1
|
Wang B, Shi R, Du W, Guo J, He N, Zhu Y, Yu H, Lu H, Zhong L, Li X, Zhou W, Yang F, Feng X. Prodigiosin inhibits proliferation and induces apoptosis through influencing amino acid metabolism in multiple myeloma. Bioorg Chem 2025; 159:108349. [PMID: 40086187 DOI: 10.1016/j.bioorg.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
The recurrence of drug-resistant and expensive treatment drugs are major causes of the low survival rate of multiple myeloma (MM) patients. Exploring a safe, effective, low-cost and novel drug treatment for MM is a promising strategy to relieve the burden of MM patients. In this study, we found that prodigiosin could inhibit MM cell proliferation and induce MM cell apoptosis, however, it had a lesser cytotoxic effect on normal B cells within the IC50 range of MM cells. In addition, prodigiosin could inhibit the growth of xenograft MM cells in mice. Transcriptomics and targeted amino acid metabolomics confirmed that prodigiosin could regulate amino acid metabolism, and decrease in amino acid utilization by down-regulated aminoacyl tRNA synthetases expression, resulting in slower growth of MM. In conclusion, prodigiosin exerts anticancer effects on MM cells by interfering with the use of amino acids, indicating its potential novel therapeutic application in MM.
Collapse
Affiliation(s)
- Bingjie Wang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Rui Shi
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Wanqing Du
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Nihan He
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yinghong Zhu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Han Yu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Hongyu Lu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Liyuan Zhong
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Xingli Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Fei Yang
- School of Public Health, University of South China, Hengyang, Hunan 421001, China; Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410013, China
| | - Xiangling Feng
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Deng Z, Sun S, Zhou N, Peng Y, Cheng L, Yu X, Yuan Y, Guo M, Xu M, Cheng Y, Zhou F, Li N, Yang Y, Gu C. PNPO-Mediated Oxidation of DVL3 Promotes Multiple Myeloma Malignancy and Osteoclastogenesis by Activating the Wnt/β-Catenin Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407681. [PMID: 39656865 PMCID: PMC11792023 DOI: 10.1002/advs.202407681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Multiple myeloma (MM) is a cancer of plasma cells caused by abnormal gene expression and interactions within the bone marrow (BM) niche. The BM environment significantly influences the progression of MM. Celastrol, a natural compound derived from traditional Chinese medicine, exhibits significant anticancer effects. This study aimed to identify specific targets of celastrol and develop more effective and less toxic treatment options for MM. Celastrol is used as a probe to determine its specific target, pyridoxine-5'-phosphate oxidase (PNPO). Increased levels of PNPO are associated with poor outcomes in MM patients, and PNPO promotes MM cell proliferation and induces osteoclast differentiation through exosomes. Mechanistically, PNPO oxidizes disheveled 3M282 (DVL3), leading to abnormal activation of the Wnt/β-catenin pathway. Based on the critical sites of PNPOR95/K117, Eltrombopag is identified as a potential therapeutic candidate for MM. In addition, the experiments showed its efficacy in mouse models. Eltrombopag inhibited the growth of MM cells and reduced bone lesions by disrupting the interaction between PNPO and DVL3, as supported by preliminary clinical trials. The study highlights the importance of PNPO as a high-risk gene in the development of MM and suggests that Eltrombopag may be a promising treatment option.
