1
|
Mascio G, Notartomaso S, Ginerete RP, Imbriglio T, Bucci D, Liberatore F, Ceccherelli A, Castaldi S, Zampini G, Cannella M, Nicoletti F, Battaglia G, Bruno V. Formation of perineuronal nets within a thalamocortical circuit shapes mechanical and thermal pain thresholds in mice with neuropathic pain. Pain 2025; 166:1128-1142. [PMID: 40112162 PMCID: PMC12004981 DOI: 10.1097/j.pain.0000000000003563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025]
Abstract
ABSTRACT We moved from the hypothesis that perineuronal nets (PNNs), which are condensed structures of the extracellular matrix surrounding GABAergic interneurons in the forebrain, contribute to mechanisms of maladaptive neuronal plasticity underlying chronic pain. Here, we found that the density of PNNs labelled with the lectin Wisteria Floribunda Agglutinin (WFA) increased in the contralateral somatosensory cortex (SSC), medial prefrontal cortex (mPFC), reticular thalamic nucleus (RTN), and insular cortex of mice developing neuropathic pain in response to unilateral chronic constriction injury of the sciatic nerve. These regions are involved in neuronal circuits underlying perception, sufferance, embodiment, and top-down control of pain. At least in the SSC and mPFC, the increased density of WFA + PNNs was associated with an up-regulation of the proteoglycans, brevican and neurocan, as shown by immunoblot analysis. Enzymatic degradation of PNNs caused by local infusion of chondroitinase ABC in the contralateral SSC or RTN enhanced both mechanical and thermal pain thresholds in chronic constriction injury mice. In contrast, siRNA-induced knock-down of the PNN-degrading enzyme, type-9 matrix metalloproteinase (MMP-9), in the SSC or RTN lowered pain thresholds in sham-operated mice. These data, combined with our previous findings obtained in mice with chronic inflammatory pain, suggest that an enhanced formation/reduced degradation of WFA + PNNs in regions of the pain matrix is associated with different types of chronic pain and may drive mechanisms of nociceptive sensitization leading to reduced mechanical and thermal pain thresholds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alessia Ceccherelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sonia Castaldi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Gloria Zampini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Liu S, Xin R, Zhang X, Han L. Separable Microneedle Patch Integrated with the Dictamnine-Loaded Copper MOF Nanozyme for Atopic Dermatitis Treatment. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40273362 DOI: 10.1021/acsami.5c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder marked by skin thickening, severe pruritus, lesions, and emotional disturbances, including anxiety and depression-like behavior. Current treatments primarily rely on localized therapies, which can lead to adverse effects such as hyperglycemia and Cushing's syndrome with repeated use. To address these issues, we developed a hyaluronic acid-based separable microneedle patch (Dic@pCu-HA MN), integrating polydopamine-coordinated copper-based metal-organic frameworks (pCu-MOFs) and the anti-inflammatory agent dictamnine (Dic), for synergistic management of AD and its neuropsychiatric comorbidities. pCu-MOFs exhibited dual functionality as nanocargo for hydrophobic Dic (encapsulation efficiency: 84.62 ± 2.14%) and multienzyme mimics that efficiently scavenge reactive oxygen species (ROS) (superoxide radical scavenging: 63.85 ± 0.34%). In vitro release studies demonstrated ROS-responsive Dic release of 86.80 ± 4.83% over 48 h under AD pathology-mimicking conditions. In a 1-Chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model, the Dic@pCu-HA MN significantly reduced oxidative stress (8-OHdG: 85.1 ± 7.0% decrease), suppressed pro-inflammatory cytokines (IL-4: 70.0 ± 7.8% decrease vs control), and restored skin barrier integrity. By modulating the HPA axis, the system attenuated neuroinflammation and alleviated itching (scratching frequency: 40.1 ± 41.3% reduction) and depression-like behavior (time in the bright box: 96.6 ± 156.2% increase). This combined therapeutic approach not only offers a comprehensive strategy for AD management but also provides potential benefits for addressing inflammatory skin disorders and their neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Shuyun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Rui Xin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinyue Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Chen G, Luo M, Chen W, Zhang Y, Gu Z, Xu M, Zhang Y, Bian J. The primary somatosensory sensory cortex-basolateral amygdala pathway contributes to comorbid depression in spared nerve injury-induced neuropathic pain. Sci Rep 2025; 15:13678. [PMID: 40258918 PMCID: PMC12012082 DOI: 10.1038/s41598-025-97164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Comorbid depression in chronic pain is a prevalent health problem, yet the underlying neural mechanisms remain largely unexplored. This study identified a dedicated neural circuit connecting the hind limb region of the primary somatosensory cortex (S1HL) to the basolateral amygdala (BLA) that mediated neuropathic pain-induced depression. We demonstrated that depressive-like behaviors in the chronic phase of a mouse neuropathic pain model were associated with heightened activity in the S1HL and BLA. Using viral tracing and RNAscope in situ hybridization, we characterized the circuit architecture of S1HL glutamatergic projections to BLA cholecystokinin (CCK) neurons (S1HLGlu → BLACCK). In vivo fiber photometry calcium imaging revealed that both the S1HL BLA-projecting afferents and the BLA S1HL-innervating neurons exhibited hyperactivity in neuropathic pain-induced depressive states. Chemogenetic inhibition of the S1HL → BLA circuit could block neuropathic pain-induced depressive-like behaviors. In addition, specific knockdown of CCK expression in BLA S1HL-innervating neurons alleviated these depressive-like behaviors. Our findings demonstrated that the cortical-amygdala circuit S1HLGlu → BLACCK drove the transition from chronic pain to depression, thus suggesting a potential neural circuit basis for treating chronic pain-related depressive disorders.
