1
|
Waksman G. Molecular basis of conjugation-mediated DNA transfer by gram-negative bacteria. Curr Opin Struct Biol 2025; 90:102978. [PMID: 39823762 DOI: 10.1016/j.sbi.2024.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Bacterial conjugation is the unidirectional transfer of DNA (often plasmids, but also other mobile genetic elements, or even entire genomes), from a donor cell to a recipient cell. In Gram-negative bacteria, it requires the formation of three complexes in the donor cell: i-a large, double-membrane-embedded transport machinery called the Type IV Secretion System (T4SS), ii-a long extracellular tube, the conjugative pilus, and iii-a DNA-processing machinery termed the relaxosome. While knowledge has expanded regarding molecular events in the donor cell, very little is known about the machinery involved in DNA transfer into the recipient cell. Here, focusing on systems principally involved in DNA transfer, we provide an update on progress made on various mechanistic aspects of conjugation.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, WC1E 6BT, United Kingdom.
| |
Collapse
|
2
|
He K, Lin J, Liang Y, Cui J, Chen Q, Dong Y, Ma X, He D, Yuan L. Coexistence of a nonresistance-conferring IncI1 plasmid favors persistence of the blaCTX-M-bearing IncFII plasmid in Escherichia coli. Microbiol Spectr 2024; 12:e0424023. [PMID: 38687059 PMCID: PMC11237657 DOI: 10.1128/spectrum.04240-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
The interaction between coexisting plasmids can affect plasmid-carried resistance gene persistence and spread. However, whether the persistence of the blaCTX-M gene in clinical Enterobacteriaceae is related to the interaction of coresident nonresistance-conferring plasmids has not been reported. This study was initiated to elucidate how a nonresistance-conferring IncI1 plasmid affected the blaCTX-M-bearing IncFII plasmid colocated on the same cell. Herein, we constructed three isogenic derivatives of E. coli C600, designated as C600FII, C600I1, and C600FII+I1, which harbored the blaCTX-M-IncFII plasmid and/or the nonresistance-IncI1 one. We discovered that strain C600FII+I1 conferred higher fitness advantages than strain C600FII; also, the stability of the blaCTX-M-IncFII plasmid was noticeably improved in an antibiotic-free environment when it coexisted with the IncI1 plasmid. To further explore why the IncI1 plasmid enhanced the persistence of the blaCTX-M-IncFII plasmid, we assessed the blaCTX-M-IncFII plasmid's copy numbers, conjugation frequencies, and rep gene expressions in strains C600FII and C600FII+I1. The results demonstrated that the rep expressions of the blaCTX-M-IncFII plasmid in strain C600FII+I1 was greatly decreased, along with the plasmid's copy numbers and mating efficiencies, compared to those in strain C600FII. Moreover, further study revealed that the intracellular ATP levels of strain C600FII+I1 were far lower than those of strain C600FII. Our findings confirmed that coexistence of the nonresistance-IncI1 plasmid can keep the blaCTX-M-IncFII plasmid more stable by increasing the fitness advantages of the host bacteria, which will pose a threat to preventing the long-term presence of the plasmid-carried blaCTX-M gene in clinical Enterobacteriaceae. IMPORTANCE So far, plasmid-carried blaCTX-M is still the most common extended-spectrum beta-lactamase (ESBL) genotype in clinical settings worldwide. Except for the widespread use of third-generation cephalosporins, the interaction between coexisting plasmids can also affect the long-term stable existence of the blaCTX-M gene; however, the study on that is still sparse. In the present study, we assess the interaction of coinhabitant plasmids blaCTX-M-IncFII and nonresistance-IncI1. Our results confirmed that the increased fitness advantages of strain C600FII+I1 were attributable to the cohabitant nonresistance-IncI1 plasmid, which largely reduced the intracellular ATP levels of host bacteria, thus decreasing the rep gene expression of the blaCTX-M-IncFII plasmid, its copy numbers, and mating efficiencies, while the higher fitness advantages of strain C600FII+I1 enhanced the persistence of the blaCTX-M-IncFII plasmid. The results indicate that the nonresistance-IncI1 plasmid contributes to the long-term existence of the blaCTX-M-IncFII plasmid, implying a potentially new strategy for controlling the spread of resistance plasmids in clinical settings by targeting nonresistance plasmids.
