1
|
Wang K, Du S, Kong J, Zheng M, Li S, Liang E, Zhu X. Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing. MATERIALS (BASEL, SWITZERLAND) 2025; 18:322. [PMID: 39859793 PMCID: PMC11767135 DOI: 10.3390/ma18020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS). The principle of electrostatic induction and contact electrification is used to achieve tactile response when external objects approach and slide. Experiments show that the material type, speed, and pressure of the perceived object can cause the changes of the electrical signal. In addition, fluorinated ethylene propylene (FEP) is used as the contact electrification layer, and indium tin oxide (ITO) is used as the electrostatic induction electrode to achieve transparency and flexibility of the entire device. By utilizing the transparency characteristics of this sensor to integrate with optical cameras, it is possible to achieve integrated perception of tactile and visual senses. This has great advantages for applications in the field of intelligent perception and is expected to be integrated with different types of optical sensors in the future to achieve multimodal intelligent perception and sensing technology, which will contribute to the intelligence and integration of robot sensing.
Collapse
Affiliation(s)
- Kesheng Wang
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Shouxin Du
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Jiali Kong
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Minghui Zheng
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Shengtao Li
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Enqiang Liang
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Xiaoying Zhu
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| |
Collapse
|
2
|
Li Q, Tan T, Wang B, Yan Z. Avian-inspired embodied perception in biohybrid flapping-wing robotics. Nat Commun 2024; 15:9099. [PMID: 39438483 PMCID: PMC11496644 DOI: 10.1038/s41467-024-53517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Avian feather intricate adaptable architecture to wing deformations has catalyzed interest in feathered flapping-wing aircraft with high maneuverability, agility, and stealth. Yet, to mimic avian integrated somatic sensation within stringent weight constraints, remains challenging. Here, we propose an avian-inspired embodied perception approach for biohybrid flapping-wing robots. Our feather-piezoelectric mechanoreceptor leverages feather-based vibration structures and flexible piezoelectric materials to refine and augment mechanoreception via coupled oscillator interactions and robust microstructure adhesion. Utilizing convolutional neural networks with the grey wolf optimizer, we develop tactile perception of airflow velocity and wing flapping frequency proprioception. This method also senses pitch angle via airflow direction and detects wing morphology through feather collisions. Our low-weight, accurate perception of flapping-wing robot flight states is validated by motion capture. This investigation constructs a biomechanically integrated embodied perception system in flapping-wing robots, which holds significant promise in reflex-based control of complex flight maneuvers and natural bird flight surveillance.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Ocean Engineering, Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Tan
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Benlong Wang
- State Key Laboratory of Ocean Engineering, Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhimiao Yan
- State Key Laboratory of Ocean Engineering, Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Xu K, Cai Z, Luo H, Lu Y, Ding C, Yang G, Wang L, Kuang C, Liu J, Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS NANO 2024; 18:26435-26476. [PMID: 39288275 DOI: 10.1021/acsnano.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zimo Cai
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huayu Luo
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenliang Ding
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Geng Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huayong Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
4
|
Liu D, Yang P, Gao Y, Liu N, Ye C, Zhou L, Zhang J, Guo Z, Wang J, Wang ZL. A Dual-Mode Triboelectric Nanogenerator for Efficiently Harvesting Droplet Energy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400698. [PMID: 38446055 DOI: 10.1002/smll.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Triboelectric nanogenerator (TENG) is a promising solution to harvest the low-frequency, low-actuation-force, and high-entropy droplet energy. Conventional attempts mainly focus on maximizing electrostatic energy harvest on the liquid-solid surface, but enormous kinetic energy of droplet hitting the substrate is directly dissipated, limiting the output performance. Here, a dual-mode TENG (DM-TENG) is proposed to efficiently harvest both electrostatic energy at liquid-solid surface from a droplet TENG (D-TENG) and elastic potential energy of the vibrated cantilever from a contact-separation TENG (CS-TENG). Triggered by small droplets, the flexible cantilever beam, rather than conventional stiff ones, can easily vibrate multiple times with large amplitude, enabling frequency multiplication of CS-TENG and producing amplified output charges. Combining with the top electrode design to sufficiently utilize charges at liquid-solid interface, a record-high output charge of 158 nC is realized by single droplet. The energy conversion efficiency of DM-TENG is 2.66-fold of D-TENG. An array system with the specially designed power management circuit is also demonstrated for building self-powered system, offering promising applications for efficiently harvesting raindrop energy.
