migration and invasion were reduced in TMEM211-silenced colon cancer cells (HCT116 and DLD-1). Moreover, TMEM211-silenced colon cancer cells showed decreased levels of Twist1, N-cadherin, Snail and Slug but increased levels of E-cadherin. Levels of phosphorylated ERK, AKT and RelA (NF-κB p65) were also decreased in TMEM211-silenced colon cancer cells. Our findings indicate that TMEM211 regulates epithelial-mesenchymal transition for metastasis through coactivating the ERK, AKT and NF-κB signaling pathways, which might provide a potential prognostic biomarker or therapeutic target for colon cancer patients in the future.
Collapse
Affiliation(s)
- Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hsing-Hsang Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wei-Lun Tsai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Joshi VB, Gutierrez Ruiz OL, Razidlo GL. The Cell Biology of Metastatic Invasion in Pancreatic Cancer: Updates and Mechanistic Insights. Cancers (Basel) 2023; 15:cancers15072169. [PMID: 37046830 PMCID: PMC10093482 DOI: 10.3390/cancers15072169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality worldwide. This is largely due to the lack of routine screening protocols, an absence of symptoms in early-stage disease leading to late detection, and a paucity of effective treatment options. Critically, the majority of patients either present with metastatic disease or rapidly develop metastatic disease. Thus, there is an urgent need to deepen our understanding of metastasis in PDAC. During metastasis, tumor cells escape from the primary tumor, enter the circulation, and travel to a distant site to form a secondary tumor. In order to accomplish this relatively rare event, tumor cells develop an enhanced ability to detach from the primary tumor, migrate into the surrounding matrix, and invade across the basement membrane. In addition, cancer cells interact with the various cell types and matrix proteins that comprise the tumor microenvironment, with some of these factors working to promote metastasis and others working to suppress it. In PDAC, many of these processes are not well understood. The purpose of this review is to highlight recent advances in the cell biology of the early steps of the metastatic cascade in pancreatic cancer. Specifically, we will examine the regulation of epithelial-to-mesenchymal transition (EMT) in PDAC and its requirement for metastasis, summarize our understanding of how PDAC cells invade and degrade the surrounding matrix, and discuss how migration and adhesion dynamics are regulated in PDAC to optimize cancer cell motility. In addition, the role of the tumor microenvironment in PDAC will also be discussed for each of these invasive processes.
Collapse
Affiliation(s)
- Vidhu B Joshi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Omar L Gutierrez Ruiz
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|