1
|
Xu Y, Wang Y, Chen Y, Wang Y, Zhang S, Luo G, Cui F, Du T, Liu Z. TCMD: A High-Throughput and Rapid Method for Screening Antimicrobial Ingredients from Renewable Bio-Based Resources. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502156. [PMID: 40289662 DOI: 10.1002/advs.202502156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Antibiotic resistance and pathogenic infections underscore the importance and urgency of novel control agent development. Bio-based products represent a rich reservoir of antimicrobial agents. However, traditional strategies for screening new active compounds are time-consuming, costly, and limited by accessible resources. Here, transcriptomic combinatorial molecular docking (TCMD), a novel method enabling fast identification of antimicrobial components in complex mixtures without requiring prior knowledge is proposed. Results show that, in eukaryotic microorganism systems, TCMD demonstrates superior performances in screening antifungal compounds within hydrothermal liquefaction aqueous. The high accuracy is confirmed by molecular dynamics simulation, antifungal experiments, and RT-qPCR (reverse transcription real-time quantitative polymerase chain reaction) analysis. Furthermore, TCMD exhibits cross-system applicability, as evidenced by successful antibacterial substances screening in prokaryotic systems using plant essential oil and traditional Chinese medicine from previous studies. Compared to conventional approaches, TCMD is estimated to be 3-20 times faster and ≈10 times more cost-effective, while maintaining high-throughput capacity for analyzing thousands of compounds simultaneously. These demonstrate that TCMD is a rapid, precise, and flexible method for antimicrobial compound discovery, significantly accelerating the development of new antibacterial agents.
Collapse
Affiliation(s)
- Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
- Water & Energy Technologies (WET) Lab, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yongming Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 261325, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
2
|
Mu Y, Song Y, Tian X, Ding Z, Yao S, Li Y, Wang C, Wei D, Vollmer W, Zhang G, Feng J. Leveraging collateral sensitivity to counteract the evolution of bacteriophage resistance in bacteria. MLIFE 2025; 4:143-154. [PMID: 40313983 PMCID: PMC12042119 DOI: 10.1002/mlf2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 05/03/2025]
Abstract
The escalating antibiotic resistance crisis poses a major global health threat. Bacteriophage therapy offers a promising alternative for combating multidrug-resistant infections. However, bacterial resistance to phages remains a significant hurdle. Innovative strategies are needed to overcome this challenge. In this study, we developed a phage cocktail based on our phage library, consisting of three phages that suppressed phage resistance of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp). This cocktail capitalized on dual instances of collateral sensitivity, thereby constraining the evolution of phage resistance. The first-layered collateral sensitivity arose from overlapping coverage between capsular polysaccharide (CPS) and lipopolysaccharide (LPS), rendering the bacteria resistant to CPS-binding phages but more susceptible to LPS-binding phages. The second-layered collateral sensitivity resulted from an O serotype switch (from O1 to O2), causing resistance to O1 antigen-binding phages but increasing susceptibility to phages that target the O2 antigen. This dual-layered collateral sensitivity phage cocktail effectively mitigated infection caused by CR-hvKp in mice. Our research highlights the importance of the collateral sensitivity mechanism in counteracting the evolution of phage resistance and offers a sophisticated strategy for configuring phage cocktails to eliminate bacterial resistance.
Collapse
Affiliation(s)
- Yongqi Mu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xueru Tian
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- School of Clinical and Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Zixuan Ding
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- School of Clinical and Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Shigang Yao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yi Li
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Dawei Wei
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Waldemar Vollmer
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
- Centre for Bacterial Cell Biology, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Sakenova N, Cacace E, Orakov A, Huber F, Varik V, Kritikos G, Michiels J, Bork P, Cossart P, Goemans CV, Typas A. Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics. Nat Microbiol 2025; 10:202-216. [PMID: 39623067 PMCID: PMC11726442 DOI: 10.1038/s41564-024-01857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/13/2024] [Indexed: 01/12/2025]
Abstract
By acquiring or evolving resistance to one antibiotic, bacteria can become cross-resistant to a second antibiotic, which further limits therapeutic choices. In the opposite scenario, initial resistance leads to collateral sensitivity to a second antibiotic, which can inform cycling or combinatorial treatments. Despite their clinical relevance, our knowledge of both interactions is limited. We used published chemical genetics data of the Escherichia coli single-gene deletion library in 40 antibiotics and devised a metric that discriminates between known cross-resistance and collateral-sensitivity antibiotic interactions. Thereby we inferred 404 cases of cross-resistance and 267 of collateral-sensitivity, expanding the number of known interactions by over threefold. We further validated 64/70 inferred interactions using experimental evolution. By identifying mutants driving these interactions in chemical genetics, we demonstrated that a drug pair can exhibit both interactions depending on the resistance mechanism. Finally, we applied collateral-sensitive drug pairs in combination to reduce antibiotic-resistance development in vitro.