Collapse
Affiliation(s)
- Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peiyuan Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yikui Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nian Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Cuiying Ye
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
| | - Jiayue Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Ziting Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
He Y, Cheng Y, Yang C, Guo CF. Creep-free polyelectrolyte elastomer for drift-free iontronic sensing. NATURE MATERIALS 2024; 23:1107-1114. [PMID: 38514845 DOI: 10.1038/s41563-024-01848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Artificial pressure sensors often use soft materials to achieve skin-like softness, but the viscoelastic creep of soft materials and the ion leakage, specifically for ionic conductors, cause signal drift and inaccurate measurement. Here we report drift-free iontronic sensing by designing and copolymerizing a leakage-free and creep-free polyelectrolyte elastomer containing two types of segments: charged segments having fixed cations to prevent ion leakage and neutral slippery segments with a high crosslink density for low creep. We show that an iontronic sensor using the polyelectrolyte elastomer barely drifts under an ultrahigh static pressure of 500 kPa (close to its Young's modulus), exhibits a drift rate two to three orders of magnitude lower than that of the sensors adopting conventional ionic conductors and enables steady and accurate control for robotic manipulation. Such drift-free iontronic sensing represents a step towards highly accurate sensing in robotics and beyond.
Collapse
Affiliation(s)
- Yunfeng He
- Shenzhen Key Laboratory of Soft Mechanics and Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Yu Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Canhui Yang
- Shenzhen Key Laboratory of Soft Mechanics and Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, P. R. China.
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, P. R. China.
| |
Collapse
|
6
|
Lagemann E, Brunton SL, Schröder W, Lagemann C. Towards extending the aircraft flight envelope by mitigating transonic airfoil buffet. Nat Commun 2024; 15:5020. [PMID: 38866747 PMCID: PMC11169508 DOI: 10.1038/s41467-024-49361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
In the age of globalization, commercial aviation plays a central role in maintaining our international connectivity by providing fast air transport services for passengers and freight. However, the upper limit of the aircraft flight envelope, i.e., its operational limit in the high-speed (transonic) regime, is usually fixed by the occurrence of transonic aeroelastic effects. These harmful structural vibrations are associated with an aerodynamic instability called transonic buffet. It refers to shock wave oscillations occurring on the aircraft wings, which induce unsteady aerodynamic loads acting on the wing structure. Since the structural response can cause severe structural damage endangering flight safety, the aviation industry is highly interested in suppressing transonic buffet to extend the flight envelope to higher aircraft speeds. In this contribution, we demonstrate experimentally that the application of porous trailing edges substantially attenuates the buffet phenomenon. Since porous trailing edges have the additional benefit of reducing acoustic aircraft emissions, they could prospectively provide faster air transport with reduced noise emissions.
Collapse
Affiliation(s)
- Esther Lagemann
- AI Institute in Dynamic Systems, Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Institute of Aerodynamics, RWTH Aachen University, Wüllnerstraße 5a, 52062, Aachen, Germany.
| | - Steven L Brunton
- AI Institute in Dynamic Systems, Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Wolfgang Schröder
- Institute of Aerodynamics, RWTH Aachen University, Wüllnerstraße 5a, 52062, Aachen, Germany
| | - Christian Lagemann
- AI Institute in Dynamic Systems, Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute of Aerodynamics, RWTH Aachen University, Wüllnerstraße 5a, 52062, Aachen, Germany
| |
Collapse
|
7
|
Cao Y, Su E, Sun Y, Wang ZL, Cao LNY. A Rolling-Bead Triboelectric Nanogenerator for Harvesting Omnidirectional Wind-Induced Energy toward Shelter Forests Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307119. [PMID: 37875768 DOI: 10.1002/smll.202307119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Shelter forests (or shelter-belts), while crucial for climate regulation, lack monitoring systems, e.g., Internet of Things (IoT) devices, but their abundant wind energy can potentially power these devices using the trees as mounting points. To harness wind energy, an omnidirectional fluid-induced vibration triboelectric nanogenerator (OFIV-TENG) has been developed. The device is installed on shelter forest trees to harvest wind energy from all directions, employing a fluid-induced vibration (FIV) mechanism (fluid-responding structure) that can capture and use wind energy, ranging from low wind speeds (vortex vibration) to high wind speeds (galloping). The rolling-bead triboelectric nanogenerator (TENG) can efficiently harvest energy while minimizing wear and tear. Additionally, the usage of double electrodes results in an effective surface charge density of 21.4 µC m-2 , which is the highest among all reported rolling-bead TENGs. The collected energy is utilized for temperature and humidity monitoring, providing feedback on the effect of climate regulation in shelter forests, alarming forest fires, and wireless wind speed warning. In general, this work provides a promising and rational strategy, using natural resources like trees as the supporting structures, and shows broad application prospects in efficient energy collection, wind speed warning, and environmentally friendliness.