Collapse
Affiliation(s)
- Zhendong Deng
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese MedicineNanjing210022China
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Nian Zhou
- Department of Hematology and OncologyJing'an District Zhabei Central HospitalShanghai200070China
- Yangtze River Delta County Hematology UnionShanghai200070China
| | - Yumeng Peng
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Long Cheng
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Xichao Yu
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yuxia Yuan
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Mengjie Guo
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Min Xu
- Yangtze River Delta County Hematology UnionShanghai200070China
- Department of HematologyZhangjiagang First People's HospitalZhangjiagang215600China
| | - Yuexin Cheng
- Yangtze River Delta County Hematology UnionShanghai200070China
- Department of HematologyYancheng Clinical College of Xuzhou Medical UniversityYancheng No.1 People's HospitalYancheng224006China
| | - Fan Zhou
- Department of Hematology and OncologyJing'an District Zhabei Central HospitalShanghai200070China
- Yangtze River Delta County Hematology UnionShanghai200070China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Ye Yang
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese MedicineNanjing210022China
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| |
Collapse
|
3
|
Liu Y, Huang J, Li L, Duan Y, Chong BH, Li L, Yang M. Regulatory Effect of PDGF/PDGFR on Hematopoiesis. Semin Thromb Hemost 2024. [PMID: 39608410 DOI: 10.1055/s-0044-1796630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Platelet-derived growth factor (PDGF) is a critical cytokine with substantial regulatory effects on hematopoiesis. Recent research highlights the essential role of PDGF in the modulation of hematopoietic stem/progenitor cells (HSPCs), megakaryocytes/platelets, and thrombopoietin (TPO) synthesis within the bone marrow microenvironment. PDGF directly stimulates the proliferation and differentiation of HSPCs while also inhibiting apoptosis. In addition, PDGF indirectly enhances the production of other growth factors, including granulocyte-macrophage colony-stimulating factors. Further, PDGF regulates TPO production and influences the bone marrow milieu, thus impacting hematopoiesis and platelet formation. Mechanistically, PDGF binds to its receptor, PDGF receptor (PDGFR), thus activating the PDGF/PDGFR signaling pathway. This pathway subsequently activates phosphoinositide 3-kinase/protein kinase B, leading to the activation of downstream cytokines, including c-Fos and NF-E2, while inhibiting caspase-3 activation. Collectively, these actions have prodifferentiation and antiapoptotic effects on megakaryocytes, thereby regulating platelet production. This review provides a comprehensive analysis of the regulatory role of the PDGF/PDGFR axis in hematopoiesis, with a particular focus on platelet production, by summarizing all studies on PDGF/PDGFR from our group and globally.
Collapse
Affiliation(s)
- Yong Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Junbin Huang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lindi Li
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yifei Duan
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Beng H Chong
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- New South Wales Health Pathology, St George Hospital, Kogarah, New South Wales, Australia
| | - Liang Li
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Mo Yang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Department of Hematology, Affiliated Hospital of Guangdong Medical University (GDMU), Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Du C, Liu C, Yu K, Zhang S, Fu Z, Chen X, Liao W, Chen J, Zhang Y, Wang X, Chen M, Chen F, Shen M, Wang C, Chen S, Wang S, Wang J. Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury. Cell Stem Cell 2024; 31:1484-1500.e9. [PMID: 39181130 DOI: 10.1016/j.stem.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.
Collapse
Affiliation(s)
- Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Chaonan Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Frontier Medical Training Brigade, Army Medical University (Third Military Medical University), Xinjiang 831200, China
| | - Kuan Yu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shuzhen Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zeyu Fu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Hematology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610008, China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
5
|
Li S, Tian Q, Zheng L, Zhou Y. Functional Amino Acids in the Regulation of Bone and Its Diseases. Mol Nutr Food Res 2024; 68:e2400094. [PMID: 39233531 DOI: 10.1002/mnfr.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/11/2024] [Indexed: 09/06/2024]
Abstract
Bone as a vigorous tissue is constantly undergoing bone remodeling. The homeostasis of bone remodeling requires combined efforts of multifarious bone cells. Amino acids (AA), known as essential components of life support, are closely related to the regulation of bone homeostasis. In recent years, the concept of functional amino acids (FAAs) has been proposed, which is defined as AA that regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of organisms, to highlight their outstanding contributions in the body. In the hope of exploring new therapeutic strategies, this review focus on summarizing recent progress in the vital role of FAAs in bone homeostasis maintaining and potential implications of FAAs in bone-related diseases, and discussing related mechanisms. The results showed that FAAs are closely related to bone metabolism and therapeutic strategy targeting FAAs metabolism is one of the future trends for bone disorders, while the explorations about possible impact of FAAs-based diets are still limited.