Collapse
Affiliation(s)
- Guo Chen
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, China
| | - Wentao Chen
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Yu Zhang
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Zuchao Gu
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Miaomiao Xu
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jiang Bian
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, 637000, Sichuan, China.
| |
Collapse
|
4
|
Kilpatrick LA, Church A, Meriwether D, Mahurkar-Joshi S, Li VW, Sohn J, Reist J, Labus JS, Dong T, Jacobs JP, Naliboff BD, Chang L, Mayer EA. Differential brainstem connectivity according to sex and menopausal status in healthy male and female individuals. Biol Sex Differ 2025; 16:25. [PMID: 40251694 PMCID: PMC12007138 DOI: 10.1186/s13293-025-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Brainstem nuclei play a critical role in both ascending monoaminergic modulation of cortical function and arousal, and in descending bulbospinal pain modulation. Even though sex-related differences in the function of both systems have been reported in animal models, a complete understanding of sex differences, as well as menopausal effects, in brainstem connectivity in humans is lacking. This study evaluated resting-state connectivity of the dorsal raphe nucleus, right and left locus coeruleus complex (LCC), and periaqueductal gray (PAG) according to sex and menopausal status in healthy individuals. In addition, relationships between systemic estrogen levels and brainstem-network connectivity were examined in a subset of participants. METHODS Resting-state fMRI was performed in 47 healthy male (age, 31.2 ± 8.0 years), 53 healthy premenopausal female (age, 24.7 ± 7.3 years; 22 in the follicular phase, 31 in the luteal phase), and 20 postmenopausal female participants (age, 54.6 ± 7.2 years). Permutation Analysis of Linear Models (5000 permutations) was used to evaluate differences in brainstem-network connectivity according to sex and menopausal status, controlling for age. In 10 males and 17 females (9 premenopausal; 8 postmenopausal), estrogen and estrogen metabolite levels in plasma and stool were determined by liquid chromatography-mass spectrometry/mass spectrometry. Relationships between estrogen levels and brainstem-network connectivity were evaluated by partial least squares analysis. RESULTS Left LCC-executive control network connectivity showed an overall sex difference (p = 0.02), with higher connectivity in females than in males; however, this was mainly due to differences between males and premenopausal females (p = 0.008). Additional sex differences were dependent on menopausal status: PAG-default mode network (DMN) connectivity was higher in postmenopausal females than in males (p = 0.04), and PAG-sensorimotor network (SMN) connectivity was higher in premenopausal females than in males (p = 0.03) and postmenopausal females (p = 0.007). Notably, higher free 2-hydroxyestrone levels in stool were reliably associated with higher PAG-SMN and PAG-DMN connectivity in premenopausal females (p < 0.01). CONCLUSIONS Healthy females show higher brainstem-network connectivity involved in cognitive control, sensorimotor function, and self-relevant processes than males, dependent on their menopausal status. Further, 2-hydroxyestrone, implicated in pain, may modulate PAG connectivity in premenopausal females. These findings may relate to differential vulnerabilities to chronic stress-sensitive disorders at different life stages.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Arpana Church
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - David Meriwether
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Swapna Mahurkar-Joshi
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Vince W Li
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jessica Sohn
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Juliana Reist
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, Gonda (Goldschmied) Neuroscience and Genetics Research Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Tien Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Bruce D Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Sacca V, Maleki N, Reddy S, Hodges S, Kong J. Assessing the Modulatory Effects of tDCS and Acupuncture on Cerebral Blood Flow in Chronic Low Back Pain Using Arterial Spin Labeling Perfusion Imaging. Brain Sci 2025; 15:261. [PMID: 40149782 PMCID: PMC11940449 DOI: 10.3390/brainsci15030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Both transcranial direct current stimulation (tDCS) and acupuncture are promising methods for managing chronic low back pain (cLBP), however, their underlying mechanisms remain unclear. METHODS To explore the neural mechanisms of tDCS and acupuncture on cLBP, we examined how real and sham tDCS applied to the bilateral motor cortex (M1), combined with real or sham acupuncture, influenced cerebral blood flow (CBF) using pulsed continuous arterial spin labeling (pCASL) imaging. tDCS was administered over six sessions, combined with real or sham acupuncture, over one month. RESULTS Following real tDCS, we observed increased CBF in the bilateral occipital cortex, precuneus, left hippocampus, and parahippocampal gyrus/posterior cingulate cortex. After sham tDCS, CBF decreased in regions including the bilateral superior parietal lobule, precuneus, bilateral precentral and postcentral gyri, and left angular gyrus. Real acupuncture led to reduced CBF in the bilateral occipital cortex and hippocampus, and left posterior cingulate gyrus, and increased CBF in the right postcentral gyrus, superior parietal lobule, and frontal areas. Sham acupuncture was associated with decreased CBF in the bilateral hippocampus and anterior cingulate gyrus. CONCLUSIONS These results suggest both shared and distinct patterns of CBF changes between real and sham tDCS, as well as between real and sham acupuncture, reflecting mode-dependent effects on brain networks involved in pain processing and modulation. Our findings highlight the different neural circuits implicated in the therapeutic mechanisms of tDCS and acupuncture in the management of cLBP.
