1
|
Pepe D, Janssens X, Timcheva K, Marrón-Liñares GM, Verbelen B, Konstantakos V, De Groote D, De Bie J, Verhasselt A, Dewaele B, Godderis A, Cools C, Franco-Tolsau M, Royaert J, Verbeeck J, Kampen KR, Subramanian K, Cabrerizo Granados D, Menschaert G, De Keersmaecker K. Reannotation of cancer mutations based on expressed RNA transcripts reveals functional non-coding mutations in melanoma. Am J Hum Genet 2025:S0002-9297(25)00146-6. [PMID: 40359938 DOI: 10.1016/j.ajhg.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The role of synonymous mutations in cancer pathogenesis is currently underexplored. We developed a method to detect significant clusters of synonymous and missense mutations in public cancer genomics data. In melanoma, we show that 22% (11/50) of these mutation clusters are misannotated as coding mutations because the reference transcripts used for their annotation are not expressed. Instead, these mutations are actually non-coding. This, for instance, applies to the mutation clusters targeting known cancer genes kinetochore localized astrin (SPAG5) binding protein (KNSTRN) and BCL2-like 12 (BCL2L12), each affecting 4%-5% of melanoma tumors. For the latter, we show that these mutations are functional non-coding mutations that target the shared promoter region of interferon regulatory factor 3 (IRF3) and BCL2L12. This results in downregulation of IRF3, BCL2L12, and tumor protein p53 (TP53) expression in a CRISPR-Cas9 primary melanocyte model and in melanoma tumors. In individuals with melanoma, these mutations were also associated with a worse response to immunotherapy. Finally, we propose a simple automated method to more accurately annotate cancer mutations based on expressed transcripts. This work shows the importance of integrating DNA- and RNA-sequencing data to properly annotate mutations and identifies a number of previously overlooked and wrongly annotated functional non-coding mutations in melanoma.
Collapse
Affiliation(s)
- Daniele Pepe
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xander Janssens
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kalina Timcheva
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Grecia M Marrón-Liñares
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Benno Verbelen
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Vasileios Konstantakos
- Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium; VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Dylan De Groote
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Barbara Dewaele
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Charlotte Cools
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Mireia Franco-Tolsau
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jonathan Royaert
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jelle Verbeeck
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim R Kampen
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium; Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Karthik Subramanian
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - David Cabrerizo Granados
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Gerben Menschaert
- OHMX.bio NV, Evergem, Belgium; Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
2
|
Morledge-Hampton B, Selvam K, Chauhan M, Goodman AG, Wyrick JJ. Ultraviolet damage and repair maps in Drosophila reveal the impact of domain-specific changes in nucleosome repeat length on repair efficiency. Genome Res 2025; 35:257-267. [PMID: 39762049 PMCID: PMC11874968 DOI: 10.1101/gr.279605.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
Cyclobutane pyrimidine dimers (CPDs) are formed in DNA following exposure to ultraviolet (UV) light and are mutagenic unless repaired by nucleotide excision repair (NER). It is known that CPD repair rates vary in different genome regions owing to transcription-coupled NER and differences in chromatin accessibility; however, the impact of regional chromatin organization on CPD formation remains unclear. Furthermore, nucleosomes are known to modulate UV damage and repair activity, but how these damage and repair patterns are affected by the overarching chromatin domains in which these nucleosomes are located is not understood. Here, we generated a new CPD damage map in Drosophila S2 cells using CPD-seq and analyzed it alongside existing excision repair-sequencing (XR-seq) data to compare CPD damage formation and repair rates across five previously established chromatin types in Drosophila This analysis revealed that repair activity varies substantially across different chromatin types, whereas CPD formation is relatively unaffected. Moreover, we observe distinct patterns of repair activity in nucleosomes located in different chromatin types, which we show is owing to domain-specific differences in nucleosome repeat length (NRL). These findings indicate that NRL is altered in different chromatin types in Drosophila and that changes in NRL modulate the repair of UV lesions.