Collapse
Affiliation(s)
- Siying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qinglu Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Xu B, Ye X, Wen Z, Chen S, Wang J. Epigenetic regulation of megakaryopoiesis and platelet formation. Haematologica 2024; 109:3125-3137. [PMID: 38867584 PMCID: PMC11443398 DOI: 10.3324/haematol.2023.284951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/14/2024] Open
Abstract
Platelets, produced by megakaryocytes, play unique roles in physiological processes, such as hemostasis, coagulation, and immune regulation, while also contributing to various clinical diseases. During megakaryocyte differentiation, the morphology and function of cells undergo significant changes due to the programmed expression of a series of genes. Epigenetic changes modify gene expression without altering the DNA base sequence, effectively affecting the inner workings of the cell at different stages of growth, proliferation, differentiation, and apoptosis. These modifications also play important roles in megakaryocyte development and platelet biogenesis. However, the specific mechanisms underlying epigenetic processes and the vast epigenetic regulatory network formed by their interactions remain unclear. In this review, we systematically summarize the key roles played by epigenetics in megakaryocyte development and platelet formation, including DNA methylation, histone modification, and non-coding RNA regulation. We expect our review to provide a deeper understanding of the biological processes underlying megakaryocyte development and platelet formation and to inform the development of new clinical interventions aimed at addressing platelet-related diseases and improving patients' prognoses.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| |
Collapse
|
7
|
Ma R, Zhang Q, Liu Y, Li H, Chen H, Zhang Q, Qiao J, Qi K, Shen G, Sun C, Song X, Cao J, Cheng H, Zhu F, Yan Z, Sang W, Li D, Sun H, Zheng J, Li Z, Xu K, Chen W. Enhanced platelet function through CAR-T cell therapy in relapsed/refractory multiple myeloma. Clin Exp Med 2024; 24:210. [PMID: 39230837 PMCID: PMC11374909 DOI: 10.1007/s10238-024-01477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
The influence of chimeric antigen receptor T (CAR-T) cell therapy on platelet function in relapsed/refractory (R/R) multiple myeloma (MM) has not been thoroughly investigated. Our cohort comprised fifty MM patients treated with CAR-T cells. The mean platelet closure time (PCT) induced by collagen/adenosine diphosphate (CADP) in peripheral blood was significantly prolonged before lymphodepletion (195.24 ± 11.740 s) and notably reduced post-CAR-T cell therapy (128.02 ± 5.60 s), with a statistically significant improvement (67.22, 95% CI 46.91-87.53, P < 0.001). This post-treatment PCT was not significantly different from that of healthy controls (10.64, 95% CI 1.11-22.40, P > 0.05). Furthermore, a pronounced enhancement in PCT was observed in patients with a response greater than partial remission (PR) following CAR-T cell infusion compared to pre-treatment values (P < 0.001). An extended PCT was also associated with a less favorable remission status. In patients with cytokine release syndrome (CRS) grades 0-2, those with a PCT over 240.5 s exhibited a shorter progression-free survival (PFS), with median PFS times of 10.2 months for the PCT > 240.5 s group versus 22.0 months for the PCT ≤ 240.5 s group. Multivariate analysis revealed that a PCT value exceeding 240.5 s is an independent prognostic factor for overall survival (OS) in R/R MM patients after CAR-T cell therapy. The study demonstrates that CAR-T cell therapy enhances platelet function in R/R MM patients, and PCT emerges as a potential prognostic biomarker for the efficacy of CAR-T cell therapy.