Collapse
Affiliation(s)
| | | | | | | | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (V.S.); (N.M.); (S.R.); (S.H.)
| |
Collapse
|
6
|
Huang JY, Jin YX, Dong WY, Zhao W, Cheng PK, Miao JH, Liu A, Wang D, Li J, Zhang Z, Tao W, Zhu X. Intra-somatosensory cortical circuits mediating pain-induced analgesia. Nat Commun 2025; 16:1859. [PMID: 39984470 PMCID: PMC11845469 DOI: 10.1038/s41467-025-57050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
Pain in one part of the body profoundly diminishes the sensation of pain in other parts of the body in humans. Here, we found that pain-related behaviors in hindpaw are inhibited by noxious stimuli from diverse body regions in mice. Using activity-dependent cell labeling in male FosTRAP2 mice, we captured a neuronal ensemble in the layers 2-4 of secondary somatosensory cortex (S2) that was activated during pain at diverse body regions induced analgesia. Single-cell projection analysis showed that these S2 neurons receive projections from the contralateral S2 and specifically innervate the layer 4 of primary somatosensory cortex (S1). Microendoscopic calcium imaging and chemogenetic manipulation in freely moving mice showed that this S2 → S1 feedforward inhibitory circuit mediates ipsilateral pain-induced analgesia, whereas contralateral S2 innervation of the S2 → S1 circuit mediates contralateral pain-induced analgesia. Our study defines the intra-somatosensory cortical circuits underlying "pain inhibiting pain", expanding the scope of known circuit mechanisms involved in pain relief.
Collapse
Affiliation(s)
- Ji-Ye Huang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Yu-Xin Jin
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Wan-Ying Dong
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Wan Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, PR China
| | - Ping-Kai Cheng
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Jun-Hao Miao
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Di Wang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Juan Li
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
- Department of Biophysics and Neurobiology, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, PR China.
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China.
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, PR China.
| | - Xia Zhu
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Center for advance interdisciplinary science and biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
7
|
Zhou Y, Huang S, Zhang T, Deng D, Huang L, Chen X. Deciphering consciousness: The role of corticothalamocortical interactions in general anesthesia. Pharmacol Res 2025; 212:107593. [PMID: 39788339 DOI: 10.1016/j.phrs.2025.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
General anesthesia is administered to millions of individuals each year, however, the precise mechanism by which it induces unconsciousness remains unclear. While some theories suggest that anesthesia shares similarities with natural sleep, targeting sleep-promoting areas and inhibiting arousal nuclei, recent research indicates a more complex process. Emerging evidence highlights the critical role of corticothalamocortical circuits, which are involved in higher cognitive functions, in controlling arousal states and modulating transitions between different conscious states during anesthesia. The administration of general anesthetics disrupts connectivity within these circuits, resulting in a reversible state of unconsciousness. This review elucidates how anesthetics impair corticothalamocortical interactions, thereby affecting the flow of information across various cortical layers and disrupting higher-order cognitive functions while preserving basic sensory processing. Additionally, the role of the prefrontal cortex in regulating arousal through both top-down and bottom-up pathways was examined. These findings highlight the intricate interplay between the cortical and subcortical networks in maintaining and restoring consciousness under anesthesia, offering potential therapeutic targets for enhancing anesthesia management.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
8
|
Xiong W, Yu L, Yang H, Liu K. Does smooth mean simple? The impact of tactile experience on judgments of difficulty. Perception 2025; 54:82-97. [PMID: 39784340 DOI: 10.1177/03010066241301313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
People often associate roughness with difficulty, as a figure of speech. Studies have shown that there is a metaphorical connection between the concept of rough versus smooth feel and the degree of difficulty. However, it has not been determined whether rough and smooth tactile experiences influence judgments of perceived task difficulty from the perspective of physical metaphors. This study used the Stroop experimental paradigm and the metaphorical experimental paradigm to investigate the effects of rough and smooth haptic experiences on difficulty judgments of perceptual tasks in two experiments. (1) There is a psychological reality of "difficult concept-rough touch" and "easy concept-smooth touch," linking the concept of roughness to the rough/smooth touch metaphor; (2) The physical tactile experience of roughness/smoothness had an effect on perceptual task difficulty judgments. After the experience of roughness, participants tended to judge the difficulty as high, while after the experience of smoothness, participants tended to judge the difficulty as low. Rough and smooth haptics affect perceptual task difficulty judgments, and rough and smooth haptic experiences polarize difficulty judgments in the embodied condition.
Collapse
Affiliation(s)
| | - Lu Yu
- Chongqing Normal University, China
| | - Hai Yang
- Chongqing Normal University, China
| | | |
Collapse
|
9
|
Moreno-García A, Serrat R, Julio-Kalajzic F, Bernal-Chico A, Baraibar AM, Matute C, Marsicano G, Mato S. In Vivo Assessment of Cortical Astrocyte Network Dysfunction During Autoimmune Demyelination: Correlation With Disease Severity. J Neurochem 2025; 169:e16305. [PMID: 39957272 DOI: 10.1111/jnc.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/18/2025]
Abstract
Cortical damage and dysfunction is a pathological hallmark of multiple sclerosis (MS) that correlates with the severity of physical and cognitive disability. Astrocytes participate in MS pathobiology through a variety of mechanisms, and abnormal astrocytic calcium signaling has been pointed as a pathogenic mechanism of cortical dysfunction in MS. However, in vivo evidence supporting deregulation of astrocyte calcium-dependent mechanisms in cortical MS is still limited. Here, we applied fiber photometry to the longitudinal analysis of spontaneous and sensory-evoked astrocyte network activity in the somatosensory cortex of mice in an experimental autoimmune encephalomyelitis (EAE). We found that freely moving EAE mice exhibit spontaneously occurring astrocyte calcium signals of increased duration and reduced amplitude. Concomitantly, cortical astrocytes in EAE mice responded to sensory stimulation with calcium events of decreased amplitude. The emergence of aberrant astrocyte calcium signals in the somatosensory cortex paralleled the onset of neurological symptomatology, and changes in the amplitude of both spontaneous and evoked responses were selectively correlated to the severity of neurological deficits. These results highlight the imbalance of astrocyte network activity in the brain cortex during autoimmune inflammation and further support the relevance of astrocyte-based pathobiology as an underlying mechanism of cortical dysfunction in MS.