Collapse
Affiliation(s)
- Kun He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jiayu Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yulei Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Junling Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiuru Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanbin Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyuan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China
- Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Shapiro JA. A very brief note on why bacterial evolution has physiology. J Physiol 2024; 602:2395-2399. [PMID: 37641409 DOI: 10.1113/jp284409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
The majority of bacteria live and evolve in surface biofilms. Both growth in biofilms and horizontal transfer of DNA are regulated by quorum-sensing pheromone signals. The common regulation of bacterial surface growth and DNA transfers illustrates how physiology contributes to bacterial evolution.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Jiao F, Cui W, Wang P, Tong HHY, Guo J, Tao J. Synergistic inhibition mechanism of quinazolinone and piperacillin on penicillin-binding protein 2a: a promising approach for combating methicillin-resistant Staphylococcus aureus. J Biomol Struct Dyn 2024:1-13. [PMID: 38497736 DOI: 10.1080/07391102.2024.2330708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The production of penicillin-binding protein 2a (PBP2a), a cell wall synthesis protein, is primarily responsible for the high-level resistance observed in methicillin-resistant Staphylococcus aureus (MRSA). PBP2a exhibits a significantly reduced affinity for most β-lactam antibiotics owing to its tightly closed active site. Quinazolinones (QNE), a novel class of non-β-lactam antibiotics, could initiate the allosteric regulation of PBP2a, resulting in the opening of the initially closed active pocket. Based on our previous study, we have a basic understanding of the dual-site inhibitor ceftaroline (CFT) induced allosteric regulation of PBP2a. However, there are still limitations in the knowledge of how combining medicines, QNE and piperacillin (PIP), induce the allosteric response of PBP2a and inhibit its function. Herein, molecular dynamics (MD) simulations were performed to elucidate the intricate mechanisms underlying the combination mode of QNE and PIP. Our study successfully captured the opening process of the active pocket upon the binding of the QNE at the allosteric site, which alters the signaling pathways with a favorable transmission to the active site. Subsequent docking experiments with different conformational states of the active pocket indicated that all three inhibitors, PIP, QNE, and CFT, exhibited higher docking scores and more favorable docking poses to the open active pocket. These findings reveal the implied mechanism of QNE-mediated allostery underlying combination therapy and provide novel insights into developing innovative therapeutic modalities against MRSA.
Collapse
Affiliation(s)
- Fangfang Jiao
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Weirong Cui
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Pinkai Wang
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Henry H Y Tong
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao, China
| | - Jun Tao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Costa TRD, Patkowski JB, Macé K, Christie PJ, Waksman G. Structural and functional diversity of type IV secretion systems. Nat Rev Microbiol 2024; 22:170-185. [PMID: 37814112 PMCID: PMC11290344 DOI: 10.1038/s41579-023-00974-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.
Collapse
Affiliation(s)
- Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK.
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes and CNRS, Rennes, France
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.
| |
Collapse
|
6
|
Beltrán L, Torsilieri H, Patkowski JB, Yang JE, Casanova J, Costa TRD, Wright ER, Egelman EH. The mating pilus of E. coli pED208 acts as a conduit for ssDNA during horizontal gene transfer. mBio 2024; 15:e0285723. [PMID: 38051116 PMCID: PMC10790687 DOI: 10.1128/mbio.02857-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Bacteria are constantly exchanging DNA, which constitutes horizontal gene transfer. While some of these occurs by a non-specific process called natural transformation, some occurs by a specific mating between a donor and a recipient cell. In specific conjugation, the mating pilus is extended from the donor cell to make contact with the recipient cell, but whether DNA is actually transferred through this pilus or by another mechanism involving the type IV secretion system complex without the pilus has been an open question. Using Escherichia coli, we show that DNA can be transferred through this pilus between a donor and a recipient cell that has not established a tight mating junction, providing a new picture for the role of this pilus.
Collapse
Affiliation(s)
- Leticia Beltrán
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Holly Torsilieri
- Department of Molecular Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jonasz B. Patkowski
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James Casanova
- Department of Molecular Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Tiago R. D. Costa
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Guidotti-Takeuchi M, Melo RTD, Ribeiro LNDM, Dumont CF, Ribeiro RAC, Brum BDA, de Amorim Junior TLIF, Rossi DA. Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap. Antibiotics (Basel) 2023; 12:1127. [PMID: 37508224 PMCID: PMC10376302 DOI: 10.3390/antibiotics12071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.
Collapse
Affiliation(s)
- Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Bárbara de Araújo Brum
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|