Collapse
Affiliation(s)
- Ruixue Ma
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China
| | - Qi Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hujun Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huimin Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qianqian Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianlin Qiao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guifang Shen
- Health Screening Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cai Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuguang Song
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai Cheng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Depeng Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiying Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China.
| |
Collapse
|
8
|
Huang Y, Wang C, Wang H, Liu H, Zhou L. Rediscovering hemostasis abnormalities in multiple myeloma: The new era. Heliyon 2024; 10:e34111. [PMID: 39055831 PMCID: PMC11269926 DOI: 10.1016/j.heliyon.2024.e34111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple myeloma (MM) is a malignancy arisen from the abnormal proliferation of clonal plasma cells. It has a high risk of developing bleeding and thrombotic complications, which are related to poor prognosis and decreased survival. Multiple factors are involved in the breaking of the hemostasis balance, including disease specific factors, patient-specific factors, and drug factors that change pro-and anticoagulant and fibrinolysis. Recently, with the introduction of new treatments such as monoclonal antibodies, chimeric antigen receptor modified T-cell therapy, antibody-drug conjugates directed against BCMA, programmed death-1 inhibitor, export protein 1 inhibitors, histone deacetylase inhibitors, immunomodulatory drugs, proteasome inhibitors and Bcl-2 inhibitors, the therapy of MM patients has entered into a new era. Furthermore, it arouses a question whether these new treatments would alter the hemostasis balance in MM patients, which highlights the importance of the underlying pathophysiology of hemostasis abnormalities in MM, and on prophylaxis approaches. In this review, we updated the mechanisms of hemostasis abnormalities in MM, the impact of the new drugs on hemostasis balance and reliable therapeutic strategies.
Collapse
Affiliation(s)
- Yudie Huang
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
- Nantong University, Jiangsu, 226001, China
| | | | - Hua Wang
- Department of Pediatrics, Loma Linda University School of Medicine, CA, 92350, USA
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
- Nantong University, Jiangsu, 226001, China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Soochow, 215000, China
| |
Collapse
|
9
|
Liu S, Chen B. China's top 10 achievements in hematology in 2023. BLOOD SCIENCE 2024; 6:e00195. [PMID: 38854482 PMCID: PMC11161293 DOI: 10.1097/bs9.0000000000000195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Shuang Liu
- Chinese Journal of Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Biao Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Gui H, Fan X. Anti-tumor effect of dandelion flavone on multiple myeloma cells and its mechanism. Discov Oncol 2024; 15:215. [PMID: 38850433 PMCID: PMC11162407 DOI: 10.1007/s12672-024-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a prevalent hematologic malignancy characterized by the uncontrolled proliferation of monoclonal plasma cells in the bone marrow and excessive monoclonal immunoglobulin production, leading to organ damage. Despite therapeutic advancements, recurrence and drug resistance remain significant challenges. OBJECTIVE This study investigates the effects of dandelion flavone (DF) on MM cell proliferation, migration, and invasion, aiming to elucidate the mechanisms involved in MM metastasis and to explore the potential of traditional Chinese medicine in MM therapy. METHODS DF's impact on myeloma cell viability was evaluated using the CCK-8 and colony formation assays. Cell mobility and invasiveness were assessed through wound healing and transwell assays, respectively. RT-PCR was employed to quantify mRNA levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Apoptotic rates and molecular markers were analyzed via flow cytometry and RT-PCR. The PI3K/AKT signaling pathway was studied using Western blot and ELISA, with IGF-1 and the PI3K inhibitor LY294002 used to validate the findings. RESULTS DF demonstrated dose-dependent inhibitory effects on MM cell proliferation, migration, and invasion. It reduced mRNA levels of MMP-2 and MMP-9 while increasing those of TIMP-1 and TIMP-2. Furthermore, DF enhanced the expression of pro-apoptotic proteins and inhibited M2 macrophage polarization by targeting key molecules and enzymes. The anti-myeloma activity of DF was mediated through the inhibition of the PI3K/AKT pathway, as evidenced by diminished phosphorylation and differential effects in the presence of IGF-1 and LY294002. CONCLUSION By modulating the PI3K/AKT pathway, DF effectively inhibits MM cell proliferation, migration, and invasion, and induces apoptosis, establishing a novel therapeutic strategy for MM based on traditional Chinese medicine.