Collapse
Affiliation(s)
- A Moreno-García
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - R Serrat
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - F Julio-Kalajzic
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - A Bernal-Chico
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - A M Baraibar
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - C Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- University of Bordeaux, Bordeaux, France
| | - G Marsicano
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - S Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
10
|
Kim K, Nan G, Kim HY, Cha M, Lee BH. Targeting the insular cortex for neuropathic pain modulation: Insights into synaptic and neuronal mechanisms. FASEB J 2025; 39:e70285. [PMID: 39831885 PMCID: PMC11745213 DOI: 10.1096/fj.202402381r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation. In a rat neuropathy model, researchers used optogenetic and ICS techniques to evaluate changes in mechanical allodynia and synaptic changes, focusing on glutamate receptors (AMPAR, NR2A, NR2B). Optogenetic inhibition of IC neurons relieved pain without altering synaptic plasticity. However, repetitive ICS combined with optogenetic activation diminished the pain-relieving effects of ICS and increased AMPAR and NR2B receptor levels. Additionally, activating inhibitory neurons also reduced pain, while repetitive activation of excitatory neurons lessened the effectiveness of ICS and was associated with heightened receptor expression. These findings suggest that inhibiting excitatory neurons or activating inhibitory neurons in the IC could help modulate pain in neuropathic conditions, shedding light on how ICS can influence pain management through changes in synaptic plasticity.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of PhysiologyYonsei University College of MedicineSeoulRepublic of Korea
| | - Guanghai Nan
- Department of PhysiologyYonsei University College of MedicineSeoulRepublic of Korea
- Department of Medical ScienceBrain Korea 21 Project, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Hee Young Kim
- Department of PhysiologyYonsei University College of MedicineSeoulRepublic of Korea
| | - Myeounghoon Cha
- Department of PhysiologyYonsei University College of MedicineSeoulRepublic of Korea
- Department of Physiology, College of MedicineSoonchunhyang UniversityCheonanRepublic of Korea
| | - Bae Hwan Lee
- Department of PhysiologyYonsei University College of MedicineSeoulRepublic of Korea
- Department of Medical ScienceBrain Korea 21 Project, Yonsei University College of MedicineSeoulRepublic of Korea
- Brain Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
11
|
Chapman TP, Divanbeighi Zand AP, Debrah E, Petric B, Farrell SM, FitzGerald JJ, Moosavi SH, Green AL. Deep brain stimulation of the motor thalamus relieves experimentally induced air hunger. Eur Respir J 2024; 64:2401156. [PMID: 39401855 PMCID: PMC11618815 DOI: 10.1183/13993003.01156-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 10/30/2024]
Abstract
RESEARCH QUESTION We previously reported that deep brain stimulation (DBS) of the motor thalamus, in a patient with post-stroke tremor, relieved breathlessness associated with COPD. This raised the question of whether motor thalamus DBS mitigates the ascending dyspnoea signal. We therefore sought to conduct a fully powered cohort study of experimentally induced air hunger, an uncomfortable urge to breathe in patients with motor thalamus DBS "ON" and "OFF". METHODS 16 patients (three females) with DBS of the ventral intermediate nucleus (VIM) as treatment for tremor underwent hypercapnic air hunger tests, with DBS ON and OFF. Patients rated air hunger on a visual analogue scale (VAS) every 15 s. Hypercapnia and ventilation were matched for ON and OFF states (end-tidal carbon dioxide tension mean±sd 43±4 and 43±4 mmHg, respectively; ventilation 13.7 and 13.4 L·min-1, respectively). Participants' ventilation was constrained to baseline levels by breathing from a 3-L inspiratory reservoir with fixed flow of fresh gas while targeting their resting breathing frequency to a metronome. RESULTS Overall steady-state air hunger was 52±28%VAS for ON and 67±20%VAS for OFF (p=0.002; two-tailed paired t-test). The mean reduction in air hunger during VIM DBS was -14.4%VAS. DBS of the motor thalamus relieved air hunger in 13 patients, heightened air hunger in two and caused no change in one. CONCLUSION DBS of the motor thalamus for tremor relief also mitigates the air hunger component of dyspnoea. We posit that DBS of the motor thalamus heightens the gating control of the thalamus modulating the ascending air hunger signal. Extent of relief suggests that thalamic DBS may prove to be a viable therapy for intractable dyspnoea.
Collapse
Affiliation(s)
- Tom P Chapman
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, UK
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Amir P Divanbeighi Zand
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Emmanuel Debrah
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Beth Petric
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Sarah M Farrell
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James J FitzGerald
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Shakeeb H Moosavi
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, UK
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Alexander L Green
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Hou S, Chen CY, Zhou RZ, He LX, Zhao XX, Chen SS, Yang S, Yin HY, Yu SG. Electroacupuncture may alleviate inflammatory pain by downregulating the expression of P2Y 14 receptor in the primary somatosensory cortex. Purinergic Signal 2024:10.1007/s11302-024-10058-3. [PMID: 39509038 DOI: 10.1007/s11302-024-10058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024] Open
Abstract
Increasing evidence indicated that purinergic signalling involved in electroacupuncture (EA)-induced analgesia. Whether purinergic P2Y14 receptor contributes to EA-mediated analgesia remains unclear. Here, we report that the expression of P2Y14 receptor in the hindlimb region of the primary somatosensory cortex (S1HL) was significantly upregulated on Complete Freund's Adjuvant (CFA)-induced pain model mice, while was downregulated after EA treatment (2 Hz frequency, 1 mA intensity, and 30 min duration) at "Zusanli" (also named ST36 acupoint). EA-mediated analgesia could be reversed by injection of P2RY14 agonist uridine diphosphate glucose (UDPG) into the bilateral S1HL, while prolonged by injection of P2RY14 antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPTN). It suggested that EA may alleviate inflammatory pain by downregulating the expression of P2RY14 in the S1HL.