Collapse
Affiliation(s)
- Nazgul Sakenova
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
- Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Elisabetta Cacace
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Askarbek Orakov
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Florian Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vallo Varik
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - George Kritikos
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- European Food Safety Authority, Parma, Italy
| | - Jan Michiels
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
- Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Peer Bork
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Pascale Cossart
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Camille V Goemans
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Global Health Institute, School of Life Sciences, École Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
4
|
Mahmud HA, Wakeman CA. Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs. Front Microbiol 2024; 15:1478789. [PMID: 39512935 PMCID: PMC11540712 DOI: 10.3389/fmicb.2024.1478789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
The swift rise of antibiotic resistance, coupled with limited new antibiotic discovery, presents a significant hurdle to global public health, demanding innovative therapeutic solutions. Recently, collateral sensitivity (CS), the phenomenon in which resistance to one antibiotic increases vulnerability to another, has come to light as a potential path forward in this attempt. Targeting either unidirectional or reciprocal CS holds promise for constraining the emergence of drug resistance and notably enhancing treatment outcomes. Typically, the alteration of bacterial physiology, such as bacterial membrane potential, expression of efflux pumps, cell wall structures, and endogenous enzymatic actions, are involved in evolved collateral sensitivity. In this review, we present a thorough overview of CS in antibiotic therapy, including its definition, importance, and underlying mechanisms. We describe how CS can be exploited to prevent the emergence of resistance and enhance the results of treatment, but we also discuss the challenges and restrictions that come with implementing this practice. Our review underscores the importance of continued exploration of CS mechanisms in the broad spectrum and clinical validation of therapeutic approaches, offering insights into its role as a valuable tool in combating antibiotic resistance.
Collapse
Affiliation(s)
- Hafij Al Mahmud
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Wang J, Shi Z, Wu Z, Wang H, Qi H, Sheng Q, Zhang S, Song J, Wang J, Zhang L, Cheng C. Molluscicidal activity and biochemical impacts of borrelidins against an aquatic invasive snail Pomacea canaliculata for crop protection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106105. [PMID: 39277409 DOI: 10.1016/j.pestbp.2024.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
The invasive golden apple snail Pomacea canaliculata is one of the devastating threats to aquatic ecosystems and wetland agriculture worldwide. Macrolides from microbes display various advantages over other compounds in controlling snails. However, emergence of antibiotic-resistant phenotypes against certain macrolides in the field appeals for exploring more effectively molluscicidal macrolides. Here, two borrelidins, borrelidin BN1 and BN2, from the extract of a Streptomyces strain fermentation were evaluated for molluscicidal potential against P. canaliculata using both immersion and contact bioassay methods. Borrelidin BN1 (borrelidin A) presented a significant molluscicidal activity comparable to the chemical pesticide metaldehyde, and had a much lower median lethal concentration value (LC50, 522.984 μg·ml-1) than avermectin B1 at 72 h of contact-killing treatment. Snail growth was inhibited by borrelidin BN1 more than by metaldehyde at sublethal concentrations, consistent with responses of key biochemical parameters. Exposure to borrelidin BN1 decreased the activity of acetylcholinesterase (AChE), glutathione S-transferase (GST), aspartate aminotransferase (AST), alanine aminotransferase (ALT) as well as the levels of energy reserves and sex steroids in snail tissues, while increased the activity of superoxide dismutase (SOD), catalase (CAT), lactate dehydrogenase (LDH) and the level of lipid peroxidation (LPO). Further application assay confirmed that borrelidin BN1 protected crop plant Zizania latifolia from P. canaliculata damage via suppressing snail population density. These findings suggest great potential of borrelidin BN1 as a molluscicide. Additionally, its higher activity than the stereoisomeric borrelidin BN2 (borrelidin F) implied better molluscicidal borrelidins could be acquired through structural optimization.
Collapse
Affiliation(s)
- Jingyan Wang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Zhihang Shi
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Zihuan Wu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Han Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Huan Qi
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Qiang Sheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Shaoyong Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Junhuan Song
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jidong Wang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Liqin Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Chihang Cheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Department of Biology, Lund University, Lund 223 62, Sweden.
| |
Collapse
|
6
|
Wang Y, Lu K, Zhou Z, Wang Y, Shen J, Huang D, Xu Y, Wang M. Nanoscale zero-valent iron reverses resistance of Pseudomonas aeruginosa to chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134698. [PMID: 38788587 DOI: 10.1016/j.jhazmat.2024.134698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Zero-valent iron (ZVI) has been extensively studied for its capacity to remove various contaminants in the environments. However, whether ZVI affects bacterial resistance to antibiotics has not been fully explored. Herein, it was unexpected that, compared with microscale ZVI (mZVI), nanoscale ZVI (nZVI) facilitated the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) to chloramphenicol (CAP), with a decrease in the minimal inhibitory concentration (MIC) of about 60 %, demonstrating a nanosize-specific effect. nZVI enhanced CAP accumulation in P. aeruginosa via inhibitory effect on efflux pumps activated by MexT, thus conferring the susceptibility of P. aeruginosa to CAP. Circular dichroism spectroscopy revealed that the structure of MexT was changed during the evolution. More importantly, molecular dynamic simulations uncovered that, once the structure of MexT changed, it would be more likely to interact with nZVI, resulting in more serious changes in its secondary structure, which was consistent with the increasing susceptibility of P. aeruginosa to CAP. Collectively, this study elucidated the size-specific effect and the underlying mechanism of ZVI on the bacterial evolution of susceptibility toward antibiotics, highlighting the potentials of nZVI-based technologies on the prevention of bacterial resistance to antibiotics, one of the most important issue for globally public health.