Collapse
Affiliation(s)
| | - Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Manish Chauhan
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
3
|
Heilbrun EE, Tseitline D, Wasserman H, Kirshenbaum A, Cohen Y, Gordan R, Adar S. The epigenetic landscape shapes smoking-induced mutagenesis by modulating DNA damage susceptibility and repair efficiency. Nucleic Acids Res 2025; 53:gkaf048. [PMID: 39933696 PMCID: PMC11811737 DOI: 10.1093/nar/gkaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer sequencing efforts have uncovered mutational signatures that are attributed to exposure to the cigarette smoke carcinogen benzo[a]pyrene. Benzo[a]pyrene metabolizes in cells to benzo[a]pyrene diol epoxide (BPDE) and reacts with guanine nucleotides to form bulky BPDE adducts. These DNA adducts block transcription and replication, compromising cell function and survival, and are repaired in human cells by the nucleotide excision repair pathway. Here, we applied high-resolution genomic assays to measure BPDE-induced damage formation and mutagenesis in human cells. We integrated the new damage and mutagenesis data with previous repair, DNA methylation, RNA expression, DNA replication, and chromatin component measurements in the same cell lines, along with lung cancer mutagenesis data. BPDE damage formation is significantly enhanced by DNA methylation and in accessible chromatin regions, including transcribed and early-replicating regions. Binding of transcription factors is associated primarily with reduced, but also enhanced damage formation, depending on the factor. While DNA methylation does not appear to influence repair efficiency, this repair was significantly elevated in accessible chromatin regions, which accumulated fewer mutations. Thus, when damage and repair drive mutagenesis in opposing directions, the final mutational patterns appear to be dictated by the efficiency of repair rather than the frequency of underlying damages.
Collapse
Affiliation(s)
- Elisheva E Heilbrun
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Tseitline
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Wasserman
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, United States
| | - Ayala Kirshenbaum
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yuval Cohen
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Raluca Gordan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, United States
- Department of Computer Science, Duke University, Durham, NC 27708, United States
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
4
|
Guneri-Sozeri PY, Adebali O. Transcription factors, nucleotide excision repair, and cancer: A review of molecular interplay. Int J Biochem Cell Biol 2025; 179:106724. [PMID: 39672502 DOI: 10.1016/j.biocel.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Bulky DNA adducts are mostly formed by external factors such as UV irradiation, smoking or treatment with DNA crosslinking agents. If such DNA adducts are not removed by nucleotide excision repair, they can lead to formation of driver mutations that contribute to cancer formation. Transcription factors (TFs) may critically affect both DNA adduct formation and repair efficiency at the binding site to DNA. For example, "hotspot" mutations in melanoma coincide with UV-induced accumulated cyclobutane pyrimidine dimer (CPD) adducts and/or inhibited repair at the binding sites of some TFs. Similarly, anticancer treatment with DNA cross-linkers may additionally generate DNA adducts leading to secondary mutations and the formation of malignant subclones. In addition, some TFs are overexpressed in response to UV irradiation or chemotherapeutic treatment, activating oncogenic and anti-oncogenic pathways independently of nucleotide excision repair itself. This review focuses on the interplay between TFs and nucleotide excision repair during cancer development and progression.
Collapse
Affiliation(s)
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Türkiye.
| |
Collapse
|
5
|
Ramadhin AR, Lee SH, Zhou D, Salmazo A, Gonzalo-Hansen C, van Sluis M, Blom CMA, Janssens RC, Raams A, Dekkers D, Bezstarosti K, Slade D, Vermeulen W, Pines A, Demmers JAA, Bernecky C, Sixma TK, Marteijn JA. STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment. Mol Cell 2024; 84:4740-4757.e12. [PMID: 39547223 DOI: 10.1016/j.molcel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates DNA damage that impedes gene transcription by RNA polymerase II (RNA Pol II). TC-NER is initiated by the recognition of lesion-stalled RNA Pol II by CSB, which recruits the CRL4CSA ubiquitin ligase and UVSSA. RNA Pol II ubiquitylation at RPB1-K1268 by CRL4CSA serves as a critical TC-NER checkpoint, governing RNA Pol II stability and initiating DNA damage excision by TFIIH recruitment. However, the precise regulatory mechanisms of CRL4CSA activity and TFIIH recruitment remain elusive. Here, we reveal human serine/threonine-protein kinase 19 (STK19) as a TC-NER factor, which is essential for correct DNA damage removal and subsequent transcription restart. Cryogenic electron microscopy (cryo-EM) studies demonstrate that STK19 is an integral part of the RNA Pol II-TC-NER complex, bridging CSA, UVSSA, RNA Pol II, and downstream DNA. STK19 stimulates TC-NER complex stability and CRL4CSA activity, resulting in efficient RNA Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core TC-NER component.