Collapse
Affiliation(s)
- Shuai Hou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cui-Yuan Chen
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui-Zhu Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liu-Xuan He
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Xiao Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sha-Sha Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sha Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Acupuncture for Senile Disease, Chengdu University of TCM, Ministry of Education, Chengdu, 611137, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Key Laboratory of Acupuncture for Senile Disease, Chengdu University of TCM, Ministry of Education, Chengdu, 611137, China.
| | - Shu-Guang Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Key Laboratory of Acupuncture for Senile Disease, Chengdu University of TCM, Ministry of Education, Chengdu, 611137, China.
| |
Collapse
|
13
|
Franciosa F, Acuña MA, Nevian NE, Nevian T. A cellular mechanism contributing to pain-induced analgesia. Pain 2024; 165:2517-2529. [PMID: 38968393 PMCID: PMC11474934 DOI: 10.1097/j.pain.0000000000003315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT The anterior cingulate cortex (ACC) plays a crucial role in the perception of pain. It is consistently activated by noxious stimuli and its hyperactivity in chronic pain indicates plasticity in the local neuronal network. However, the way persistent pain effects and modifies different neuronal cell types in the ACC and how this contributes to sensory sensitization is not completely understood. This study confirms the existence of 2 primary subtypes of pyramidal neurons in layer 5 of the rostral, agranular ACC, which we could classify as intratelencephalic (IT) and cortico-subcortical (SC) projecting neurons, similar to other cortical brain areas. Through retrograde labeling, whole-cell patch-clamp recording, and morphological analysis, we thoroughly characterized their different electrophysiological and morphological properties. When examining the effects of peripheral inflammatory pain on these neuronal subtypes, we observed time-dependent plastic changes in excitability. During the acute phase, both subtypes exhibited reduced excitability, which normalized to pre-inflammatory levels after day 7. Daily conditioning with nociceptive stimuli during this period induced an increase in excitability specifically in SC neurons, which was correlated with a decrease in mechanical sensitization. Subsequent inhibition of the activity of SC neurons projecting to the periaqueductal gray with in vivo chemogenetics, resulted in reinstatement of the hypersensitivity. Accordingly, it was sufficient to enhance the excitability of these neurons chemogenetically in the inflammatory pain condition to induce hypoalgesia. These findings suggest a cell type-specific effect on the descending control of nociception and a cellular mechanism for pain-induced analgesia. Furthermore, increased excitability in this neuronal population is hypoalgesic rather than hyperalgesic.
Collapse
Affiliation(s)
| | - Mario A. Acuña
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Thomas Nevian
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Liu L, Liang Z, Zhang L, Feng Z, Cao F, Zhang Y, Yang X, Zhang L, Wang J, Zhu Q. Corticothalamic input derived from corticospinal neurons contributes to chronic neuropathic pain after spinal cord injury. Exp Neurol 2024; 381:114923. [PMID: 39142366 DOI: 10.1016/j.expneurol.2024.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Neuropathic pain is a significant and persistent issue for individuals with spinal cord injuries (SCI), severely impacting their quality of life. While changes at the peripheral and spinal levels are known to contribute to SCI-related pain, whether and how supraspinal centers contribute to post SCI chronic neuropathic pain is poorly understood. Here, we first validated delayed development of chronic neuropathic pain in mice with moderate contusion SCI. To identify supraspinal regions involved in the pathology of neuropathic pain after SCI, we next performed an activity dependent genetic screening and identified multiple cortical and subcortical regions that were activated by innocuous tactile stimuli at a late stage following contusion SCI. Notably, chemogenetic inactivation of pain trapped neurons in the lateral thalamus alleviated neuropathic pain and reduced tactile stimuli evoked cortical overactivation. Retrograde tracing showed that contusion SCI led to enhanced corticothalamic axonal sprouting and over-activation of corticospinal neurons. Mechanistically, ablation or silencing of corticospinal neurons prevented the establishment or maintenance of chronic neuropathic pain following contusion SCI. These results highlighted a corticospinal-lateral thalamic feed-forward loop whose activation is required for the development and maintenance of chronic neuropathic pain after SCI. Our data thus shed lights into the central mechanisms underlying chronic neuropathic pain associated with SCI and the development of novel therapeutic avenues to treat refractory pain caused by traumatic brain or spinal cord injuries.