Collapse
Affiliation(s)
- Hua Gui
- Hematology Department, QingPu Branch of ZhongShan Hospital Affiliated to Fudan University, 1158 Park Road(E), Qingpu, Shanghai, China
| | - Xiaohong Fan
- Hematology Department, QingPu Branch of ZhongShan Hospital Affiliated to Fudan University, 1158 Park Road(E), Qingpu, Shanghai, China.
| |
Collapse
|
11
|
Zhou X, He R, Hu WX, Luo S, Hu J. Targeting myeloma metabolism: How abnormal metabolism contributes to multiple myeloma progression and resistance to proteasome inhibitors. Neoplasia 2024; 50:100974. [PMID: 38364355 PMCID: PMC10881428 DOI: 10.1016/j.neo.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Multiple myeloma is a hematological malignancy that has evolved from antibody-secreting B lymphocytes. Like other types of cancers, myeloma cells have acquired functional capabilities which are referred to as "Hallmarks of Cancer", and one of their most important features is the metabolic disorders. Due to the high secretory load of the MM cells, the first-line medicine proteasome inhibitors have found their pronounced effects in MM cells for blocking the degradation of misfolded proteins, leading to their accumulation in the ER and overwhelming ER stress. Moreover, proteasome inhibitors have been reported to be effective in myeloma by targeting glucose, lipid, amino acid metabolism of MM cells. In this review, we have described the abnormal metabolism of the three major nutrients, such as glucose, lipid and amino acids, which participate in the cellular functions. We have described their roles in myeloma progression, how they could be exploited for therapeutic purposes, and current therapeutic strategies targeting these metabolites, hoping to uncover potential novel therapeutic targets and promote the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Xiang Zhou
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Rui He
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Wei-Xin Hu
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Saiqun Luo
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China.
| | - Jingping Hu
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China.
| |
Collapse
|
12
|
Trivanović D, Mojsilović S, Bogosavljević N, Jurišić V, Jauković A. Revealing profile of cancer-educated platelets and their factors to foster immunotherapy development. Transl Oncol 2024; 40:101871. [PMID: 38134841 PMCID: PMC10776659 DOI: 10.1016/j.tranon.2023.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia.
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| | | | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| |
Collapse
|
13
|
Zhou R, Guo J, Feng X, Zhou W. Mechanisms of the role of proto-oncogene activation in promoting malignant transformation of mature B cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:113-121. [PMID: 38615172 PMCID: PMC11017026 DOI: 10.11817/j.issn.1672-7347.2024.230304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 04/15/2024]
Abstract
Malignant tumors continue to pose a significant threat to human life and safety and their development is primarily due to the activation of proto-oncogenes and the inactivation of suppressor genes. Among these, the activation of proto-oncogenes possesses greater potential to drive the malignant transformation of cells. Targeting oncogenes involved in the malignant transformation of tumor cells has provided a novel approach for the development of current antitumor drugs. Several preclinical and clinical studies have revealed that the development pathway of B cells, and the malignant transformation of mature B cells into tumors have been regulated by oncogenes and their metabolites. Therefore, summarizing the key oncogenes involved in the process of malignant transformation of mature B cells and elucidating the mechanisms of action in tumor development hold significant importance for the clinical treatment of malignant tumors.