Collapse
Affiliation(s)
- Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anita Salmazo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Cindy M A Blom
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dea Slade
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, 1030 Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Carrie Bernecky
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands.
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
6
|
DeGeorgia S“N, Kaufman CK. Specific SOX10 enhancer elements modulate phenotype plasticity and drug resistance in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628224. [PMID: 39764051 PMCID: PMC11702536 DOI: 10.1101/2024.12.12.628224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown. In this study, we initially leverage the well-established zebrafish melanoma model as a high-throughput system to dissect and analyze transcriptional control elements that are hijacked by melanoma. We identify key characteristics of these elements, making them translatable to human enhancer identification despite the lack of direct sequence conservation. Building on our identification of a zebrafish sox10 enhancer necessary for melanoma initiation, we extend these findings to human melanoma, identifying two human upstream enhancer elements that are critical for full SOX10 expression. Stable biallelic deletion of these enhancers using CRISPR-Cas9 induces a distinct phenotype shift across multiple human melanoma cell lines from a melanocytic phenotype towards an undifferentiated phenotype and is also characterized by an increase in drug resistance that mirrors clinical data including an upregulation of NTRK1, a tyrosine kinase, and potential therapeutic target. These results provide new insights into the transcriptional regulation of SOX10 in human melanoma and underscore the role of individual enhancer elements and potentially NTRK1 in driving melanoma phenotype plasticity and drug resistance. Our work lays the groundwork for future gene-based and combination kinase-inhibitor therapies targeting SOX10 regulation and NTRK1 as a potential avenue for enhancing the efficacy of current melanoma treatments.
Collapse
Affiliation(s)
- Sophia “Noah” DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| | - Charles K. Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| |
Collapse
|
7
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
8
|
Elliott K, Singh VK, Bäckerholm A, Ögren L, Lindberg M, Soczek KM, Hoberg E, Luijts T, Van den Eynden J, Falkenberg M, Doudna J, Ståhlberg A, Larsson E. Mechanistic basis of atypical TERT promoter mutations. Nat Commun 2024; 15:9965. [PMID: 39557834 PMCID: PMC11574208 DOI: 10.1038/s41467-024-54158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Non-coding mutations in the TERT promoter (TERTp), typically at one of two bases -124 and -146 bp upstream of the start codon, are among the most prevalent driver mutations in human cancer. Several additional recurrent TERTp mutations have been reported but their functions and origins remain largely unexplained. Here, we show that atypical TERTp mutations arise secondary to canonical TERTp mutations in a two-step process. Canonical TERTp mutations create de novo binding sites for ETS family transcription factors that induce favourable conditions for DNA damage formation by UV light, thus creating a hotspot effect but only after a first mutational hit. In agreement, atypical TERTp mutations co-occur with canonical driver mutations in large cancer cohorts and arise subclonally specifically on the TERTp driver mutant chromosome homolog of melanoma cells treated with UV light in vitro. Our study gives an in-depth view of TERTp mutations in cancer and provides a mechanistic explanation for atypical TERTp mutations.