Collapse
Affiliation(s)
- Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihou Liang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fei Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qing Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Ma L, Yue L, Liu S, Xu S, Tong J, Sun X, Su L, Cui S, Liu FY, Wan Y, Yi M. A distinct neuronal ensemble of prelimbic cortex mediates spontaneous pain in rats with peripheral inflammation. Nat Commun 2024; 15:7922. [PMID: 39256428 PMCID: PMC11387830 DOI: 10.1038/s41467-024-52243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
The absence of a comprehensive understanding of the neural basis of spontaneous pain limits the development of therapeutic strategies targeting this primary complaint of patients with chronic pain. Here we report a distinct neuronal ensemble within the prelimbic cortex which processes signals related to spontaneous pain in rats with chronic inflammatory pain. This neuronal ensemble specifically encodes spontaneous pain-related behaviors, independently of other locomotive and evoked behaviors. Activation of this neuronal ensemble elicits marked spontaneous pain-like behaviors and enhances nociceptive responses, whereas prolonged silencing of its activities alleviates spontaneous pain and promotes overall recovery from inflammatory pain. Notably, afferents from the primary somatosensory cortex and infralimbic cortex bidirectionally modulate the activities of the spontaneous pain-responsive prelimbic cortex neuronal ensemble and pain behaviors. These findings reveal the cortical basis of spontaneous pain at the neuronal level, highlighting a distinct neuronal ensemble within the prelimbic cortex and its associated pain-regulatory brain networks.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Science, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shi Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, China.
| |
Collapse
|
16
|
Zhao W, Liu SL, Lin SS, Zhang Y, Yu C. Astrocytic P2X7 receptor in retrosplenial cortex drives electroacupuncture analgesia. Purinergic Signal 2024:10.1007/s11302-024-10043-w. [PMID: 39222236 DOI: 10.1007/s11302-024-10043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
P2X7 receptor (P2X7R) has been found to contribute to the peripheral mechanism of acupuncture analgesia (AA). However, whether it plays an important role in central mechanism remains unknown. In this study, we aimed to reveal the role of astrocytic P2X7R in retrosplenial cortex (RSC) in AA and provide new evidence for underlying the central mechanism of AA. We applied the chemogenetic receptors hM3Dq to stimulate or hM4Di to inhibit astrocytes ligand clozapine-N-oxide (CNO) following injection of adeno-associated virus (AAV) into the bilateral RSC, or pharmacologically intervened in the activity of the purinergic receptor P2X7R. Current data indicated that chemogenetic inhibition of astrocytes or injection of P2X7R agonist Bz-ATP in the bilateral RSC significantly reverses the analgesic effect of electroacupuncture (EA) in formalin tests while the bilateral injection of the P2X7R antagonist A438079 alleviated formalin-induced nociceptive behavior. Additionally, chemogenetic suppression of astrocytic P2X7R by injection of AAV in the bilateral RSC decreased hind paw flinches induced by formalin in the mice. These findings indicate the participation of both astrocytes and P2X7R in the RSC in EA analgesic. Moreover, P2X7R on astrocytes in the RSC appears to play a critical role in the ability of EA to attenuate formalin-induced pain responses in mice.
Collapse
Affiliation(s)
- Wei Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Le Liu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Si Lin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Chang Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
17
|
Kilpatrick LA, Gupta A, Meriwether D, Mahurkar-Joshi S, Li VW, Sohn J, Reist J, Labus JS, Dong T, Jacobs JP, Naliboff BD, Chang L, Mayer EA. Differential brainstem connectivity according to sex and menopausal status in healthy men and women. RESEARCH SQUARE 2024:rs.3.rs-4875269. [PMID: 39184081 PMCID: PMC11343298 DOI: 10.21203/rs.3.rs-4875269/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Brainstem nuclei play a critical role in both ascending monoaminergic modulation of cortical function and arousal, and in descending bulbospinal pain modulation. Even though sex-related differences in the function of both systems have been reported in animal models, a complete understanding of sex differences, as well as menopausal effects, in brainstem connectivity in humans is lacking. This study evaluated resting-state connectivity of the dorsal raphe nucleus (DRN), right and left locus coeruleus complex (LCC), and periaqueductal gray (PAG) according to sex and menopausal status in healthy individuals. In addition, relationships between systemic estrogen levels and brainstem-network connectivity were examined in a subset of participants. Methods Resting-state fMRI was performed in 50 healthy men (age, 31.2 ± 8.0 years), 53 healthy premenopausal women (age, 24.7 ± 7.3 years; 22 in the follicular phase, 31 in the luteal phase), and 20 postmenopausal women (age, 54.6 ± 7.2 years). Permutation Analysis of Linear Models (5000 permutations) was used to evaluate differences in brainstem-network connectivity according to sex and menopausal status, controlling for age. In 10 men and 17 women (9 premenopausal; 8 postmenopausal), estrogen and estrogen metabolite levels in plasma and stool were determined by liquid chromatography-mass spectrometry/mass spectrometry. Relationships between estrogen levels and brainstem-network connectivity were evaluated by partial least squares analysis. Results Left LCC-executive control network (ECN) connectivity showed an overall sex difference (p = 0.02), with higher connectivity in women than in men; however, this was mainly due to differences between men and pre-menopausal women (p = 0.008). Additional sex differences were dependent on menopausal status: PAG-default mode network (DMN) connectivity was higher in postmenopausal women than in men (p = 0.04), and PAG-sensorimotor network (SMN) connectivity was higher in premenopausal women than in men (p = 0.03) and postmenopausal women (p = 0.007). Notably, higher free 2-hydroxyestrone levels in stool were associated with higher PAG-SMN and PAG-DMN connectivity in premenopausal women (p < 0.01). Conclusions Healthy women show higher brainstem-network connectivity involved in cognitive control, sensorimotor function, and self-relevant processes than men, dependent on their menopausal status. Further, 2-hydroxyestrone, implicated in pain, may modulate PAG connectivity in premenopausal women. These findings may relate to differential vulnerabilities to chronic stress-sensitive disorders at different life stages.