Collapse
Affiliation(s)
- Ruiqi Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410006, China
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
14
|
Zhu Y, Jian X, Chen S, An G, Jiang D, Yang Q, Zhang J, Hu J, Qiu Y, Feng X, Guo J, Chen X, Li Z, Zhou R, Hu C, He N, Shi F, Huang S, Liu H, Li X, Xie L, Zhu Y, Zhao L, Jiang Y, Li J, Wang J, Qiu L, Chen X, Jia W, He Y, Zhou W. Targeting gut microbial nitrogen recycling and cellular uptake of ammonium to improve bortezomib resistance in multiple myeloma. Cell Metab 2024; 36:159-175.e8. [PMID: 38113887 DOI: 10.1016/j.cmet.2023.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The gut microbiome has been found to play a crucial role in the treatment of multiple myeloma (MM), which is still considered incurable due to drug resistance. In previous studies, we demonstrated that intestinal nitrogen-recycling bacteria are enriched in patients with MM. However, their role in MM relapse remains unclear. This study highlights the specific enrichment of Citrobacter freundii (C. freundii) in patients with relapsed MM. Through fecal microbial transplantation experiments, we demonstrate that C. freundii plays a critical role in inducing drug resistance in MM by increasing levels of circulating ammonium. The ammonium enters MM cells through the transmembrane channel protein SLC12A2, promoting chromosomal instability and drug resistance by stabilizing the NEK2 protein. We show that furosemide sodium, a loop diuretic, downregulates SLC12A2, thereby inhibiting ammonium uptake by MM cells and improving progression-free survival and curative effect scores. These findings provide new therapeutic targets and strategies for the intervention of MM progression and drug resistance.
Collapse
Affiliation(s)
- Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xingxing Jian
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Chen
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Duanfeng Jiang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Yang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyu Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jian Hu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Qiu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiaojiao Guo
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xun Chen
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhengjiang Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ruiqi Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Cong Hu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Nihan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fangming Shi
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Siqing Huang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Xie
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lia Zhao
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yichuan Jiang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Peking Union Medical College Hospital, Chinese Academy Medical Society & Peking Union Medical College, Beijing, China
| | - Jinuo Wang
- Peking Union Medical College Hospital, Chinese Academy Medical Society & Peking Union Medical College, Beijing, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China; Xiangya School of Public Health, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Shi R, DU W, He Y, Hu J, Yu H, Zhou W, Guo J, Feng X. High expression of VARS promotes the growth of multiple myeloma cells by causing imbalance in valine metabolism. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:795-808. [PMID: 37587064 PMCID: PMC10930441 DOI: 10.11817/j.issn.1672-7347.2023.220602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 08/18/2023]
Abstract
OBJECTIVES Multiple myeloma (MM) is a plasma cell malignancy occurring in middle and old age. MM is still an incurable disease due to its frequent recurrence and drug resistance. However, its pathogenesis is still unclear. Abnormal amino acid metabolism is one of the important characteristics of MM, and the important metabolic pathway of amino acids participates in protein synthesis as basic raw materials. Aminoacyl transfer ribonucleic acid synthetase (ARS) gene is a key regulatory gene in protein synthesis. This study aims to explore the molecular mechanism for ARS, a key factor of amino acid metabolism, in regulating amino acid metabolism in MM and affecting MM growth. METHODS The corresponding gene number was combined with the gene expression profile GSE5900 dataset and GSE2658 dataset in Gene Expression Omnibus (GEO) database to standardize the gene expression data of ARS. GSEA_4.2.0 software was used to analyze the difference of gene enrichment between healthy donors (HD) and MM patients in GEO database. GraphPad Prism 7 was used to draw heat maps and perform data