1
|
Muller JAI, Bourke LA, Campbell SID, Cardoso FC. Venom peptides regulating Ca 2+ homeostasis: neuroprotective potential. Trends Pharmacol Sci 2025; 46:407-421. [PMID: 40240234 DOI: 10.1016/j.tips.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Venom peptides specialized in modulating intracellular calcium ([Ca2+]i) offer a treasure trove of pharmacological properties to regulate aberrant Ca2+ homeostasis in disease. Combined with emerging advances across peptide optimization, disease models, and functional bioassays, these venom peptides could unlock new therapies restoring Ca2+ homeostasis. In this opinion, we explore the pharmacology of venom peptides modulating [Ca2+]i signaling along with recent breakthroughs propelling venom peptide-based drug discovery. We predict a transformative era in therapeutic development harnessing venom peptides targeting dysfunctional Ca2+ signaling in intractable conditions such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Jessica A I Muller
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lachlan A Bourke
- School of the Environment, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Sam I D Campbell
- School of the Environment, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| |
Collapse
|
2
|
Hua X, Yao J, Liu X, Liu Q, Deng Y, Li S, Valdivia CR, Wang F, Pozzolini M, Shou Z, Valdivia HH, Xiao L. Comparison of the structure-function of five newly members of the calcin family. Int J Biol Macromol 2024; 260:129424. [PMID: 38219929 DOI: 10.1016/j.ijbiomac.2024.129424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Calcins are a group of scorpion toxin peptides specifically binding to ryanodine receptors (RyRs) with high affinity, and have the ability to activate and stabilize RyR in a long-lasting subconductance state. Five newly calcins synthesized compounds exhibit typical structural characteristics of a specific family through chemical synthesis and virtual analysis. As the calcins from the same species, Petersiicalcin1 and Petersiicalcin2, Jendekicalcin2 and Jendekicalcin3, have only one residue difference. Both Petersiicalcin1 and Petersiicalcin2 exhibited different affinities in stimulating [3H]ryanodine binding, but the residue mutation resulted in a 2.7 folds difference. Other calcins also exhibited a stimulatory effect on [3H]ryanodine binding to RyR1, however, their affinities were significantly lower than that of Petersiiicalcin1 and Petersiiicalcin2. The channel domain of RyR1 was found to be capable of binding with the basic residues of these calcins, which also exhibited interactions with the S6 helices on RyR1. Dynamic simulations were conducted for Petersiicalcin1 and Petersiicalcin2, which demonstrated their ability to form a highly stable conformation and resulting in an asymmetric tetramer structure of RyR1. The discovery of five newly calcins further enriches the diversity of the natural calcin family, which provides more native peptides for the structure-function analysis between calcin and RyRs.
Collapse
Affiliation(s)
- Xiaoyu Hua
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jinchi Yao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; School of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Xinyan Liu
- Department of Traditional Chinese Medicine Surgery, the First Affiliated Hospital of the Navy Medical University, Shanghai, 200433, China
| | - Qing Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu 030801, China
| | - Yuchen Deng
- Department of Dermatology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Songhua Li
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Carmen R Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| | - Fei Wang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Zhaoyong Shou
- Faculty of Health Service, Nacal Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Héctor H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| | - Liang Xiao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
3
|
Ramanujam V, Crawford T, Cristofori‐Armstrong B, Deuis JR, Jia X, Maxwell MJ, Jami S, Ma L, Vetter I, Mobli M. Structural Basis of the Bivalency of the TRPV1 Agonist DkTx. Angew Chem Int Ed Engl 2024; 63:e202314621. [PMID: 37953402 PMCID: PMC10952689 DOI: 10.1002/anie.202314621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Bivalency is a prevalent natural mechanism to enhance receptor avidity. Various two-domain disulfide-rich peptides exhibiting bivalent action have been identified from animal venoms. A unique characteristic of these peptides is that they induce a pharmacological response different from that provoked by any of the constituent domains. The enhanced potency and avidity of such peptides is therefore a consequence of their domain fusion by a peptide linker. The role of the linker itself, beyond conjugation, remains unclear. Here, we investigate how the linker affects the bivalency of the capsaicin receptor (TRPV1) agonist DkTx. We recombinantly produced isotope labelled DkTx using a protein splicing approach, to solve the high-resolution solution structure of DkTx, revealing residual linker order stabilised by linker-domain interactions leading to biased domain orientations. The significance of this was studied using a combination of mutagenesis, spin relaxation studies and electrophysiology measurements. Our results reveal that disrupting the pre-organisation of the domains of DkTx is accompanied by reductions in potency and onset of avidity. Our findings support a model of pre-configured two-domain binding, in favour of the previously suggested sequential binding model. This highlights the significance of ordered elements in linker design and the natural evolution of these in bivalent toxins.
Collapse
Affiliation(s)
- Venkatraman Ramanujam
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Theo Crawford
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Ben Cristofori‐Armstrong
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Jennifer R. Deuis
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Xinying Jia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Michael J. Maxwell
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Sina Jami
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Linlin Ma
- Griffith Institute for Drug DiscoverySchool of Environment and ScienceGriffith UniversityNathan4111QueenslandAustralia
| | - Irina Vetter
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Mehdi Mobli
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| |
Collapse
|