Collapse
|
18
|
Martinetti LE, Autio DM, Crandall SR. Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits. eNeuro 2024; 11:ENEURO.0255-24.2024. [PMID: 38926084 PMCID: PMC11236587 DOI: 10.1523/eneuro.0255-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extrasensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in CT neurons projecting to the dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) located in lower L6a than VPm-only-projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
Collapse
Affiliation(s)
- Luis E Martinetti
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Shane R Crandall
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
19
|
Martinetti LE, Autio DM, Crandall SR. Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590613. [PMID: 38712153 PMCID: PMC11071411 DOI: 10.1101/2024.04.22.590613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extra-sensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in Dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) projecting CT neurons located in lower L6a than VPm-only projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
Collapse
Affiliation(s)
| | - Dawn M. Autio
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| | - Shane R. Crandall
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
20
|
Lou Q, Wei HR, Chen D, Zhang Y, Dong WY, Qun S, Wang D, Luo Y, Zhang Z, Jin Y. A noradrenergic pathway for the induction of pain by sleep loss. Curr Biol 2024; 34:2644-2656.e7. [PMID: 38810638 DOI: 10.1016/j.cub.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
An epidemic of sleep loss currently affects modern societies worldwide and is implicated in numerous physiological disorders, including pain sensitization, although few studies have explored the brain pathways affected by active sleep deprivation (ASD; e.g., due to recreation). Here, we describe a neural circuit responsible for pain sensitization in mice treated with 9-h non-stress ASD. Using a combination of advanced neuroscience methods, we found that ASD stimulates noradrenergic inputs from locus coeruleus (LCNA) to glutamatergic neurons of the hindlimb primary somatosensory cortex (S1HLGlu). Moreover, artificial inhibition of this LCNA→S1HLGlu pathway alleviates ASD-induced pain sensitization in mice, while chemogenetic activation of this pathway recapitulates the pain sensitization observed following ASD. Our study thus implicates activation of the LCNA→S1HLGlu pathway in ASD-induced pain sensitization, expanding our fundamental understanding of the multisystem interplay involved in pain processing.
Collapse
Affiliation(s)
- Qianqian Lou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hong-Rui Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Danyang Chen
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yuzhuo Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wan-Ying Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Sen Qun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Di Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Yanli Luo
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Department of Biophysics and Neurobiology, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China.
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Department of Biophysics and Neurobiology, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
21
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
22
|
Viellard J, Bouali-Benazzouz R, Benazzouz A, Fossat P. Modulating Neural Circuits of Pain in Preclinical Models: Recent Insights for Future Therapeutics. Cells 2024; 13:997. [PMID: 38920628 PMCID: PMC11202162 DOI: 10.3390/cells13120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic pain is a pathological state defined as daily pain sensation over three consecutive months. It affects up to 30% of the general population. Although significant research efforts have been made in the past 30 years, only a few and relatively low effective molecules have emerged to treat chronic pain, with a considerable translational failure rate. Most preclinical models have focused on sensory neurotransmission, with particular emphasis on the dorsal horn of the spinal cord as the first relay of nociceptive information. Beyond impaired nociceptive transmission, chronic pain is also accompanied by numerous comorbidities, such as anxiety-depressive disorders, anhedonia and motor and cognitive deficits gathered under the term "pain matrix". The emergence of cutting-edge techniques assessing specific neuronal circuits allow in-depth studies of the connections between "pain matrix" circuits and behavioural outputs. Pain behaviours are assessed not only by reflex-induced responses but also by various or more complex behaviours in order to obtain the most complete picture of an animal's pain state. This review summarises the latest findings on pain modulation by brain component of the pain matrix and proposes new opportunities to unravel the mechanisms of chronic pain.
Collapse
Affiliation(s)
- Juliette Viellard
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
23
|
Clayton KK, McGill M, Awwad B, Stecyk KS, Kremer C, Skerleva D, Narayanan DP, Zhu J, Hancock KE, Kujawa SG, Kozin ED, Polley DB. Cortical determinants of loudness perception and auditory hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596691. [PMID: 38853938 PMCID: PMC11160727 DOI: 10.1101/2024.05.30.596691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Parvalbumin-expressing inhibitory neurons (PVNs) stabilize cortical network activity, generate gamma rhythms, and regulate experience-dependent plasticity. Here, we observed that activation or inactivation of PVNs functioned like a volume knob in the mouse auditory cortex (ACtx), turning neural and behavioral classification of sound level up or down over a 20dB range. PVN loudness adjustments were "sticky", such that a single bout of 40Hz PVN stimulation sustainably suppressed ACtx sound responsiveness, potentiated feedforward inhibition, and behaviorally desensitized mice to loudness. Sensory sensitivity is a cardinal feature of autism, aging, and peripheral neuropathy, prompting us to ask whether PVN stimulation can persistently desensitize mice with ACtx hyperactivity, PVN hypofunction, and loudness hypersensitivity triggered by cochlear sensorineural damage. We found that a single 16-minute bout of 40Hz PVN stimulation session restored normal loudness perception for one week, showing that perceptual deficits triggered by irreversible peripheral injuries can be reversed through targeted cortical circuit interventions.
Collapse
Affiliation(s)
- Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Bshara Awwad
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kamryn S Stecyk
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Caroline Kremer
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | | | - Divya P Narayanan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Jennifer Zhu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Elliott D Kozin
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| |
Collapse
|
24
|
Yang L, Liu F, Hahm H, Okuda T, Li X, Zhang Y, Kalyanaraman V, Heitmeier MR, Samineni VK. Projection-TAGs enable multiplex projection tracing and multi-modal profiling of projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590975. [PMID: 38712231 PMCID: PMC11071495 DOI: 10.1101/2024.04.24.590975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Single-cell multiomic techniques have sparked immense interest in developing a comprehensive multi-modal map of diverse neuronal cell types and their brain wide projections. However, investigating the spatial organization, transcriptional and epigenetic landscapes of brain wide projection neurons is hampered by the lack of efficient and easily adoptable tools. Here we introduce Projection-TAGs, a retrograde AAV platform that allows multiplex tagging of projection neurons using RNA barcodes. By using Projection-TAGs, we performed multiplex projection tracing of the mouse cortex and high-throughput single-cell profiling of the transcriptional and epigenetic landscapes of the cortical projection neurons. Projection-TAGs can be leveraged to obtain a snapshot of activity-dependent recruitment of distinct projection neurons and their molecular features in the context of a specific stimulus. Given its flexibility, usability, and compatibility, we envision that Projection-TAGs can be readily applied to build a comprehensive multi-modal map of brain neuronal cell types and their projections.