Collapse
Affiliation(s)
- Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vinod Kumar Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alan Bäckerholm
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Ögren
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Lindberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom Luijts
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Anders Ståhlberg
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
10
|
Menon V, García-Ruiz A, Neveu S, Cartmel B, Ferrucci LM, Palmatier M, Ko C, Tsai KY, Nakamura M, Kim SR, Girardi M, Kornacker K, Brash DE. Pervasive Induction of Regulatory Mutation Microclones in Sun-exposed Skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612526. [PMID: 39345638 PMCID: PMC11429607 DOI: 10.1101/2024.09.12.612526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Carcinogen-induced mutations are thought near-random, with rare cancer-driver mutations underlying clonal expansion. Using high-fidelity Duplex Sequencing to reach a mutation frequency sensitivity of 4×10 -9 per nt, we report that sun exposure creates pervasive mutations at sites with ∼100-fold UV-sensitivity in RNA-processing gene promoters - cyclobutane pyrimidine dimer (CPD) hyperhotspots - and these mutations have a mini-driver clonal expansion phenotype. Numerically, human skin harbored 10-fold more genuine mutations than previously reported, with neonatal skin containing 90,000 per cell; UV signature mutations increased 8,000-fold in sun-exposed skin, averaging 3×10 -5 per nt. Clonal expansion by neutral drift or passenger formation was nil. Tumor suppressor gene hotspots reached variant allele frequency 0.1-10% via 30-3,000 fold clonal expansion, in occasional biopsies. CPD hyperhotspots reached those frequencies in every biopsy, with modest clonal expansion. In vitro, tumor hotspot mutations arose occasionally over weeks of chronic low-dose exposure, whereas CPD hyperhotspot mutations arose in days at 1000-fold higher frequencies, growing exponentially. UV targeted mini-drivers in every skin cell.
Collapse
|
11
|
Xiong J, Zhu L, Fu Y, Ye Z, Deng C, Wang X, Chen Y. Prognostic and therapeutic roles of SETD2 in cutaneous melanoma. Aging (Albany NY) 2024; 16:9692-9708. [PMID: 38843391 PMCID: PMC11210245 DOI: 10.18632/aging.205894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) is an aggressive form of skin cancer with limited treatment options for advanced stages. Prognostic markers that accurately predict patients' outcomes and guide therapeutic strategies are crucial for improving melanoma management. SETD2 (SET Domain-Containing Protein 2), a histone methyltransferase involved in chromatin remodeling and gene regulation, has recently emerged as a tumor suppressor. Its dysfunction is involved in oncogenesis in some cancers, but little is known about its functions in progression and therapeutic response of melanoma. METHODS RNA-seq and clinical data from public database were used to evaluate the survival analysis, gene set enrichment, IC50 of therapeutics and immunotherapy response. SETD2 knock-out A375 cell line (A375SETD2ko) was developed by Crispr/cas9 and CCK-8 analysis and nude mice used to evaluate the proliferation and invasion of melanoma cells in vitro and in vivo, while Western blotting tested the MMR-related protein. RESULTS SETD2 was commonly down-regulated in melanoma samples which demonstrated an unfavorable survival. Cells without SETD2 expression tend to have a more progressive and invasive behavior, with resistance to chemotherapy. However, they are more sensitive to tyrosine kinase inhibitors (TKIs). They also exhibit inflamed features with lower TIDE (Tumor Immune Dysfunction and Exclusion) score and higher tumor mutation burden (TMB), showing that these patients may benefit from immunotherapy. CONCLUSIONS This study revealed that SETD2 dysfunction in melanoma implied a poor prognosis and chemotherapy resistance, but highly sensitive to TKIs and immunotherapy, highlighting the prognostic and therapeutic value of SETD2 in cutaneous melanoma.