Collapse
Affiliation(s)
- Yufan Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kun Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhiruo Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yujie Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiawei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dan Huang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yongchang Xu
- Zhejiang Provincial Key Laboratory of Aging and Cancer Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
7
|
Wang Z, Chen Q, Zhang J, Xu H, Miao L, Zhang T, Liu D, Zhu Q, Yan H, Yan D. Climate warming promotes collateral antibiotic resistance development in cyanobacteria. WATER RESEARCH 2024; 256:121642. [PMID: 38657307 DOI: 10.1016/j.watres.2024.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Both cyanobacterial blooms and antibiotic resistance have aggravated worldwide and posed a great threat to public health in recent years. As a significant source and reservoir of water environmental resistome, cyanobacteria exhibit confusing discrepancy between their reduced susceptibility and their chronic exposure to antibiotic mixtures at sub-inhibitory concentrations. How the increasing temperature affects the adaptive evolution of cyanobacteria-associated antibiotic resistance in response to low-level antibiotic combinations under climate change remains unclear. Here we profiled the antibiotic interaction and collateral susceptibility networks among 33 commonly detected antibiotics in 600 cyanobacterial strains isolated from 50 sites across four eutrophicated lakes in China. Cyanobacteria-associated antibiotic resistance level was found positively correlated to antibiotic heterogeneity across all sites. Among 528 antibiotic combinations, antagonism was observed for 62 % interactions and highly conserved within cyanobacterial species. Collateral resistance was detected in 78.5 % of pairwise antibiotic interaction, leading to a widened or shifted upwards mutant selection window for increased opportunity of acquiring second-step mutations. We quantified the interactive promoting effect of collateral resistance and increasing temperature on the evolution of both phenotypic and genotypic cyanobacteria-associated resistance under chronic exposure to environmental level of antibiotic combinations. With temperature increasing from 16 °C to 36 °C, the evolvability index and genotypic resistance level increased by 1.25 - 2.5 folds and 3 - 295 folds in the collateral-resistance-informed lineages, respectively. Emergence of resistance mutation pioneered by tolerance, which was jointly driven by mutation rate and persister fraction, was found to be accelerated by increased temperature and antibiotic switching rate. Our findings provided mechanic insights into the boosting effect of climate warming on the emergence and development of cyanobacteria-associated resistance against collateral antibiotic phenotypes.
Collapse
Affiliation(s)
- Zhiyuan Wang
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Qiuwen Chen
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Jianyun Zhang
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Huacheng Xu
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lingzhan Miao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Zhang
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Dongsheng Liu
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Qiuheng Zhu
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Hanlu Yan
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Dandan Yan
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| |
Collapse
|
8
|
Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections. Nat Rev Drug Discov 2023; 22:957-975. [PMID: 37833553 DOI: 10.1038/s41573-023-00791-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a 'good' new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition). Additionally, a bacterial target should have the potential to bind to drug-like molecules, and its subcellular location will govern the need for inhibitors to penetrate one or two bacterial membranes, which is a key challenge in targeting Gram-negative bacteria. The risk of the emergence of target-based drug resistance for drugs with single targets also requires consideration. This Review describes promising but as-yet-unrealized targets for antibacterial drugs against Gram-negative bacteria and examples of cognate inhibitors, and highlights lessons learned from past drug discovery programmes.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Maëlle Duffey
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland.
| |
Collapse
|
9
|
Hasan M, Wang J, Ahn J. Ciprofloxacin and Tetracycline Resistance Cause Collateral Sensitivity to Aminoglycosides in Salmonella Typhimurium. Antibiotics (Basel) 2023; 12:1335. [PMID: 37627755 PMCID: PMC10451331 DOI: 10.3390/antibiotics12081335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to evaluate collateral sensitivity and cross-resistance of antibiotic-induced resistant Salmonella Typhimurium to various antibiotics. S. Typhimurium ATCC 19585 (STWT) was exposed to ciprofloxacin, gentamicin, kanamycin, and tetracycline to induce antibiotic resistance, respectively, assigned as STCIP, STGEN, STKAN, and STTET. The susceptibilities of the antibiotic-induced resistant mutants to cefotaxime, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, polymyxin B, streptomycin, tetracycline, and tobramycin were determined in the absence and presence of CCCP and PAβN. STCIP showed the cross-resistance to tetracycline and collateral sensitivity to gentamicin (1/2 fold) and kanamycin (1/4 fold). STTET was also cross-resistant to ciprofloxacin (128-fold) and collateral sensitive to gentamicin (1/4-fold) and kanamycin (1/8-fold). The cross-resistance and collateral sensitivity of STCIP and STTET were associated with the AcrAB-TolC efflux pump and outer membrane porin proteins (OmpC). This study provides new insight into the collateral sensitivity phenomenon, which can be used for designing effective antibiotic treatment regimens to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| |
Collapse
|