Collapse
Affiliation(s)
- Lite Yang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Fang Liu
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Hannah Hahm
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Takao Okuda
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiaoyue Li
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Yufen Zhang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Vani Kalyanaraman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Monique R. Heitmeier
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Vijay K. Samineni
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
25
|
Li Z, Zhang L, Zhang F, Yue L, Hu L. Deciphering Authentic Nociceptive Thalamic Responses in Rats. RESEARCH (WASHINGTON, D.C.) 2024; 7:0348. [PMID: 38617991 PMCID: PMC11014087 DOI: 10.34133/research.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
The thalamus and its cortical connections play a pivotal role in pain information processing, yet the exploration of its electrophysiological responses to nociceptive stimuli has been limited. Here, in 2 experiments we recorded neural responses to nociceptive laser stimuli in the thalamic (ventral posterior lateral nucleus and medial dorsal nucleus) and cortical regions (primary somatosensory cortex [S1] and anterior cingulate cortex) within the lateral and medial pain pathways. We found remarkable similarities in laser-evoked brain responses that encoded pain intensity within thalamic and cortical regions. Contrary to the expected temporal sequence of ascending information flow, the recorded thalamic response (N1) was temporally later than its cortical counterparts, suggesting that it may not be a genuine thalamus-generated response. Importantly, we also identified a distinctive component in the thalamus, i.e., the early negativity (EN) occurring around 100 ms after the onset of nociceptive stimuli. This EN component represents an authentic nociceptive thalamic response and closely synchronizes with the directional information flow from the thalamus to the cortex. These findings underscore the importance of isolating genuine thalamic neural responses, thereby contributing to a more comprehensive understanding of the thalamic function in pain processing. Additionally, these findings hold potential clinical implications, particularly in the advancement of closed-loop neuromodulation treatments for neurological diseases targeting this vital brain region.
Collapse
Affiliation(s)
- Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengrui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
26
|
Ye Q, Li J, Ren WJ, Zhang Y, Wang T, Rubini P, Yin HY, Illes P, Tang Y. Astrocyte activation in hindlimb somatosensory cortex contributes to electroacupuncture analgesia in acid-induced pain. Front Neurol 2024; 15:1348038. [PMID: 38633538 PMCID: PMC11021577 DOI: 10.3389/fneur.2024.1348038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Background Several studies have confirmed the direct relationship between extracellular acidification and the occurrence of pain. As an effective pain management approach, the mechanism of electroacupuncture (EA) treatment of acidification-induced pain is not fully understood. The purpose of this study was to assess the analgesic effect of EA in this type of pain and to explore the underlying mechanism(s). Methods We used plantar injection of the acidified phosphate-buffered saline (PBS; pH 6.0) to trigger thermal hyperalgesia in male Sprague-Dawley (SD) rats aged 6-8 weeks. The value of thermal withdrawal latency (TWL) was quantified after applying EA stimulation to the ST36 acupoint and/or chemogenetic control of astrocytes in the hindlimb somatosensory cortex. Results Both EA and chemogenetic astrocyte activation suppressed the acid-induced thermal hyperalgesia in the rat paw, whereas inhibition of astrocyte activation did not influence the hyperalgesia. At the same time, EA-induced analgesia was blocked by chemogenetic inhibition of astrocytes. Conclusion The present results suggest that EA-activated astrocytes in the hindlimb somatosensory cortex exert an analgesic effect on acid-induced pain, although these astrocytes might only moderately regulate acid-induced pain in the absence of EA. Our results imply a novel mode of action of astrocytes involved in EA analgesia.
Collapse
Affiliation(s)
- Qing Ye
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Jing Ren
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Wang
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Patrizia Rubini
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Yan Yin
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Leva TM, Whitmire CJ. Thermosensory thalamus: parallel processing across model organisms. Front Neurosci 2023; 17:1210949. [PMID: 37901427 PMCID: PMC10611468 DOI: 10.3389/fnins.2023.1210949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
The thalamus acts as an interface between the periphery and the cortex, with nearly every sensory modality processing information in the thalamocortical circuit. Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, the key thalamic nuclei responsible for innocuous thermosensation remains under debate. Thermosensory information is first transduced by thermoreceptors located in the skin and then processed in the spinal cord. Temperature information is then transmitted to the brain through multiple spinal projection pathways including the spinothalamic tract and the spinoparabrachial tract. While there are fundamental studies of thermal transduction via thermosensitive channels in primary sensory afferents, thermal representation in the spinal projection neurons, and encoding of temperature in the primary cortical targets, comparatively little is known about the intermediate stage of processing in the thalamus. Multiple thalamic nuclei have been implicated in thermal encoding, each with a corresponding cortical target, but without a consensus on the role of each pathway. Here, we review a combination of anatomy, physiology, and behavioral studies across multiple animal models to characterize the thalamic representation of temperature in two proposed thermosensory information streams.
Collapse
Affiliation(s)
- Tobias M. Leva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarissa J. Whitmire
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|