Collapse
Affiliation(s)
- Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yunrong Fu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Cuimin Deng
- Department of Pharmacology, QuanZhou Women’s and Children’s Hospital, Quanzhou, Fujian, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
12
|
Yao YM, Miodownik I, O’Hagan MP, Jbara M, Afek A. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Transcription 2024; 15:114-138. [PMID: 39033307 PMCID: PMC11810102 DOI: 10.1080/21541264.2024.2379161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
Collapse
Affiliation(s)
- Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irina Miodownik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael P. O’Hagan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Duan M, Song S, Wasserman H, Lee PH, Liu KJ, Gordân R, He Y, Mao P. High UV damage and low repair, but not cytosine deamination, stimulate mutation hotspots at ETS binding sites in melanoma. Proc Natl Acad Sci U S A 2024; 121:e2310854121. [PMID: 38241433 PMCID: PMC10823218 DOI: 10.1073/pnas.2310854121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024] Open
Abstract
Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5' side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genes RPL13A and RPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| | - Shenghan Song
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM87131
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM87131
| | - Hana Wasserman
- Program in Computational Biology and Bioinformatics, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC27708
| | - Po-Hsuen Lee
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| | - Ke Jian Liu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY11794-7263
| | - Raluca Gordân
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC27708
- Department of Computer Science, Duke University, Durham, NC27708
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC27708
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM87131
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM87131
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
14
|
Cohen Y, Adar S. Novel insights into bulky DNA damage formation and nucleotide excision repair from high-resolution genomics. DNA Repair (Amst) 2023; 130:103549. [PMID: 37566959 DOI: 10.1016/j.dnarep.2023.103549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
DNA damages compromise cell function and fate. Cells of all organisms activate a global DNA damage response that includes a signaling stress response, activation of checkpoints, and recruitment of repair enzymes. Especially deleterious are bulky, helix-distorting damages that block transcription and replication. Due to their miscoding nature, these damages lead to mutations and cancer. In human cells, bulky DNA damages are repaired by nucleotide excision repair (NER). To date, the basic mechanism of NER in naked DNA is well defined. Still, there is a fundamental gap in our understanding of how repair is orchestrated despite the packaging of DNA in chromatin, and how it is coordinated with active transcription and replication. The last decade has brought forth huge advances in our ability to detect and assay bulky DNA damages and their repair at single nucleotide resolution across the human genome. Here we review recent findings on the effect of chromatin and DNA-binding proteins on the formation of bulky DNA damages, and novel insights on NER, provided by the recent application of genomic methods.
Collapse
Affiliation(s)
- Yuval Cohen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
15
|
Agaimy A. The many faces of Atypical fibroxanthoma. Semin Diagn Pathol 2023; 40:S0740-2570(23)00071-0. [PMID: 37438163 DOI: 10.1053/j.semdp.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Atypical fibroxanthoma (AFX) is an uncommon, primary dermal neoplasm of uncertain histogenesis, typically originating in the sun-damage skin of the head and neck of the elderly. Since first description in 1958, ∼3000 cases have been reported in the literature. However, the disease is underreported as the neoplasm is considered a standard diagnosis in the last decades. On the other hand, many earlier reports likely have included non-AFX mimics or aggressive pleomorphic dermal sarcomas. In contrast to its alarming high-grade histology, AFX behaves indolently with rare recurrences/ metastatic rate of <2%. The overall 10- and 20-year disease-specific survival rates are ∼ 100% and 98%, respectively. Histologically, AFX displays undifferentiated pleomorphic spindle cell morphology akin to undifferentiated pleomorphic sarcoma (UPS), a feature that was the basis of the abandoned historical terminology "MFH of skin". However, in contrast to other undifferentiated sarcomatoid neoplasms, AFX is notorious for its highly variable histology with a plethora of patterns, underlining a wide differential diagnosis. Notably, spindle cell, keloid-like, pleomorphic, epithelioid, rhabdoid, clear cell, foamy cell, granular cell, bizarre cell, pseudoangiomatous, inflammatory, osteoclast-rich, and many others have been recognized with varying frequencies. Immunohistochemically, AFX is characterized by nonspecific profile with block-type expression of CD10 and aberrant p53 pattern and lack of pankeratin and other lineage-specific epithelial, mesenchymal, melanocytic and hematolymphoid markers. Sarcomatoid melanoma, spindle cell carcinoma and cutaneous anaplastic large cell lymphoma are major considerations. Distinction of AFX from pleomorphic dermal sarcoma (PDS) is arbitrary and is based on presence of ≥ 1 of four unfavorable histological features: more than minimal subcutaneous involvement, coagulative necrosis, lymphovascular invasion and perineurial invasion.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|