analysis. Kaplan-Meier and Cox regression model were used to analyze the expression of ARS gene and the prognosis of MM patients, respectively. Bone marrow samples from 7 newly diagnosed MM patients were collected, CD138+ and CD138- cells were obtained by using CD138 antibody magnetic beads, and the expression of ARS in MM clinical samples was analyzed by real-time RT-PCR. Human B lymphocyte GM12878 cells and human MM cell lines ARP1, NCI-H929, OCI-MY5, U266, RPMI 8266, OPM-2, JJN-3, KMS11, MM1.s cells were selected as the study objects. The expression of ARS in MM cell lines was analyzed by real-time RT-PCR and Western blotting. Short hairpin RNA (shRNA) lentiviruses were used to construct gene knock-out plasmids (VARS-sh group). No-load plasmids (scramble group) and gene knock-out plasmids (VARS-sh group) were transfected into HEK 293T cells with for virus packaging, respectively. Stable expression cell lines were established by infecting ARP1 and OCI-MY5 cells, and the effects of knockout valyl-tRNA synthetase (VARS) gene on proliferation and apoptosis of MM cells were detected by cell counting and flow cytometry, respectively. GEO data were divided into a high expression group and a low expression group according to the expression of VARS. Bioinformatics analysis was performed to explore the downstream pathways affected by VARS. Gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) and high performance liquid chromatography (HPLC) were used to detect the valine content in CD138+ cells and ARP1, OCI-MY5 cells and supernatant of knockdown VARS gene in bone marrow samples from patients, respectively. RESULTS Gene enrichment analysis showed that tRNA processing related genes were significantly enriched in MM compared with HD (P<0.0001). Further screening of tRNA processing-pathway related subsets revealed that cytoplasmic aminoacyl tRNA synthetase family genes were significantly enriched in MM (P<0.0001). The results of gene expression heat map showed that the ARS family genes except alanyl-tRNA synthetase (AARS), arginyl-tRNA synthetase (RARS), seryl-tRNA synthetase (SARS) in GEO data were highly expressed in MM (all P<0.01). With the development of monoclonal gammopathy of undetermined significance (MGUS) to MM, the gene expression level was increased gradually. Kaplan-Meier univariate analysis of survival results showed that there were significant differences in the prognosis of MM patients in methionyl-tRNA synthetase (MARS), asparaginyl-tRNA synthetase (NARS) and VARS between the high expression group and the low expression group (all P<0.05). Cox regression model multivariate analysis showed that the high expression of VARS was associated with abnormal overall survival time of MM (HR=1.83, 95% CI 1.10 to 3.06, P=0.021). The high expression of NARS (HR=0.90, 95% CI 0.34 to 2.38) and MARS (HR=1.59, 95% CI 0.73 to 3.50) had no effect on the overall survival time of MM patients (both P>0.05). Real-time RT-PCR and Western blotting showed that VARS, MARS and NARS were highly expressed in CD138+ MM cells and MM cell lines of clinical patients (all P<0.05). Cell counting and flow cytometry results showed that the proliferation of MM cells by knockout VARS was significantly inhibited (P<0.01), the proportion of apoptosis was significantly increased (P<0.05). Bioinformatics analysis showed that in addition to several pathways including the cell cycle regulated by VARS, the valine, leucine and isoleucine catabolic pathways were upregulated. Non-targeted metabolomics data showed reduced valine content in CD138+ tumor cells in MM patients compared to HD (P<0.05). HPLC results showed that compared with the scramble group, the intracellular and medium supernatant content of ARP1 cells and the medium supernatant of OCI-MY5 in the VARS-shRNA group was increased (all P<0.05). CONCLUSIONS MM patients with abnormal high expression of VARS have a poor prognosis. VARS promotes the malignant growth of MM cells by affecting the regulation of valine metabolism.
Collapse
Affiliation(s)
- Rui Shi
- Department of Health Inspection and Quarantine, Xiangya School of Public Health, Central South University, Changsha 410006.
| | - Wanqing DU
- Department of Health Inspection and Quarantine, Xiangya School of Public Health, Central South University, Changsha 410006
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Jian Hu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Han Yu
- Department of Health Inspection and Quarantine, Xiangya School of Public Health, Central South University, Changsha 410006
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008.
| | - Xiangling Feng
- Department of Health Inspection and Quarantine, Xiangya School of Public Health, Central South University, Changsha 410006.
| |
Collapse
|