Collapse
Affiliation(s)
- Yaxing Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Erming Su
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanshuo Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, South Korea
| | - Leo N Y Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Liu F, Zhao Y, Xie N, Wang Y, Liu M, Han Z, Hou T. Bio-inspired, sensitivity-enhanced, bi-directional airflow sensor for turbulence detection. NANOSCALE 2024; 16:4299-4307. [PMID: 38353593 DOI: 10.1039/d3nr03824f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Detecting airflow turbulence precursors promptly is crucial for ensuring flight safety and control. The initial stages of turbulence involve small reverse flows with random velocities and directions, which are not easily detected by existing airflow sensors. In this study, we designed a bionic, sensitivity-enhanced, bi-directional airflow sensor (BSBA) by incorporating bio-inspired circular tip slits and enlarging the central part of the cruciform beam structure. The BSBA exhibits a rapid response time (24.1 ms), high sensitivity (1.36 mV m-1 s-1), consistent detection of forward and backward airflow (correlation coefficient of 0.9854), and a low airflow detection threshold (1 ml). With these features, the proposed sensor can rapidly and accurately measure slight variations in the oscillating airflow, flow field, and contact force. The BSBA also achieves transparent obstacle detection on a quadrotor, even in visually challenging environments, by capturing minute changes in the flow fields produced by the quadrotor when encountering obstacles. The sensor's high sensitivity, consistent bi-directional detection, and fast response give it significant potential for enhancing safety in aircraft control systems.
Collapse
Affiliation(s)
- Fu Liu
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Yufeng Zhao
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Nan Xie
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Yueqiao Wang
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Meihe Liu
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Jilin University, Changchun 130022, China
| | - Tao Hou
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
9
|
Sun Y, Li C, Xu Z, Cao Y, Sheng H, Wang ZL, Cao LNY. Conformable Multifunctional Space Fabric by Metal 3D Printing for Collision Hazard Protection and Self-Powered Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019043 DOI: 10.1021/acsami.3c15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The monitoring of space debris assumes paramount significance to ensure the sustainability and security of space activities as well as underground bases in outer space. However, designing a wide range monitoring system with easy fabrication, low power, and high precision remains an urgent challenge under the scarcity of materials and extreme environment conditions of outer space. Here, we designed a one-piece, robust, but flexible, and repairable 3D metal-printed triboelectric nanogenerator (FR-TENG) by incorporating the advantages of standardization and customization of outer space 3D metal printing. Inspired by the structure of hexagonal and pangolin scales, a curved structure is ingeniously applied in the design of 3D printed metal to adapt different curved surfaces while maintaining superior compressive strength, providing excellent flexibility and shape adaptability. Benefiting from the unique structural design, the FR-TENG has a minimum length of 1 cm with a weight of only 3.5 g and the minimum weight resolution detected of 9.6 g, with a response time of 20 ms. Furthermore, a multichannel self-powered collision monitoring system has been developed to monitor minor collisions, providing warnings to determine potential impacts on the space station and bases surfaces. The system may contribute to ensuring the successful completion of space missions and providing a safer space environment for the exploration of extraterrestrial life and the establishment of underground protective bases.
Collapse
Affiliation(s)
- Yanshuo Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zijie Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaxing Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hengrui Sheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, Guangxi, P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Leo N Y Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|